1. In the lecture, a proof was sketched showing a \(\Omega(n \log n) \) lower bound on the complexity of the sorting problem. It was also stated that a similar analysis could be used to establish the same bound for the Travelling Salesman Problem. Give a detailed sketch of such an argument. Can you think of a way to improve the lower bound?

2. Say we are given a set \(V = \{v_1, \ldots, v_n\} \) of vertices and a cost matrix \(c : V \times V \to \mathbb{N} \). For a set \(S \subseteq V \), let \(t_{S,i} \) denote the cost of the shortest path that starts at \(v_1 \), visits all vertices in \(S \) and ends at \(v_i \). Describe a dynamic programming algorithm that computes \(t_{S,i} \) for all sets \(S \) and all \(i \). Show that your algorithm can be used to solve the Travelling Salesman Problem in time \(O(n^2 2^n) \).

3. Consider the language \texttt{Unary-Prime} in the one letter alphabet \{a\} defined by \texttt{Unary-Prime} = \{a^n | n is prime\}. Show that this language is in \(\text{P} \).

4. Suppose \(S \subseteq \mathbb{N} \) is a set of natural numbers and consider the language \texttt{Unary-S} in the one letter alphabet \{a\} defined by \texttt{Unary-S} = \{a^n | n \in S\}, and the language \texttt{Binary-S} in the two letter alphabet \{0, 1\} consisting of those strings starting with a 1 which are the binary representation of a number in \(S \). Show that if \texttt{Unary-S} is in \(\text{P} \) then \texttt{Binary-S} is in \(\text{TIME}(2^{cn}) \) for some constant \(c \).

5. We say that a propositional formula \(\phi \) is in \(2\text{CNF} \) if it is a conjunction of clauses, each of which contains exactly 2 literals. The point of this problem is to show that the satisfiability problem for formulas in \(2\text{CNF} \) can be solved by a polynomial time algorithm.

First note that any clause with 2 literals can be written as an implication in exactly two ways. For instance \((p \lor \neg q)\) is equivalent to \((q \rightarrow p)\) and \((\neg p \rightarrow q)\), and \((p \lor q)\) is equivalent to \((\neg p \rightarrow q)\) and \((\neg q \rightarrow p)\).

For any formula \(\phi \), define the directed graph \(G_{\phi} \) to be the graph whose set of vertices is the set of all literals that occur in \(\phi \), and in which there is an edge from literal \(x \) to literal \(y \) if, and only if, the implication \((x \rightarrow y)\) is equivalent to one of the clauses in \(\phi \).

(a) If \(\phi \) has \(n \) variables and \(m \) clauses, give an upper bound on the number of vertices and edges in \(G_{\phi} \).
(b) Show that ϕ is unsatisfiable if, and only if, there is a literal x such that there is a path in G_ϕ from x to $\neg x$ and a path from $\neg x$ to x.

(c) Give an algorithm for verifying that a graph G_ϕ satisfies the property stated in (b) above. What is the complexity of your algorithm?

(d) From (c) deduce that there is a polynomial time algorithm for testing whether or not a 2CNF propositional formula is satisfiable.

(e) Why does this idea not work if we have 3 literals per clause?

6. A clause (i.e. a disjunction of literals) is called a Horn clause, if it contains at most one positive literal. Such a clause can be written as an implication: $(x \lor (\neg y) \lor (\neg w) \lor (\neg z))$ is equivalent to $((y \land w \land z) \rightarrow x))$. HORNSAT is the problem of deciding whether a given Boolean expression that is a conjunction of Horn clauses is satisfiable.

(a) Show that there is a polynomial time algorithm for solving HORNSAT. (Hint: if a variable is the only literal in a clause, it must be set to true; if all the negative variables in a clause have been set to true, then the positive one must also be set to true. Continue this procedure until a contradiction is reached or a satisfying truth assignment is found).

(b) In the proof of the NP-completeness of SAT it was shown how to construct, for every nondeterministic machine M, integer k and string x a Boolean expression ϕ which is satisfiable if, and only if, M accepts x within n^k steps. Show that, if M is deterministic, than ϕ can be chosen to be a conjunction of Horn clauses.

(c) Conclude from (b) that the problem HORNSAT is P-complete under L-reductions.

7. We define the complexity class of quasi-polynomial-time problems Quasi-P by:

$$\text{Quasi-P} = \bigcup_{k=1}^{\infty} \text{Time}(n^{(\log n)^k}).$$

Show that if $L_1 \leq_P L_2$ and $L_2 \in \text{Quasi-P}$, then $L_1 \in \text{Quasi-P}$.

8. In general k-colourability is the problem of deciding, given a graph $G = (V, E)$, whether there is a colouring $\chi : V \rightarrow \{1, \ldots, k\}$ of the vertices such that if $(u, v) \in E$, then $\chi(u) \neq \chi(v)$. That is, adjacent vertices do not have the same colour.

(a) Show that there is a polynomial time algorithm for solving 2-colourability.

(b) Show that, for each k, k-colourability is reducible to $k+1$-colourability.

What can you conclude from this about the complexity of 4-colourability?