1. Show that a language L is in co-NP if, and only if, there is a nondeterministic Turing machine M and a polynomial p such that M halts in time $p(n)$ for all inputs of length x, and L is exactly the set of strings x such that all computations of M on input x end in an accepting state.

2. Define a strong nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L, if for every $x \in L$, every computation path of M on x ends in either accept or maybe, with at least one accept and for $x \notin L$, every computation path of M on x ends in reject or maybe, with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial time, then $L \in \text{NP} \cap \text{co-NP}$.

3. We saw in the lectures that if there is a one-way function, then there is a language L in UP that is not in P. Suppose that the RSA function described in the lecture notes (page 38) is a one-way function. What is the language L that can then be proved to be in $\text{UP} \setminus \text{P}$?

4. Consider the algorithm presented in the lecture which establishes that Reachability is in $\text{SPACE}((\log n)^2)$. What is the time complexity of this algorithm?

Can you generalise the time bound to the entire complexity class? That is, give a class of functions F, such that

$$\text{SPACE}((\log n)^2) \subseteq \bigcup_{f \in F} \text{TIME}(f)$$

5. Show that, for every nondeterministic machine M which uses $O(\log n)$ work space, there is a machine R with three tapes (input, work and output) which works as follows. On input x, R produces on its output tape a description of the configuration graph for M, x, and R uses $O(\log |x|)$ space on its work tape.

Explain why this means that if Reachability is in L, then $L = \text{NL}$.

6. Consider the language L in the alphabet \{a, b\} given by $L = \{a^nb^n \mid n \in \mathbb{N}\}$. $L \not\in \text{SPACE}(c)$ for any constant c. Why?
7. On page 42 of the notes, a number of functions are listed as being constructible. Show that this is the case by giving, for each one, a description of an appropriate Turing machine.

Prove that if f and g are constructible functions and $f(n) \geq n$, then so are $f(g)$, $f + g$, $f \cdot g$ and 2^f.

8. For any constructible function f, and any language $L \in \text{NTIME}(f(n))$, there is a nondeterministic machine M that accepts L and all of whose computations terminate in time $O(f(n))$ for all inputs of length n. Give a detailed argument for this statement, describing how M might be obtained from a machine accepting L in time $f(n)$.

9. In the lecture, a proof of the Time Hierarchy Theorem was sketched. Give a similar argument for the following Space Hierarchy Theorem:

Space Hierarchy. For every constructible function f, there is a language in $\text{SPACE}(f(n) \cdot \log f(n))$ that is not in $\text{SPACE}(f(n))$.

10. Show that, if $\text{SPACE}((\log n)^2) \subseteq P$, then $L \neq P$. (Hint: use the Space Hierarchy Theorem from Exercise 9 above.)

11. **POLYLOGSPACE** is the complexity class

$$\bigcup_k \text{SPACE}((\log n)^k).$$

(a) Show that, for any k, if $A \in \text{SPACE}((\log n)^k)$ and $B \leq_L A$, then $B \in \text{SPACE}((\log n)^k)$.

(b) Show that there are no **POLYLOGSPACE**-complete problems with respect to \leq_L. (Hint: use (a) and the space hierarchy theorem).

(c) Which of the following might be true: $P \subseteq \text{POLYLOGSPACE}$, $P \supseteq \text{POLYLOGSPACE}$, $P = \text{POLYLOGSPACE}$?

(d) What is the relationship between the class **POLYLOGSPACE** and the class **Quasi-P** (see Exercise Sheet 1, Question 7)?