Complexity Theory
Lecture 9
Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1920/Complexity
Alice wishes to communicate with Bob without Eve eavesdropping.
In a private key system, there are two secret keys

\(e \) – the encryption key

\(d \) – the decryption key

and two functions \(D \) and \(E \) such that:

for any \(x \),

\[
D(E(x, e), d) = x.
\]

For instance, taking \(d = e \) and both \(D \) and \(E \) as exclusive or, we have the one time pad:

\[
(x \oplus e) \oplus e = x
\]
One Time Pad

The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then so is the key:

$$e = x \oplus y$$
In public key cryptography, the encryption key \(e \) is public, and the decryption key \(d \) is private. We still have,

\[
\text{for any } x, \quad D(E(x, e), d) = x
\]

If \(E \) is polynomial time computable (and it must be if communication is not to be painfully slow), then the following language is in \(\text{NP} \):

\[
\{(y, z) \mid y = E(x, e) \text{ for some } x \text{ with } x \leq_{\text{lex}} z\}
\]

Thus, public key cryptography is not \textit{provably secure} in the way that the one time pad is. It relies on the assumption that \(P \neq \text{NP} \).
A function \(f \) is called a \textit{one way function} if it satisfies the following conditions:

1. \(f \) is one-to-one.
2. for each \(x \), \(|x|^{1/k} \leq |f(x)| \leq |x|^k \) for some \(k \).
3. \(f \) is computable in polynomial time.
4. \(f^{-1} \) is \textit{not} computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at the same time proving \(P \neq \text{NP} \).

It is strongly believed that the RSA function:

\[
f(x, e, p, q) = (x^e \mod pq, pq, e)
\]

is a one-way function.
Though one cannot hope to prove that the RSA function is one-way without separating P and NP, we might hope to make it as secure as a proof of NP-completeness.

Definition
A nondeterministic machine is *unambiguous* if, for any input x, there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.
Equivalently, UP is the class of languages of the form

$$\{x \mid \exists y R(x, y)\}$$

Where R is polynomial time computable, polynomially balanced, and for each x, there is at most one y such that $R(x, y)$.
We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]

It seems unlikely that there are any \(\text{NP} \)-complete problems in \(\text{UP} \).

One-way functions exist \textit{if, and only if}, \(P \neq \text{UP} \).
Suppose \(f \) is a \textit{one-way function}.

Define the language \(L_f \) by

\[
L_f = \{(x, y) \mid \exists z (z \leq x \text{ and } f(z) = y)\}.
\]

We can show that \(L_f \) is in \(\text{UP} \) but not in \(\text{P} \).
Suppose that L is a language that is in UP but not in P. Let U be an unambiguous machine that accepts L.

Define the function f_U by

- if x is a string that encodes an accepting computation of U, then $f_U(x) = 1y$ where y is the input string accepted by this computation.
- $f_U(x) = 0x$ otherwise.

We can prove that f_U is a one-way function.