A verifier V for a language L is an algorithm such that

$$L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}$$

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.
Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a non-deterministic Turing machine.

$$\delta \subseteq (Q \times \Sigma) \times (Q \cup \{\text{acc, rej}\} \times \Sigma \times \{R, L, S\}).$$

The yields relation \rightarrow^*_M is also no longer functional.

We still define the language accepted by M by:

$$\{x \mid (s, \triangleright, x) \rightarrow^*_M (\text{acc, } w, u) \text{ for some } w \text{ and } u\}$$

though, for some x, there may be computations leading to accepting as well as rejecting states.
With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.
We have already defined $\text{TIME}(f)$ and $\text{SPACE}(f)$.

$\text{NTIME}(f)$ is defined as the class of those languages L which are accepted by a \textit{nondeterministic} Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length $O(f(n))$, where n is the length of x.

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)$$
Nondeterminism

For a language in $\text{NTIME}(f)$, the height of the tree can be bounded by $f(n)$ when the input is of length n.
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a *nondeterministic algorithm* that accepts L

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x. At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow. If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.
We can think of nondeterministic algorithms in the generate-and-test paradigm:

Where the \textit{generate} component is nondeterministic and the \textit{verify} component is deterministic.
Reductions

Given two languages $L_1 \subseteq \Sigma_1^*$, and $L_2 \subseteq \Sigma_2^*$,

A *reduction* of L_1 to L_2 is a *computable* function

$$f : \Sigma_1^* \rightarrow \Sigma_2^*$$

such that for every string $x \in \Sigma_1^*$,

$$f(x) \in L_2 \text{ if, and only if, } x \in L_1$$
Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is *polynomial time reducible* to L_2.

$L_1 \leq_P L_2$

If f is also computable in $\text{SPACE}(\log n)$, we write

$L_1 \leq_L L_2$
If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2, at least as far as polynomial time computation is concerned.

That is to say,

If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2.
Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be **NP-hard** if for every language $A \in \text{NP}$, $A \leq_P L$.

A language L is **NP-complete** if it is in NP and it is NP-hard.