
july 2010 | vol. 53 | no. 7 | communications of the acm 55

Doi:10.1145/1785414.1785434

 Article development led by
 queue.acm.org

Think you’ve mastered the art of server
performance? Think again.

BY PouL-henninG KamP

woULd YoU beLieVe me if I claimed that an algorithm
that has been on the books as “optimal” for 46 years,
which has been analyzed in excruciating detail by
geniuses like Knuth and taught in all computer
science courses in the world, can be optimized to run
10 times faster?

A couple of years ago, I fell into some
interesting company and became the
author of an open source HTTP ac-
celerator called Varnish, basically an
HTTP cache to put in front of slow
Web servers. Today Varnish is used by
Web sites of all sorts, from Facebook,
Wikia, and Slashdot to obscure sites
you have surely never heard of.

Having spent 15 years as a lead
developer of the FreeBSD kernel, I
arrived in user land with a detailed
knowledge of what happens under the
system calls. One of the main reasons

I accepted the Varnish proposal was to
show how to write a high-performance
server program.

Because, not to mince words, the
majority of you are doing that wrong.

Not just wrong as in not perfect,
but wrong as in wasting half, or more,
of your performance.

The first user of Varnish, the large
Norwegian newspaper VG, replaced
12 machines running Squid with three
machines running Varnish. The Squid
machines were flat-out 100% busy,
while the Varnish machines had 90%

You’re
Doing it
Wrong

56 communications of the acm | july 2010 | vol. 53 | no. 7

practice

of their CPU available for twiddling
their digital thumbs.a

The short version of the story is that
Varnish knows it is not running on the
bare metal but under an operating sys-
tem that provides a virtual-memory-
based abstract machine. For example,
Varnish does not ignore the fact that
memory is virtual; it actively exploits
it. A 300GB backing store, memory
mapped on a machine with no more
than 16GB of RAM, is quite typical.

a This pun is included specifically to inspire
Stan Kelly-Bootle.

The user paid for 64 bits of address
space, and I am not afraid to use it.

One particular task inside Varnish
is expiring objects from the cache
when their virtual life-timers run out
of sand. This calls for a data structure
that can efficiently deliver the small-
est keyed object from the total set.

A quick browse of the mental cata-
log flipped up the binary-heap card,
which not only sports a O(log2(n))
transaction performance, but also has
a meta-data overhead of only a pointer
to each object—which is important if
you have over 10 million objects.

Careful rereading of Knuth con-
firmed that this was the sensible
choice, and the implementation was
trivial: “Ponto facto, Cæsar transit,”
and so on.

On a recent trip by night train to
Amsterdam, my mind wandered, and
it struck me that Knuth might be ter-
ribly misleading on the performance
of the binary heap, possibly even by an
order of magnitude. On the way home,
also on the train, I wrote a simulation
that proved my hunch right.

Before any fundamentalist CS theo-
reticians choke on their coffees: don’t
panic! The P vs. NP situation is un-
changed, and I have not found a sys-
tematic flaw in the quality of Knuth et
al.’s reasoning. The findings of CS, as
we know it, are still correct. They are
just a lot less relevant and useful than
you think—at least with respect to per-
formance.

The oldest reference to the binary
heap I have located, in a computer
context, is J.W.J. Williams’ article pub-
lished in the June 1964 issue of Com-
munications of the ACM, entitled “Algo-
rithm Number 232—Heapsort.”2,b The
trouble is, Williams was already out
of touch, and his algorithmic analysis
was outdated even before it was pub-
lished.

In an article in the April 1961 issue
of Communications, J. Fotheringham
documented how the Atlas Computer
at Manchester University separated
the concept of an address from a
memory location, which for all prac-
tical purposes marks the invention
of virtual memory (VM).1 It took quite
some time before VM took hold, but
today all general-purpose, most em-
bedded, and many specialist operat-
ing systems use VM to present a stan-
dardized virtual machine model (such
as POSIX) to the processes they herd.

Of course, it would be unjust and
unreasonable to blame Williams for
not realizing that Atlas had invali-
dated one of the tacit assumptions of
his algorithm: only hindsight makes
that observation possible. The fact is,
however, 46 years later most CS-edu-
cated professionals still ignore VM as
a matter of routine. This is an embar-

b How wonderful must it have been to live and
program back then, when all algorithms in the
world could be enumerated in an 8-bit byte.

figure 1. comparison of runtime speeds of binary heap and B-heap.

1e +00

100000

10000

1000

100

10

1

12

10

8

6

4

2

0

–8

1M records
512 per page
1ms disk

–7 –6 –5

Vm pressure in megabytes

R
u

n
ti

m
e

in
 s

ec
on

d
s

–4 –3 –2 –1 0

 binary heap (left scale) b-heap (left scale) speedup (right scale)

figure 2. close-up comparison of binary-heap and B-heap runtime speeds.

1e +00

100000

10000

1000

100

10

1

12

10

8

6

4

2

0

0 4 8 12 16 20 24 28 32 36

Kb resident

R
u

n
ti

m
e

in
 s

ec
on

d
s

40 44 48 52 56 60 64

 binary heap (left scale) b-heap (left scale) speedup (right scale)

1M records
512 per page
1ms disk

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 57

rassment for CS as a discipline and
profession, not to mention wasting
enormous amounts of hardware and
electricity.

Performance simulation
Enough talk. Let me put some simu-
lated facts on the table. The plot in
Figure 1 shows the runtime of the bi-
nary heap and of my new B-heap ver-
sion for one million items on a 64-bit
machine.c (My esteemed FreeBSD col-
league Colin Percival helpfully point-
ed out the change I have made to the
binary heap is very much parallel to
the change from binary tree to B-tree,
so I have adopted his suggestion and
named my new variant a B-heap.d)

The x-axis is VM pressure, mea-
sured in the amount of address space
not resident in primary memory, be-
cause the kernel paged it out to sec-
ondary storage. The left y-axis is run-
time in seconds (log-scale), and the
right Y-axis shows the ratio of the two
runtimes: (binary heap/B-heap).

Let’s get my “order of magnitude”
claim out of the way. When we zoom
in on the left side in Figure 2, we see
there is indeed a factor 10 difference
in the time the two algorithms take
when running under almost total VM
pressure: only 8 to 10 pages of the
1,954 pages allocated are in primary
memory at the same time.

Did you just decide that my order of
magnitude claim was bogus because
it is based on only an extreme corner
case? If so, you are doing it wrong,
because this is pretty much the real-
world behavior seen.

Creating and expiring objects in
Varnish are relatively infrequent ac-
tions. Once created, objects are often
cached for weeks if not months, and
therefore the binary heap may not be
updated even once per minute; on
some sites not even once per hour.

In the meantime, we deliver giga-

c Page size is 4KB, each holding 512 pointers
of 64 bits. The VM system is simulated with
dirty tracking and perfect LRU page replace-
ment. Paging operations set to 1 millisecond.
Object key values are produced by random(3).
The test inserts one million objects, then alter-
nately removes and inserts objects one million
times, and finally removes the remaining one
million objects from the heap. Source code is
at http://phk.freebsd.dk/B-Heap.

d Does Communications still enumerate algo-
rithms, and is eight bits still enough?

bytes of objects to clients’ browsers,
and since all these objects compete
for space in the primary memory, the
VM pages containing the binheap that
are not accessed get paged out. In the
worst case of only nine pages resident,
the binary heap averages 11.5 page
transfers per operation, while the B-
heap needs only 1.14 page transfers.
If your server has solid state drives
(SSD), that is the difference between
each operation taking 11 or 1.1 milli-
seconds. If you still have rotating plat-
ters, it is the difference between 110
and 11 milliseconds.

At this point, is it wrong to think,
“If it runs only once per minute, who
cares, even if it takes a full second?”

We care because the 10 extra pages
needed once per minute loiter in RAM
for a while, doing nothing—until the
kernel pages them back out again,
at which point they get to pile on top
of the already frantic disk activity,
typically seen on a system under this
heavy VM pressure.e

e Please don’t take my word for it: applying
queuing theory to this situation is a very edu-
cational experience.

figure 3. close-up of the effect of Vm pressure on binary-heap and B-heap runtime speeds.

25

20

15

10

5

0

2

1.5

1

0.5

0

–64 –48 –32

Vm pressure in kilobytes

R
u

n
ti

m
e

in
 s

ec
on

d
s

–16 0 16

 binary heap (left scale) b-heap (left scale) speedup (right scale)

1M records
512 per page
1ms disk

figure 4. comparisons of runtime speeds of binary heap and B-heap on a mechanical disk.

180

160

140

120

100

80

60

40

20

0

2

1.5

1

0.5

0

R
u

n
ti

m
e

in
 s

ec
on

d
s

 binary heap (left scale) b-heap (left scale) speedup (right scale)

1M records
512 per page
10ms disk

–64 –48 –32

Vm pressure in kilobytes

–16 0 16

58 communications of the acm | july 2010 | vol. 53 | no. 7

practice

Next, let us zoom in on the other
end of the plot (Figure 3). If there is
no VM pressure, the B-heap algorithm
needs more comparisons than the
binary sort, and the simple parent-to-
child / child-to-parent index calcula-
tion is a tad more involved: so, instead
of a runtime of 4.55 seconds, it takes
5.92 seconds—a whopping 30% slow-
er; almost 350 nanoseconds slower
per operation.

So, yes, Knuth and all the other
CS dudes had their math figured out
right.

If, however, we move left on the

curve, then we find, at a VM pressure
of four missing pages (= 0.2%) the B-
heap catches up, because of fewer VM
page faults; and it gradually gets bet-
ter and better, until as we saw earlier,
it peaks at 10 times faster.

That was assuming you were using
an SSD, which can do a page operation
in 1 millisecond—pretty optimistic, in
particular for the writes. If we simu-
late a mechanical disk by setting the
I/O time to a still-optimistic 10 mil-
liseconds instead (Figure 4), then B-
heap is 10% faster as soon as the ker-
nel steals just a single page from our

1,954-page working set and 37% faster
when four pages are missing.

so What is a B-heap, anyway?
The only difference between a binary
heap and a B-heap is the formula for
finding the parent from the child, or
vice versa.

The traditional n -> {2n, 2n+1}
formula leaves us with a heap built
of virtual pages stacked one over the
next, which causes (almost) all vertical
traversals to hit a different VM page
for each step up or down in the tree,
as shown in Figure 5, with eight items
per page. (The numbers show the or-
der in which objects are allocated, not
the key values.)

The B-heap builds the tree by fill-
ing pages vertically, to match the di-
rection we traverse the heap (Figure
6). This rearrangement increases the
average number of comparison/swap
operations required to keep the tree
invariant true, but ensures that most
of those operations happen inside a
single VM page and thus reduces the
VM footprint and, consequently, VM
page faults.

Two details are worth noting:
˲˲ Once we leave a VM page through

the bottom, it is important for perfor-
mance that both child nodes live in
the same VM page, because we are go-
ing to compare them both with their
parent.

˲˲ Because of this, the tree fails to ex-
pand for one generation every time it
enters a new VM page in order to use
the first two elements in the page pro-
ductively.

In our simulated example, fail-
ure to do so would require five pages
more.

If that seems unimportant to you,
then you are doing it wrong: try shift-
ing the B-heap line 20KB to the right
in figures 2 and 3, and think about the
implications.

The parameters of my simulation
are chosen to represent what happens
in real life in Varnish, and I have not
attempted to comprehensively char-
acterize or analyze the performance of
the B-heap for all possible parameters.
Likewise, I will not rule out that there
are smarter ways to add VM-clue to a
binary heap, but I am not inclined to
buy a ticket on the Trans-Siberian Rail-
way in order to find time to work it out.

figure 5. Binary-heap tree structure.

1

2 34

8 10 12 15

3123 2416

32 4039 47

9 11

65 7

figure 6. B-heap tree structure.

11

12 3

4

8 16 24 32

12
40

47

13 14 15 25 31 39

10 18

9 17

65 7

figure 7. outdated computer model.

outPutcPu

memoRY

inPut

practice

july 2010 | vol. 53 | no. 7 | communications of the acm 59

The order of magnitude of differ-
ence obviously originates with the
number of levels of heap inside each
VM page, so the ultimate speedup will
be on machines with small pointer
sizes and big page sizes. This is a
pertinent observation, as operating
system kernels start to use super-
pages to keep up with increased I/O
throughput.

so Why are You, and i,
still Doing it Wrong?
An (in)famous debate, “Quicksort vs.
Heapsort,” centered on the fact that
the worst-case behavior of the for-
mer is terrible, whereas the latter has
worse average performance but no
such “bad spots.” Depending on your
application, that can be a very impor-
tant difference.

We lack a similar inquiry into al-
gorithm selection in the face of the
anisotropic memory access delay
caused by virtual memory, CPU cach-
es, write buffers, and other facts of
modern hardware.

Whatever book you learned pro-
gramming from, it probably had a
figure within the first five pages dia-
gramming a computer much like the
one shown in Figure 7. That is where
it all went pear shaped: that model is
totally bogus today.

Amazingly, it is the only concep-
tual model used in computer educa-
tion, despite the fact that it has next to
nothing to do with the execution envi-
ronment on a modern computer. And
just for the record: by modern, I mean
VAX 11/780 or later.

The past 30 or 40 years of hardware
and operating-systems development
seems to have only marginally im-
pinged on the agenda in CS depart-
ments’ algorithmic analysis sections,
and as far as my anecdotal evidence, it
has totally failed to register in the edu-
cation they provide.

The speed disparity between pri-
mary and secondary storage on the
Atlas Computer was on the order of
1:1,000. The Atlas drum took two mil-
liseconds to deliver a sector; instruc-
tions took approximately two micro-
seconds to execute. You lost around
1,000 instructions for each VM page
fault.

On a modern multi-issue CPU,
running at some gigahertz clock fre-

quency, the worst-case loss is almost
10 million instructions per VM page
fault. If you are running with a rotat-
ing disk, the number is more like 100
million instructions.f

What good is an O(log2(n)) al-
gorithm if those operations cause
page faults and slow disk operations?
For most relevant datasets an O(n)
or even an O(n2) algorithm, which
avoids page faults, will run circles
around it.

Performance analysis of algorithms
will always be a cornerstone achieve-
ment of computer science, and like
all of you, I really cherish the foldout
chart with the tape sorts in Volume 3
of The Art of Computer Programming.
But the results coming out of the CS
department would be so much more
interesting and useful if they applied
to real computers and not just toys
like ZX81, C64, and TRS-80.

f And below the waterline there are the flushing
of pipelines, now useless and in the way, cache
content, page-table updates, lookaside buffer
invalidations, page-table loads, etc. It is not
atypical to find instructions in the “for operat-
ing system programmers” section of the CPU
data book, which take hundreds or even thou-
sands of clock cycles, before everything is said
and done.

most cs-educated
professionals
still ignore Vm as
a matter of
routine. this is an
embarrassment
for cs as
a discipline and
profession, not
to mention wasting
enormous amounts
of hardware and
electricity.

 Related articles
 on queue.acm.org

Thread Scheduling in FreeBSD 5.2
Marshall Kirk McKusick and
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1035622

Flash Storage Today
Adam Leventhal
http://queue.acm.org/detail.cfm?id=1413262

high Performance Web Sites
Steve Souders
http://queue.acm.org/detail.cfm?id=1466450f

References
1. Fotheringham, j. Dynamic storage allocation in

the Atlas Computer, including an automatic use of
a backing store. Commun. ACM 4, 19 (Apr. 1961),
435–436.

2. Williams, j. W. j. Algorithm 232—heapsort. Commun.
ACM 7, 6 (june 1964), 347–348.

Poul-henning Kamp (phk@FreebsD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. his software has been widely
adopted as “under the hood” building blocks in both open
source and commercial products. his most recent project
is the Varnish hTTP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2010 ACM 0001-0782/10/0700 $10.00

