The program for U

- **START**
 - push 0 to A
 - T ::= P

- **pop T to N**

- **PC**

- **pop S to R**

- **R**

- **push R to A**

- **push R to A**

- **pop R to PC**

- **N**

- **pop N to C**

- **C**

- **push R to S**

- **HALT**
 - pop A to R_0

 - pop N to C

 - pop A to R
Overall structure of U’s program

1. copy PCth item of list in P to N (halting if PC > length of list); goto 2

2. if N = 0 then copy 0th item of list in A to R₀ and halt, else (decode N as \(\langle y, z \rangle\); C ::= y; N ::= z; goto 3)

{at this point either C = 2i is even and current instruction is \(R_i^+ \rightarrow L_z\),
or C = 2i + 1 is odd and current instruction is \(R_i^- \rightarrow L_j, L_k\) where \(z = \langle j, k \rangle\)}

3. copy ith item of list in A to R; goto 4

4. execute current instruction on R; update PC to next label; restore register values to A; goto 1
Halting

For a finite computation c_0, c_1, \ldots, c_m, the last configuration $c_m = (\ell, r, \ldots)$ is a halting configuration, i.e. instruction labelled L_ℓ is

- either HALT (a “proper halt”)
- or $R^+ \to L$, or $R^- \to L, L'$ with $R > 0$, or $R^- \to L', L$ with $R = 0$
- and there is no instruction labelled L in the program (an “erroneous halt”)

E.g. $L_0 : R_0^+ \to L_2$

$L_1 : \text{HALT}$

halts erroneously. (has computation sequences $[(0,x)]$)
Halting

For a finite computation \(c_0, c_1, \ldots, c_m \), the last configuration \(c_m = (l, r, \ldots) \) is a halting configuration, i.e.

- either \(l \) > number of instructions in program (an “erroneous halt”)
- or \(l \) th instruction in program has body HALT (a “proper halt”)

E.g. \(L_0 : R_0^+ \rightarrow L_2 \)
\(L_1 : \text{HALT} \) halts erroneously

(has computation sequences \([(0, x), (2, x+1)] \))
The halting problem
Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \left[a_1, \ldots, a_n \right]$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.
Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0 \quad R_1 = e \quad R_2 = \left\lceil [a_1, \ldots, a_n] \right\rceil$$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- Let H' be obtained from H by replacing $\text{START} \rightarrow$ by

 $\text{START} \rightarrow \boxed{Z := R_1} \rightarrow \boxed{\text{push } Z \text{ to } R_2} \rightarrow$

 (where Z is a register not mentioned in H’s program).

- Let C be obtained from H' by replacing each HALT ($\&$ each erroneous halt) by

 $\rightarrow \xrightarrow{R_0^-} \xleftarrow{R_0^+} \downarrow \text{HALT}$

- Let $c \in \mathbb{N}$ be the index of C’s program.
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if
H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if
H started with $R_1 = c, R_2 = \lceil [c] \rceil$ halts with $R_0 = 0$
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts
if & only if
H' started with $R_1 = c$ halts with $R_0 = 0$
if & only if
H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$
if & only if
$\text{prog}(c)$ started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

- C started with $R_1 = c$ eventually halts if & only if
- H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
- H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$ if & only if
- $\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
- C started with $R_1 = c$ does not halt
Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if
H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if
H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$ if & only if
$\text{prog}(c)$ started with $R_1 = c$ does not halt if & only if
C started with $R_1 = c$ does not halt —contradiction!
Recall:

Definition. \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is (register machine) **computable** if there is a register machine \(M \) with at least \(n + 1 \) registers \(R_0, R_1, \ldots, R_n \) (and maybe more) such that for all \((x_1, \ldots, x_n) \in \mathbb{N}^n \) and all \(y \in \mathbb{N} \),

the computation of \(M \) starting with \(R_0 = 0 \),
\(R_1 = x_1, \ldots, R_n = x_n \) and all other registers set to 0, halts with \(R_0 = y \)

if and only if \(f(x_1, \ldots, x_n) = y \).

Note that the same RM \(M \) could be used to compute a unary function \((n = 1) \), or a binary function \((n = 2) \), etc. From now on we will concentrate on the unary case...
Enumerating computable functions

For each \(e \in \mathbb{N} \), let \(\varphi_e \in \mathbb{N} \rightarrow \mathbb{N} \) be the unary partial function computed by the RM with program \(prog(e) \). So for all \(x, y \in \mathbb{N} \):

\[
\varphi_e(x) = y \text{ holds iff the computation of } prog(e) \text{ started with } R_0 = 0, R_1 = x \text{ and all other registers zeroed eventually halts with } R_0 = y.
\]

Thus

\[
e \mapsto \varphi_e
\]

defines an onto function from \(\mathbb{N} \) to the collection of all computable partial functions from \(\mathbb{N} \) to \(\mathbb{N} \).
Enumerating computable functions

For each \(e \in \mathbb{N} \), let \(\varphi_e \in \mathbb{N} \rightarrow \mathbb{N} \) be the unary partial function computed by the RM with program \(\text{prog}(e) \). So for all \(x, y \in \mathbb{N} \):

\[\varphi_e(x) = y \] holds iff the computation of \(\text{prog}(e) \) started with \(R_0 = 0, R_1 = x \) and all other registers zeroed eventually halts with \(R_0 = y \).

Thus \(e \mapsto \varphi_e \) defines an onto function from \(\mathbb{N} \) to the collection of all computable partial functions from \(\mathbb{N} \) to \(\mathbb{N} \).

So \(\mathbb{N} \rightarrow \mathbb{N} \) (uncountable, by Cantor) contains uncomputable functions.
An uncomputable function

Let $f \in \mathbb{N} \rightarrow \mathbb{N}$ be the partial function with graph
\[\{(x, 0) \mid \varphi_x(x) \uparrow\} \].

Thus $f(x) = \begin{cases}
0 & \text{if } \varphi_x(x) \uparrow \\
\text{undefined} & \text{if } \varphi_x(x) \downarrow
\end{cases}$
An uncomputable function

Let $f \in \mathbb{N} \rightarrow \mathbb{N}$ be the partial function with graph
\(\{ (x, 0) \mid \varphi_x(x) \uparrow \} \).

Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ \text{undefined} & \text{if } \varphi_x(x) \downarrow \end{cases}$

f is not computable, because if it were, then $f = \varphi_e$ for some $e \in \mathbb{N}$ and hence

- if $\varphi_e(e) \uparrow$, then $f(e) = 0$ (by def. of f); so $\varphi_e(e) = 0$ (since $f = \varphi_e$), hence $\varphi_e(e) \downarrow$
- if $\varphi_e(e) \downarrow$, then $f(e) \downarrow$ (since $f = \varphi_e$); so $\varphi_e(e) \uparrow$ (by def. of f)

—contradiction! So f cannot be computable.
(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function

$$\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$$

is given by:

$$\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.
(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N}\rightarrow\mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...
Claim: \(S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \} \) is undecidable.

Proof (sketch): Suppose \(M_0 \) is a RM computing \(\chi_{S_0} \). From \(M_0 \)'s program (using the same techniques as for constructing a universal RM) we can construct a RM \(H \) to carry out:

\[
\text{let } e = R_1 \text{ and } \lnot [a_1, \ldots, a_n] \Downarrow = R_2 \text{ in}
\]
\[
R_1 ::= \lnot (R_1 ::= a_1); \cdots; (R_n ::= a_n); \text{prog}(e) \Downarrow;
\]
\[
R_2 ::= 0;
\]
\[
\text{run } M_0
\]
Claim: $S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0}. From M_0’s program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

```
let e = R_1 and \([a_1, \ldots, a_n]\)\(\) = R_2 in
\.
R_1 ::= \(\) (R_1 ::= a_1) ; \cdots ; (R_n ::= a_n) ; prog(e) \(\)
R_2 ::= 0 ;
run M_0
```

```
E ::= R_1
```

```
\[\text{decode } R_2 \text{ as a list } [a_1, \ldots, a_n] \]
```

```
M_0 \leftarrow R_2 ::= 0
```

```
\[\text{let } e = R_1 \text{ and } [a_1, \ldots, a_n] \Downarrow = R_2 \text{ in} \]
```

```
\[\text{R}_1 ::= \(\) (\text{R}_1 ::= a_1) ; \cdots ; (\text{R}_n ::= a_n) ; \text{prog(e)} \Downarrow ; \]
```

```
\[\text{R}_2 ::= 0 ; \]
```

```
\[\text{run } M_0 \]
```

Then by assumption on M_0, H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.
Claim: \(S_0 \triangleq \{ e \mid \varphi_e(0) \downarrow \} \) is undecidable.

Proof (sketch): Suppose \(M_0 \) is a RM computing \(\chi_{S_0} \). From \(M_0 \)'s program (using the same techniques as for constructing a universal RM) we can construct a RM \(H \) to carry out:

\[
\text{let } e = R_1 \text{ and } \lceil [a_1, \ldots, a_n] \rceil = R_2 \text{ in } \\
\text{. } R_1 ::= \lceil (R_1 ::= a_1) ; \cdots ; (R_n ::= a_n) ; \text{prog}(e) \rceil ; \\
R_2 ::= 0 ; \\
\text{run } M_0
\]

Then by assumption on \(M_0 \), \(H \) decides the Halting Problem—contradiction. So no such \(M_0 \) exists, i.e. \(\chi_{S_0} \) is uncomputable, i.e. \(S_0 \) is undecidable.
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)’s program we can construct a RM \(M_0 \) to carry out:

\[
\text{let } e = R_1 \text{ in } R_1 ::= \lnot R_1 ::= 0 ; \text{prog}(e) \}\;
\text{run } M_1
\]

\[
\begin{array}{c}
\text{START}
\end{array}
\]

\[
\begin{array}{c}
E ::= R_1
\end{array}
\]

\[
\begin{array}{c}
R_1 ::= \lnot R_1 ::= 0 \rightarrow \text{prog}(E) \\rightarrow M_1
\end{array}
\]
Claim: \(S_1 \triangleq \{ e \mid \varphi_e \text{ a total function} \} \) is undecidable.

Proof (sketch): Suppose \(M_1 \) is a RM computing \(\chi_{S_1} \). From \(M_1 \)'s program we can construct a RM \(M_0 \) to carry out:

\[
\begin{align*}
\text{let } e &= R_1 \text{ in } R_1 ::= \neg R_1 ::= 0 \text{ ; } \text{prog}(e) \neg \text{ ; } \\
\text{run } M_1
\end{align*}
\]

Then by assumption on \(M_1 \), \(M_0 \) decides membership of \(S_0 \) from previous example (i.e. computes \(\chi_{S_0} \))—contradiction. So no such \(M_1 \) exists, i.e. \(\chi_{S_1} \) is uncomputable, i.e. \(S_1 \) is undecidable.
Exercise 5 If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \& S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}, \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.
Exercise 5 If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \& S_1 \subseteq \mathbb{N}$ satisfy
\[\forall e \in \mathbb{N}. \ e \in S_0 \iff f(e) \in S_1 \]
then if S_1 is decidable, then so is S_0.

For $S_1 \& S_2$ as on Slides 57 & 58 we have:
\[e \in S_0 \iff \varphi_e(0) \downarrow \]
\[f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow \]
Exercise 5 If \(f: \mathbb{N} \rightarrow \mathbb{N} \) is a RM computable function, \(S_0 \subseteq \mathbb{N} \) and \(S_1 \subseteq \mathbb{N} \) satisfy

\[
\forall e \in \mathbb{N}, \ e \in S_0 \iff f(e) \in S_1
\]

then if \(S_1 \) is decidable, then so is \(S_0 \).

For \(S_1 \) and \(S_2 \) as on Slides 57 and 58 we have:

\[
\forall e \in \mathbb{N}, \ e \in S_0 \iff \varphi_e(0) \downarrow
\]

\[
f(e) \in S_1 \iff \forall x \in \mathbb{N}, \ \varphi_{f(e)}(x) \downarrow
\]

So can apply the Exercise to deduce undecidability of \(S_1 \) from undecidability of \(S_0 \) by finding a RM computable \(f: \mathbb{N} \rightarrow \mathbb{N} \) with

\[
\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)
\]
Exercise 5: If $f : \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N}$ and $S_1 \subseteq \mathbb{N}$ satisfy

$$\forall e \in \mathbb{N}, \ e \in S_0 \iff f(e) \in S_1$$

then if S_1 is decidable, then so is S_0.

For S_1 and S_2 as on Slides 57 & 58, we have:

$$e \in S_0 \iff \varphi_e(0) \downarrow$$

$$f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$$

So can apply the Exercise to deduce undecidability of S_1 from undecidability of S_0 by finding RM computable $f : \mathbb{N} \to \mathbb{N}$ with

$$\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)$$

"Kleene equivalence" (p. 82): either LHS & RHS are undefined, or both are defined and equal.