Computable = λ-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that

- Register Machine computable
- = Turing computable
- = partial recursive.

Using this, we break the theorem into two parts:

- every partial recursive function is λ-definable
- λ-definable functions are RM computable
Representing primitive recursion

If \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(F \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(G \), we want to show \(\lambda \)-definability of the unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying \(h = \Phi_{f,g}(h) \), where \(\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \) is given by

\[
\Phi_{f,g}(h)(\bar{a}, a) \triangleq \begin{cases}
\text{if } a = 0 \text{ then } f(\bar{a}) \\
\text{else } g(\bar{a}, a - 1, h(\bar{a}, a - 1))
\end{cases}
\]
Representing primitive recursion

If \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(F \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(G \), we want to show \(\lambda \)-definability of the unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying \(h = \Phi_{f,g}(h) \)

where \(\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \) is given by...

Strategy:

- show that \(\Phi_{f,g} \) is \(\lambda \)-definable;

\[
\lambda z \forall x. \text{If}(\text{Eq}_0x)(F \overrightarrow{x})(G \overrightarrow{x}(\text{pred}_1x)(z \overrightarrow{x}(\text{pred}_1x)))
\]
Representing primitive recursion

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by...

Strategy:

- show that $\Phi_{f,g}$ is λ-definable;
- show that we can solve fixed point equations $X = MX$ up to β-conversion in the λ-calculus.
Curry’s fixed point combinator \mathbf{Y}

$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

$\mathbf{Y} \ M =_\beta M(\mathbf{Y} \ M)$
<table>
<thead>
<tr>
<th>Naive set theory</th>
<th>λ Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell set: $R \triangleq { x</td>
<td>\neg(x \in x) }$</td>
</tr>
<tr>
<td></td>
<td>$\text{not} \triangleq \lambda b. \text{If } b \text{ False True}$</td>
</tr>
</tbody>
</table>
Origins of \(Y \)

<table>
<thead>
<tr>
<th>Naive set theory</th>
<th>(\lambda) calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell set: (R \triangleq { x \mid \neg(x \in x) })</td>
<td>(R \triangleq \lambda x. \neg(\neg(x \in x)))</td>
</tr>
<tr>
<td>Russell's Paradox: (R \in R \iff \neg(R \in R))</td>
<td>(RR =_\beta \neg(\neg(\neg(R \in R)))</td>
</tr>
</tbody>
</table>
Origins of Y

<table>
<thead>
<tr>
<th>Naive set theory</th>
<th>λ calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell set:</td>
<td></td>
</tr>
<tr>
<td>$R \triangleq { x \mid \neg(x \in x) }$</td>
<td>$R \triangleq \lambda x. , \neg t(x,x)$</td>
</tr>
<tr>
<td>Russell's Paradox:</td>
<td></td>
</tr>
<tr>
<td>$R \in R \iff \neg (R \in R)$</td>
<td>$RR =_{\beta} \neg t(R , R)$</td>
</tr>
</tbody>
</table>

$Y\neg t =_{\beta} RR = (\lambda x. \, \neg t(x\,x))(\lambda x. \, \neg t(x\,x))$
Origins of \(Y \)

<table>
<thead>
<tr>
<th>Naive set theory</th>
<th>(\lambda) calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell set: (R \triangleq { x \mid \neg(x \in x) })</td>
<td>(R \triangleq \lambda x. , \neg x , (x , x))</td>
</tr>
<tr>
<td>Russell’s Paradox: (R \in R \iff \neg (R \in R))</td>
<td>(R , R =_\beta , \neg R , (R , R))</td>
</tr>
</tbody>
</table>

\[
Y \, \neg x = _ \beta \, R \, R = (\lambda x. \, \neg x \, (x \, x))(\lambda x. \, \neg x \, (x \, x))
\]
\[
Y \, f = (\lambda x. \, f(x \, x))(\lambda x. \, f(x \, x))
\]
\[
Y = \lambda f. \, (\lambda x. \, f(x \, x))(\lambda x. \, f(x \, x))
\]
Curry’s fixed point combinator \mathbf{Y}

\[\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) \]

satisfies $\mathbf{Y} M \rightarrow (\lambda x. M(xx))(\lambda x. M(xx))$
Curry’s fixed point combinator Y

\[Y \triangleq \lambda f. \,(\lambda x. \,f(xx))(\lambda x. \,f(xx)) \]

satisfies $YM \rightarrow (\lambda x. \,M(xx))(\lambda x. \,M(xx))$
\[\rightarrow M((\lambda x. \,M(xx))(\lambda x. \,M(xx))) \]

hence $YM \rightarrow M((\lambda x. \,M(xx))(\lambda x. \,M(xx))) \iff M(YM)$.

So for all λ-terms M we have

\[YM \beta M(YM) \]
Turing's fixed point combinator

$$\Theta \triangleq AA$$

where $$A \triangleq \lambda xy. y(xxy)$$
Turing's fixed point combinator

\[\Theta \triangleq AA \]
where
\[A \triangleq \lambda xy. y(xx) \]

\[\Theta M = AAM = (\lambda xy. y(xx))AM \]
Turing's fixed point combinator

\[\Theta \triangleq AA \]

where \[A \triangleq \lambda xy. y(xx) \]

\[\Theta M = AAM = (\lambda xy. y(xx))AM \]
\[\rightarrow M(AAM) \]
\[= M(\Theta M) \]
Representing primitive recursion

If \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(F \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(G \), we want to show \(\lambda \)-definability of the unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying \(h = \Phi_{f,g}(h) \)

where \(\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \) is given by

\[
\Phi_{f,g}(h)(\bar{a},a) \triangleq \begin{cases}
 f(\bar{a}) & \text{if } a = 0 \\
 g(\bar{a},a - 1, h(\bar{a}, a - 1)) & \text{else}
\end{cases}
\]

We now know that \(h \) can be represented by
\[
Y(\lambda z \bar{x} x. \text{If}(\text{Eq}_0 x)(F \bar{x})(G \bar{x} (\text{Pred} x)(z \bar{x} (\text{Pred} x))))).
\]
Representing primitive recursion

Recall that the class \textbf{PRIM} of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ-definability so far, we have: every $f \in \text{PRIM}$ is λ-definable.

So for λ-definability of all recursive functions, we just have to consider how to represent minimization. Recall...
Minimization

Given a partial function \(f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \), define \(\mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N} \) by

\[
\mu^n f (\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 \text{ and for each } i = 0, \ldots, x - 1, f(\vec{x}, i) \text{ is defined and } > 0
\]

(undefined if there is no such \(x \))

so \(\mu^n f (\vec{x}) = g(\vec{x}, 0) \) where in general \(g(\vec{x}, x) \) satisfies

\[
g(\vec{x}, x) = \begin{cases} x & \text{if } f(\vec{x}, x) = 0 \\ g(\vec{x}, x+1) & \text{else} \end{cases}
\]
Minimization

Given a partial function \(f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \), define \(\mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N} \) by

\[
\mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 \text{ and for each } i = 0, \ldots, x - 1, f(\vec{x}, i) \text{ is defined and } > 0
\]

(undefined if there is no such \(x \))

Can express \(\mu^n f \) in terms of a fixed point equation:

\[
\mu^n f(\vec{x}) \equiv g(\vec{x}, 0) \text{ where } g \text{ satisfies } g = \Psi_f(g)
\]

with \(\Psi_f \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \) defined by

\[
\Psi_f(g)(\vec{x}, x) \equiv \text{if } f(\vec{x}, x) = 0 \text{ then } x \text{ else } g(\vec{x}, x + 1)
\]
Representing minimization

Suppose \(f \in \mathbb{N}^{n+1} \to \mathbb{N} \) (totally defined function) satisfies \(\forall \vec{a} \exists a (f(\vec{a}, a) = 0) \), so that \(\mu^n f \in \mathbb{N}^n \to \mathbb{N} \) is totally defined.

Thus for all \(\vec{a} \in \mathbb{N}^n \), \(\mu^n f(\vec{a}) = g(\vec{a}, 0) \) with \(g = \Psi_f(g) \) and \(\Psi_f(g)(\vec{a}, a) \) given by

if \((f(\vec{a}, a) = 0) \) then \(a \) else \(g(\vec{a}, a + 1) \).

So if \(f \) is represented by a \(\lambda \)-term \(F \), then \(\mu^n f \) is represented by

\[
\lambda \vec{x}. \mathbf{Y}(\lambda z \vec{x}. \text{if}(\text{Eq}_0(F \vec{x} x)) x (z \vec{x} (\text{Succ} x))) \vec{x} 0
\]
Recursive implies λ-definable

Fact: every partial recursive $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g, h \in \text{PRIM}$. (Follows from the proof that computable = partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is λ-definable, but matching up \uparrow with $\overline{\exists} \beta - \text{nf}$ makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]
Computable = λ-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that computable = partial recursive \Rightarrow λ-definable. So it just remains to see that λ-definable functions are RM computable. To show this one can

- code λ-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β-reduction.
Computable = \(\lambda \)-definable

Theorem. A partial function is computable if and only if it is \(\lambda \)-definable.

We already know that computable = partial recursive \(\Rightarrow \) \(\lambda \)-definable.

So it just remains to see that \(\lambda \)-definable functions are RM computable. To show this one can

- code \(\lambda \)-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)

- write a RM interpreter for (normal order) \(\beta \)-reduction.
Numerical coding of λ-terms

Fix an enumeration x_0, x_1, x_2, \ldots of the set of variables. For each λ-term M, define $\langle M \rangle \in \mathbb{N}$ by

$$\langle x_i \rangle = \langle [0, i] \rangle$$

$$\langle \lambda x_i . M \rangle = \langle [1, i, \langle M \rangle] \rangle$$

$$\langle M N \rangle = \langle [2, \langle M \rangle, \langle N \rangle] \rangle$$

(where $\langle [n_0, n_1, \ldots, n_k] \rangle$ is the numerical coding of lists of numbers from p. 43).
Theorem. A partial function is computable if and only if it is \(\lambda\)-definable.

We already know that computable = partial recursive \(\Rightarrow\) \(\lambda\)-definable. So it just remains to see that \(\lambda\)-definable functions are RM computable. To show this one can

- code \(\lambda\)-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) \(\beta\)-reduction.

The details are straightforward, if tedious.
Summary

- Formalization of intuitive notion of \textit{algorithm} in several equivalent ways (cf. "Church-Turing Thesis")
- Limitative results: undecidable problems, uncomputable functions
 "programs as data" + diagonalization