
Concurrent systems
Lecture 2: Hardware, OS and Automaton Views

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1

From last time ...

• Concurrency exploits parallel and distributed
computation.

• Concurrency is also a useful programming
paradigm and a virtualisation means.

• Race conditions arise with imperative
languages in shared memory (sadly the
predominant paradigm of last 15 years).

• Concurrency bugs are hard to anticipate.

2

This time

• Computer architecture and O/S summary
• Hardware support for atomicity
• Basic Automata Theory/Jargon and

interactions.

• Simple model checking

• Dining Philosophers Taster

3

General comments

• Concurrency is essential in modern systems
– overlapping I/O with computation

– building distributed systems

– But throws up a lot of challenges
• need to ensure safety, allow synchronization, and avoid

issues of liveness (deadlock, livelock, ...)

– Major risk of over-engineering
• generally worth building sequential system first

– and worth using existing libraries, tools and design
patterns rather than rolling your own!

4

Computer Architecture Reference Models

Even on a uniprocessor,
interrupt routines will ‘magically’
change stored values in memory.

Stop-the-world atomic
operations are undesirable on
parallel hardware.

https://www.cl.cam.ac.uk/~djg11/socdam-patterns-hls-touchstones/soc-design-patterns/sp1-socparts/zhp6c8e57449.html

Operating System Behaviour

TCB contains saved registers for non-running tasks.
Read-to-run tasks are in a nominal queue.
Blocked TCBs point to semaphore (or similar) they are awaiting.
Most interrupt routines will invoke scheduller as they return.

Hardware foundations for atomicity 1

• On a simple uni-processor, without DMA devices, the
crudest mechanism is to disable interrupts.

• We bracket critical section with ints_off and ints_on
instructions. This guarantees no preemption.

• Can disrupt real-time response

• Not suitable when other CPUs and DMA exist

• Requires supervisor privilege.

7

Hardware foundations for atomicity 2

• How can we implement atomic read-and-set?

• Simple pair of load and store instructions fail
the atomicity test (obviously divisible!)

• Need a new ISA primitive for protection against
parallel access to memory from another CPU

• Two common flavours:
– Atomic Compare and Swap (CAS)

– Load Linked, Store Conditional (LL/SC)

– (But we also find atomic increment, bitset etc..)

8

Atomic Compare and Swap (CAS)
• Instruction operands: memory address, prior + new values

– If prior value matches in-memory value, new value stored

– If prior value does not match in-memory value, instruction fails

– Software checks return value, can loop on failure

• Found on CISC systems such as x86 (cmpxchg)?

9

mov %edx, 1 # New value -> register
spin:

mov %eax, [foo_lock] # Load prior value
test %eax, %eax # If non-zero (owned),
jnz spin # loop
lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,
test %eax, %eax # swap in value from
jnz spin # %edx; else loop

mov %edx, 1 # New value -> register
spin:

mov %eax, [foo_lock] # Load prior value
test %eax, %eax # If non-zero (owned),
jnz spin # loop
lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,
test %eax, %eax # swap in value from
jnz spin # %edx; else loop

• Atomic Test and Set (TAS) is another variation

Load Linked-Store Conditional (LL/SC)

• Found on RISC systems (MIPS, RISC-V, ARM, …)
– Load value from memory location with LL

– Manipulate value in register (e.g., add, assign, …)

– SC fails if memory neighbourhood modified (or interrupt) since LL

– SC writes back register and indicates success (or not)

– Software checks SC return value and typically loops on failure

– An example of optimistic concurrency.

• Preferred since it does not lock up whole memory system

while one core makes an atomic operation.

10

test_and_set_bit: ! RISC-V code
spin:
 movli.l @mutex, %r_tmp1 ! Load linked
 mov %r_tmp1, %r_tmp2 ! Copy to second register
 or %r_bitno, %r_tmp1 ! Set the desired bit
 movco.l %r_tmp1, @mutex ! Store-conditional
 bf spin ! If store failed, try again
 and %r_bitno, %r_tmp2 ! Return old value of the bit.
 ret

test_and_set_bit: ! RISC-V code
spin:
 movli.l @mutex, %r_tmp1 ! Load linked
 mov %r_tmp1, %r_tmp2 ! Copy to second register
 or %r_bitno, %r_tmp1 ! Set the desired bit
 movco.l %r_tmp1, @mutex ! Store-conditional
 bf spin ! If store failed, try again
 and %r_bitno, %r_tmp2 ! Return old value of the bit.
 ret

Finite State Machine Revision and Terminology

FSM is tuple: (Q, q
0
, Σ, Δ) being states, start state, input alphabet, transition function.

A live state is one that can be returned to infinitely often in the future.

A dead(lock) state has no successors – machine stops if we enter it.

Start-up states are those before the main live behaviour.

‘Bad’ states are those that lead away from the main live behaviour.

Finite State Machine: Fairness and Livelock

Ignoring the ‘F’, the live states of this FSM include Q5 and Q6.

F has been labelled as a ‘fair’ state. If we also discard the start-up ‘lasso
stem’, its existence changes the live states to just Q2, Q3, Q4. Manual
labelling defines the intended system behaviour.

Any fair state is live and states from which any fair state cannot be reached
are not live. [Hence if we also labelled Q5 as F, fairness cannot be achieved.]

Although more rigorous definitions exist, this is sufficient terminology for us to
define livelock as: we have not deadlocked but cannot make ‘useful’ progress.

Finite State Machine: FSM view of thread control flow.

FSM expresses program control flow per thread.
FSM arcs have ‘condition / action’ annotations.
Conditions and actions range over shared global state.

Finite State Machine: Product of Machines 1

Product of uncoupled machines simply multiplies state arities.
Product may be synchronous or asynchronous.
We shall not always show self arcs from now on.

Finite State Machine: Product of Machines 2

Asynchronous product: one machine steps at a time. Interleaving order is
undefined (not strict alternation but so-called stuttering).

Synchronous product: all machines step at once (lock-step). We see
‘diagonal’ arcs.

Synchronous product corresponds to synchronous hardware in digital logic.

Asynchronous product is relevant for this course.

Finite State Machine: Product of Machines 3

Coupling of FSMs reduces behaviour.

Arc removal can lead to deadlock.

Couple FSMs by making input of one
depend on the state of the other.

Example couplings:
 Half coupled:
 Let y = M1 in state A.

 Full coupling:
 Let y = M1 in state A
 and x = M2 in state 0.

Another form of coupling is through shared
variables: those written by one FSM
appear in edge guards of another.

Finite State Machine: Product of Machines 4

 Fully coupled:
 Let y = M1 in state A
 and x = M2 in state 0.

Composite machine has
no remaining external inputs.

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

18

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• For now, read ‘wait’ as ‘pick up’ and ‘signal’ as `put down’

• See next time for definitions.

• Exercise: Draw out FSM product for 2 or 3 philosophers.

Reachable State Space Algorithm

• 0. Input FSM = (Q, q0, Σ, Δ)
• 1. Initialise reachable R = { q0 }

• 2. while(changes)
R = R ∪ { q’| q’ = Δ(q, σ), q ∈R, σ ∈Σ }

19

The `while(changes)’ construct makes this a fixed-point
iteration.

A common requirement is to check that a condition holds in
all reachable states. This is called a safety property.

A model checker tool can either check the condition on each
iteration for early violation detection, or else check after R is
fully computed.

Live States Algorithm

• 0. Input FSM = (Q, q0, Σ, Δ)
• 1. Initialise live set L = Q (or perhaps R)

• 2. while(changes)
– L = L ∩ { q| q’ = Δ(q, σ), q’ ∈L, σ ∈Σ }

20

Premise: A state is live or a start-up state if it has a successor
that is live.

This finds the whole ‘lasso’.

To discard start-up states intersect the result with the same
computation on the inverse transition function.

(This slide for interest only: not examinable.)

Model Checking Quick Demo

• If time permits, CBMC demo in lectures.

• Materials are (will be) on course site and
developed a little further next time.

• Otherwise try in your own time.

21

Summary + next time

• We looked at underlying hardware structures (but this
was for completeness rather than for examination
purposes)

• We looked at finite-state models of programs and a
model checker, but do note that today’s tools can

cope only with highly-abstracted models or small sub-
systems of real-world applications.

• Next time
– Access to hardware primitives via O/S

– Mutual exclusion using semaphores

– Producer/consumer and one generalisation
22

	Slide 1
	Reminder from last time
	Slide 3
	Concurrent systems: summary
	Slide 5
	Slide 6
	Hardware foundations for atomicity
	Slide 8
	Atomic Compare and Swap (CAS)
	Load Linked-Store Conditional (LL/SC)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Example: Dining Philosophers_clipboard0
	Summary + next time
	Slide 20
	Slide 21
	Slide 22

