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The program for U
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1

of list); goto |2

Overall structure of U’s program

copy PCth item of list in P to N (halting if PC > length

2

else (decode N as (v, z)); C:=1y; N:u= z; goto |3))

if N = 0 then copy Oth item of list in A to Ry and halt,

{at this point either C = 2i is even and current instruction is R} — L,

or C = 2i +1is odd and current instruction is R, — L;, Lx where z = (j, k) }

3

copy ith item of list in A to R; goto |4

A

label; restore register values to A; goto |1

execute current instruction on R; update PC to next

L4
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Halting

For a finite computation ¢y, c1,...,Cy, the last

configuration ¢,, = (£, r,...) is a halting configuration,
i.e. instruction labelled Ly is

either HALT (a “proper halt")
or Rt — L or R-—L,L" with R > 0, or
R - L,L withR=20
and there is no instruction labelled L in the
program (an “erroneous halt")

Lo: Ry — Ly

E.g. L : HALT

halts erroneously. ( Jh s C‘W“PJJ%L\‘OV\

Se/qvwv\uzx C(o,x)7) )
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Halting

For a finite computation ¢y, c1,...,Cy, the last
configuration ¢, = (£, 7,...) is a halting configuration,

QA’rb\W @>, Num bex- 0*— nsbuchong 1n Pro s

(aw\ "2 vironeous halt )

oY Ub\ \WSkwchen In DY g7 o RS
bodny, HALT (& “prrper hhalk™)

E.g.

Qra‘\/wu/s L (O)Z)J (2, 3(-4‘{5’] )

L() . REI)_ — Lz
Ly : HALT

halts erroneously( N Golv\l:)u}d'\'mz\

25



The halting problem



L5

Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R():O Ri = e Rzzr[al,...,an]j

and all other registers zeroed, the computation of H always
halts with Ry containing 0 or 1; moreover when the
computation halts, Rg = 1 if and only if

the register machine program with index e eventually halts
when started with Rg = 0,Ry = a4,...,R; = a, and all
other registers zeroed.
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Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R():O Ri = e Rzzr[al,...,an]j

and all other registers zeroed, the computation of H always
halts with Ry containing 0 or 1; moreover when the
computation halts, Rg = 1 if and only if

the register machine program with index e eventually halts
when started with Rg = 0,Ry = a4,...,R; = a, and all
other registers zeroed.

Theorem. No such register machine H can exist. )
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Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

» Let H’ be obtained from H by replacing START— by

START—

Z = R4

—

push Z
to Ro

—

(where Z is a register not mentioned in H's program).

» Let C be obtained from H’ by replacing each HALT (&

—

each erroneous halt) by ——R; .~ "Ry .

!

HALT

» Let ¢ € IN be the index of C's program.

L5
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Proof of the theorem

Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R; = ¢ eventually halts
if & only if
H’ started with Ry = ¢ halts with Rg = 0
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Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R; = ¢ eventually halts
if & only if
H’ started with Ry = ¢ halts with Rg = 0
if & only if
H started with Ry = ¢,Ry = "[c] " halts with Ry = 0
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Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R; = ¢ eventually halts

if & only if
H’ started with Ry = ¢ halts with Rg = 0
if & only if
H started with Ry = ¢,Ry = "[c] " halts with Ry = 0
if & only if

prog(c) started with Ry = ¢ does not halt
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Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R; = ¢ eventually halts

if & only if

H’ started with Ry = ¢ halts with Rg = 0
if & only if

H started with Ry = ¢,Ry = "[c] ! halts with Rg = 0

if & only if

prog(c) started with Ry = ¢ does not halt
if & only if

C started with Ry = ¢ does not halt
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Proof of the theorem

Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with Ry = ¢ eventually halts

if & only if

H’ started with Ry = ¢ halts with Ry = 0
if & only if

H started with Ry = ¢,Ry = "[c] " halts with Ry = 0

if & only if

prog(c) started with Ry = ¢ does not halt
if & only if

C started with Ry = ¢ does not halt
—contradiction!
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Computable functions

Recall:

Definition. f € IN"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Rg, Ry, ..., R, (and maybe more)

such that for all (x1,...,x,) € N" and all y € IN,

the computation of M starting with Ry = 0,
R1 = x1, ..., Ry, = x, and all other registers set

to 0, halts with Ry = y

if and only if f(x1,...,x,) = v.

v

Note that the same RM M could be used to compute a unary function
(n = 1), or a binary function (n = 2), etc. From now on we will

concentrate on the unary case. ..
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Enumerating computable functions

For each e € IN, let @, € IN—~IN be the unary partial
function computed by the RM with program prog(e). So
for all x,y € IN:

@.(x) = y holds iff the computation of prog(e) started
with Rg = 0,R; = x and all other registers zeroed

eventually halts with Rg = y.

Thus
e — @,

defines an onto function from IN to the collection of all
computable partial functions from IN to IN.
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Enumerating computable functions

For each e € IN, let @, € IN—~IN be the unary partial
function computed by the RM with program prog(e). So
for all x,y € IN:

@.(x) = y holds iff the computation of prog(e) started
with Rg = 0,R7 = x and all other registers zeroed

eventually halts with Rg = .

Thus S0 Heis |5 Counga‘al.a.
e — @,

defines an onto function from IN to)the collection of aD
@omputable partial functions from IN to IN.J

So W=>IN (W\\D\Avxk(/\\o&)bg, Contor) Contai v 6 V\V\(Ampwq'alall f\md{w\i
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An uncomputable function
Let f € IN—~IN be the partial function with graph

{(x,0) | p+(x)1}.

Thus f(x) = <\undeﬁned if @ ()4
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An uncomputable function
Let f € IN—~IN be the partial function with graph

1(x,0) | @x(x)T}.

- (0 Ifqﬂx(x)T
Thus f(x) = <\undeﬁned if s (x)d

4

f is not computable, because if it were, then f = @, for some e € IN
and hence

> if @.(e)T, then f(e) = 0 (by def. of f); so @.(e) = 0 (since
f = @e), hence g.(e)l

» if @.(e)d, then f(e)l (since f = @.); so @p.(e)T (by def. of f)

—contradiction! So f cannot be computable.
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(Un)decidable sets of numbers

Given a subset S C IN, its characteristic function
r
1 fx€S

N—IN is given by: =
xs € IN—=IN is given by: xs(x) 0 xS

\
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(Un)decidable sets of numbers

Definition. S C IN is called (register machine) decidable if
its characteristic function xs € IN—IN is a register machine
computable function. Otherwise it is called undecidable.

y

So S is decidable iff there is a RM M with the property: for all x € N,
M started with Rg = 0,R1 = x and all other registers zeroed eventually
halts with Ry containing 1 or 0; and Rg = 1 on halting iff x € S.
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(Un)decidable sets of numbers

Definition. S C IN is called (register machine) decidable if
its characteristic function xs € IN—IN is a register machine
computable function. Otherwise it is called undecidable.

y

So S is decidable iff there is a RM M with the property: for all x € N,
M started with Rg = 0,R1 = x and all other registers zeroed eventually
halts with Ry containing 1 or 0; and Rg = 1 on halting iff x € S.

Basic strategy: to prove S C IN undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. ..
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L5

Claim: Sy = {e | ¢.(0)]} is undecidable.

Proof (sketch): Suppose My is a RM computing xs,. From Mjy's
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e =Ry and "[ay,...,a,] ' =Ry in

Ry ::=20;
run My
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Claim: Sy = {e | ¢.(0)]} is undecidable. J

Proof (sketch): Suppose My is a RM computing xs,. From Mjy's
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e =Ry and "[ay,...,a,] ' =Ry in

Riu="(Ris=a1);++; (Rpi=ay);prog(e)’;
Ry ::=20;
run M
O\E/COJ\L QZ NS R oy A j
oSk (G s Gy — ™M R, R, =0, &, {pris )

«f

E"::K(

7\

s START
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L5

Claim: Sy = {e | ¢.(0)]} is undecidable.

Proof (sketch): Suppose My is a RM computing xs,. From Mjy's
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e =Ry and "[ay,...,a,] ' =Ry in

Ry ::=20;
run My

Then by assumption on My, H decides the Halting
Problem—contradiction. So no such Mj exists, i.e. xs, is
uncomputable, i.e. Sg is undecidable.
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Claim: S; = {e | ¢. a total function} is undecidable. J

Proof (sketch): Suppose Mj is a RM computing xs,. From Mj's
program we can construct a RM Mj to carry out:

let e =R in Ry :="Ry::=0;prog(e)’;
run My
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Claim: S; = {e | ¢. a total function} is undecidable. J

Proof (sketch): Suppose Mj is a RM computing xs,. From Mj's
program we can construct a RM Mj to carry out:

let e =R; in Ry :="Ry :=0;prog(e)’;
run My

Then by assumption on M7, My decides membership of S¢ from
previous example (i.e. computes xs,)—contradiction. So no such Mj
exists, i.e. xs, iIs uncomputable, i.e. S1 is undecidable.
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