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The Synchronization of Periodic Routing Messages
Sally Floyd, Member, IEEE, and Van Jacobson

Abstract— The paper considers a network with many
apparently-independent periodic processes and discusses one
method by which these processes can inadvertent Iy become
synchronized. In particular, we study the synchronization of
periodic routing messages, and offer guidelines on how to avoid
inadvertent synchronization. Using simulations and analysis,
we study the process of synchronization and show that the
transition from unsynchronized to synchronized traffic is not
one of gradual degradation but is instead a very abrupt ‘phase
transition’: in general, the addition of a single router will convert
a completely unsynchronized traffic stream into a completely
synchronized one. We show that synchronization can be avoided
by the addition of randomization to the tra~c sources and
quantify how much randomization is necessary. In addition, we
argue that the inadvertent synchronization of periodic processes
is likely to become an increasing problem in computer networks.

I. INTRODUCTION

A SUBSTANTIAL, and increasing, fraction of the traffic in
today’s computer networks comes from periodic traffic

sources; examples include the periodic exchange of routing
messages between gateways or the distribution of real-time
audio or video. Network architects usually assume that since
the sources of this periodic traffic are independent, the result-
ing traffic will be independent and uncorrelated. For example,
even though each routing process might generate a packet at
fixed, 30 second intervals, the total routing traffic observed at

any point in the network should be smooth and uniform since
the processes are on separate nodes and started with a random
relative phase. However, many network traffic studies [22],
[26], [15], [3] show that the total traffic is not uniform but
instead is highly synchronized.

This paper argues that the architect’s intuition that inde-
pendent sources give rise to uncorrelated aggregate traffic is
simply wrong and should be replaced by expectations more in
line with observed reality. There is a huge body of research
on the tendency of dynamic systems to synchronize in the
presence of weak coupling [2]. As far back as the mid-

seventeenth century, Huygens noticed that two unsynchronized
pendulum clocks would keep in time if hung on the same
wall, synchronized by the barely-perceptible vibrations each
induced in the wall. As reported in [2], synchronization has
been studied in electronic circuits, a wide range of mechanical
objects, and biological systems such as cell populations and
communities of fireflies. Most of these systems exhibit a
tendency towards synchronization that is independent of the
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physical constants and initial conditions of the system [7].
This research suggests that a complex coupled system like
a modem computer network evolves to a state of order and
synchronization if left to itself. Where synchronization does
harm, as in the case of highly correlated, bursty routing traffic,
it is up to network and protocol designers to engineer out the
order that nature tries to put in.

This pa~r investigates one means by which independent
sources of periodic traffic can become synchronized. An

analytic model is developed that shares many of the features
observed in simulations and in real traffic measurements. There
are two main results from this model:

●

✎

The transition from unsynchronized to synchronized be-
havior is very abrupt. The traffic does not gradually
‘clump up’ and become more synchronized as network
parameters change. Instead, for each set of protocol
parameters and implementation interaction strengths there
exists a clearly defined transition threshold. If the number
of sources is below the transition threshold, the traffic will
almost certainly be unsynchronized and, even if synchro-

I t will Unsynckonize overnized by some external force, 1
time. Conversely, if the number of sources is above the
threshold, the traffic will almost certainly be synchronized
and, even if placed in an unsynchronized state by some
external force, will evolve to synchronization over time.
The amount of randomness that must be injected to
prevent synchronization is surprisingly large. For exam-
ple, in the Xerox PARC internal network, measurements
[6] show their cisco routers require roughly 300 ms. to
process a routing message (1 ms. per route times 300
routes per update). From the results in Section 5, the
routers would have to add at least a second of randomness
to their update intervals to prevent synchronization.

There are many examples of unanticipated synchronized
behavior in networks:

● TCP window increase/decrease cycles. A well-known
example of unintended synchronization is the synchroniza-
tion of the window increase/decrease cycles of separate TCP
connections sharing a common bottleneck gateway [32]. This
example illustrates that unless we actively engineer to avoid
synchronization, such as by injecting randomness into the
network, synchronization is likely to be the equilibrium state.
As an example of injecting randomness, the synchronization

of window increaseldecrease cycles can be avoided by adding
randomization to the gateway’s algorithm for choosing packets
to drop during periods of congestion [9]. (This randomization
has the advantage of avoiding other unintended phase effects
as well.)

[For example, by restarting all the routers at the same time because of a
power failure.
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● Synchronization to an external clock. ‘ho processes can
become synchronized with each other simply by both being
synchronized to an external clock. For example, [22] shows
DECnet traffic peaks on the hour and half-hour intervals; [23]
shows peaks in ftp traffic as several users fetch the most recent
weather map from Colorado every hour on the hour.

● Client-server models. Multiple clients can become syn-

chronized as they wait for service from a busy or recovering

server. For example, in the Sprite operating system clients

check with the file server every 30 seconds; in an early
version of the system, when the file server recovered after
a failure or after a busy period, a number of clients would
become synchronized in their recovery procedures. Because
the recovery procedures involved synchronized timeouts, this
synchronization resulted in a substantial delay in the recovery
procedure [1].

● Periodic routing messages. Unlike the clienttserver

model or the external clock model, the synchronization of
periodic routing messages involves seemingly independent
periodic processes. There are many routing protocols
where each router transmits a routing message at periodic
intervals. Assuming that the routers on a network are
initially unsynchronized, at first glance it might seem that
the periodic messages from the different routers would
remain unsynchronized. This paper explores how initially

unsynchronized routing messages can become synchronized.
We examine the details of router synchronization to give a

concrete example of inadvertent synchronization, to underline
the necessity of actively designing to avoid synchronization,
and to emphasize the utility of injecting randomization as a
method of breaking up synchronization. When a particular
instance of synchronization is observed, it is usually easy to
suggest protocol changes that could prevent it. This misses
the point. Synchronization is not a small problem caused
by minor oversights in protocol design. The tendency of

weakly coupled systems to synchronize is quite strong and

changing a deterministic protocol to correct one instance of
synchronization is likely to make another appear.

Various forms of periodic traffic are becoming an
increasingly-large component of Internet traffic. This periodic
traffic includes not only routing updates and traffic resulting
from the increasing use of periodic background scripts by
individual users [22], but real time traffic (such as video traffic)
that has a periodic structure. Although the periodic structure
of video traffic is generally not affected by feedback from

the network, there are still possibilities for synchronization.
For example, individual variable-bit-rate video connections
sharing a bottleneck gateway and transmitting the same
number of frames per second could contribute to a larger
periodic traffic pattern in the network. As periodic traffic
increases in the Internet. it becomes increasingly important
for network researchers to consider questions of network

synchronization.
We use both simulation and analysis to explore the syn-

chronization of periodic routing messages. The first goal of

the analysis is to examine the role that random fluctuations
in timing play in the synchronization of routing messages.
These random fluctuations contribute to both the formation
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Fig. 1. Periodic packet losses from IGRP routing messages.

of synchronization and to the breaking up of synchronization
after it occurs.

One way to break up synchronization is for each router
to add a (sufficiently large) random component to the period
between routing messages. A second goal of our analysis is
to investigate this explicit addition of a random component to
the routing timer, and to specify the magnitude of the random
component necessary to prevent synchronization.

Section 11 gives examples of periodic traffic patterns in the

Internet; Section 111describes our model of periodic routing
messages on a network. Section IV explains the results of
our simulations. Section V describes a Markov chain used
to analyze some aspects of the Periodic Messages model.
Section VII presents conclusions and discusses alternatives for
preventing routing message synchronization,

II. PERIODICTRAFFICPATTERNS IN mm INTERNET

This section gives an example of synchronized routing
messages, and several examples of periodic traffic patterns
in the Internet (some of which are caused by periodic routing
messages). While we do not have direct evidence of opera-
tional problems in the Internet related to synchronized routing
messages, we show indirect evidence that such problems could
exist. In general, there are significant patterns of periodic
packet drops and delays in the Internet.

We began this investigation in 1988 after observing syn-

chronized routing messages from DECnet’s DNA Phase IV

(the DIGITAL Network Architecture) [31] on a local Ethernet
at LBL (Lawrence Berkeley Laboratory). Each DECnet router
transmitted a routing message at 120 second intervals. Whhin
hours after bringing up the routers on the network after a
failure, the routing messages from the various routers were
completely synchronized.

In May 1992, in the course of investigating packet loss rates

in the Internet, we conducted experiments sending runs of a
thousand pings each, at roughly one-second intervals, from
Berkeley and other sites to destinations across the Internet.
For all of the runs to destinations at Harvard or MIT, at least
three percent of the ping packets were dropped, regardless of
the time of day. Fig. 1 shows a particular run of a thousand
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Fig. 3. Periodic packet losses at 30-setond intervals.

)

pings from Berkeley to MIT, the x-axis shows the ping numlxx

and the y-axis shows the roundtrip time. Dropped packets
are represented by a negative roundtrip time. Fig. 2 shows
the autocorrelation ftmction for the roundrnp times in Fig. 1,
where the dropped packets are assigned a roundtrip time of
two seconds (higher than the largest roundtrip time in the
experiment). The pattern of periodic packet drops at 90-second
intervals is illustrated in both figures. Further experiments
determined that these packet drops were Occurnng at the
NEARnet (New England Academic and Research Network)

core routers. Earlier investigation of Internet behavior had also
reported a degradation in service with a 90-second periodicity

on paths to MIT [26].
These packet drops were determined to becaused by IGRP

(the Inter-Gateway Routing Protocol [14]) routing updates

at the NEARnet routers [27]. The routers were unable to
forward other packets while large routing updates were being
processed. The particular problem of periodic packet losses

on NEARnet has since been resolved; the router software has
been changed so that normal packet routing can be carried out
while the routers are dealing with routing update messages.

Although it has been speculated that these packet drops were
also connected with synchronization, it is unclear and there is
no direct evidence [27], [18].

Periodic packet drops have been demonstrated associated
with RIP (the Routing Information Protocol [13]) as well

as with IGRP. Fig. 3 shows audio packet losses during an
audiocast2 of the December 1992 Packet Video workshop [15].

2For a report on the first such audkxaat, see [5].
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The x-axis shows the time in seconds; the y-axis shows the
duration of each audio outage in seconds. The little blips more-
or-less randomly spread along the time axis represent single

packet losses. The larger loss spikes are strongly periodic; they
occur every 30 seconds and last for several seconds at a time.
During these events the packet loss rate ranges from 50 to 85%
and there are frequent single outages of 100-500 ms. These
periodic losses are almost certainly due to the source-routed
(tumeled) multicast packets competing with routing updates
and losing. Because 30 seconds is the default update time
for RIP, these long intervals of packet losses are conjectured
to result from RIP routing updates; it is not known if this

problem involves synchronization. In other instances periodic

30-second audio packet losses have been conclusively traced to
RIP routing updates [6], and there is some indirect evidence
of synchronization.

In our “ping” experiments of the Internet in May 1992
we found many examples of periodic packet drops for which
we have no explanation. For example, we found paths with

packet drops every 318 seconds, paths with packet drops every
15 seconds, and paths with large delays every 45 seconds.

We found different periodic patterns on the local path from
LBL to the UC Berkeley campus at different times of the day.
From our “ping” experiments, we conjecture that a significant
number of packet drops in the Internet are associated with
pericdc processes of one type or another.

III. THE PERIODIC MESSAGES MODEL

This section describes a general model of periodic routing
messages on a network; we call this the Periodic Messages
model. This model was initially patterned after DECnet’s DNA
Phase IV, but other routing protocols that can conform to this
model include EGP (Exterior Gateway Protocol) [21], Hello
[20], IGRP, and RIP. In these routing protocols, each router
on a network transmits a routing message at periodic intervals.
This ensures that routing tables are kept up-to-date even if

routing update messages are occasionally lost.
The Periodic Messages model behaves as follows.

1)

2)

3)

The router prepares and sends a routing message. In the
absence of incoming routing messages, the router resets
its timer TC seconds after step 1 begins. Other routers
receive the first packet of this router’s routing message
Td seconds after step 1 begins.
If the router receives an incoming routing message
(or the first packet of an incoming routing message)
while preparing its own outgoing routing message, the
router also processes the incoming routing message. The

router takes TCZseconds to process an incoming routing
message.
After completing steps 1 and 2, the router sets its
timer. The time until the timer next expires is uniformly
drawn from the interval [TP – T., TP + T,] seconds,
where Tp is the average period and T, represents a
random component this could be a (small) random
fluctuation due to unavoidable variations in operating

system overhead or a (larger) fluctuation due to a random
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component intentionally added to the system. When the

timer expires. the router goes to step 1.
4) If the router receives an incoming routing message after

the timer has been set, the incoming routing message is
processed immediately. If the incoming routing message
is a “triggered update” caused by a major change in the
network such as the failure of a link, then the router goes
to step 1, wi[how waiting for the timer to expire.

Because the router resets its timer only after processing
its own outgoing routing message and any incoming rout-

ing messages, the timing of one router’s routing messages

can be affected by the routing messages from other nodes.
This gives the weak coupling between routers, allowing the
synchronization of routing messages from several routers.

The Periodic Messages model ignores properties of physical
networks such as the possibility of collisions and retransmis-
sion on an Ethernet. The Periodic Messages model is not
intended to replicate the exact behavior of periodic routing
messages. but to capture some significant characteristics of

that behavior.
RIP and IGRP are intradomain routing protocols that use

periodic routing messages. In RIP each router transmits pe-
riodic routing messages every 30 seconds. In lGRP, routers
send routing messages at 90-second intervals.

EGP (Exterior Gateway Protocol) is used in some places
between the NSFNET backbone and its attached regional
networks: EGP routers send update messages every three min-
utes. ~ In the 1988 LBL network, DECnet routers implementing
DNA Phase IV sent routing messages every two minutes.
IGRP, RIP, and DECnet’s DNA Phase IV all incorporate trig-

gered updates, where routing messages are sent immediately
in response to a network change such as the removal of a
route. The first triggered update results in a wave of triggered
updates from neighboring routers.

Not all implementations of these routing protocols come-
spond to the Periodic Messages model in this paper. The RFC
for RIP [ 13] mentions that when there are many gateways on
a single network. there is a tendency for the periodic routing
messages to synchronize. The RFC specifies that in order to

ovoid this synchronization, either the routing messages must
be triggered by a clock that is not affected by the time required
toservice the previous message, or a small random time must
be added to the 30-second routing timer each time, though
the magnitude of the random time is not specified. As an
example of implementations that don’t conform to the Periodic
Messages model, in some implementations of IGRP and RIP
routers reset their routing timers before the outgoing routing
message is prepared. and routers don ‘t reset their routing

timers after triggered updates [ 17].

Thus the Periodic Messages model illustrates only one
possibIe mechanism by which routing messages can become

synchronized. Wherever there are interactions bet ween routers,
or between a router and the network, there could exist mech-
anisms that lead to synchronization.

3~l~h BGp fBorder Gareway Protocol), which runs on @P of TCp,

increment al update messages are senl as the routing table changes,
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IV. SIMULATIONS

This section describes simulations of the Periodic Messages
model. These simulations show the behavior of a net work with
N routing nodes on a single broadcast network, for N = 20.
In the first set of simulations the periodic routing messages
for the N nodes are initially unsynchronized; in the second set
the periodic messages are initially clustered. The simulations
show that the behavior of the Periodic Messages system is

determined by the random overhead added to each nede’s

periodic timer. As the level of randomization increases, the
system’s ability to break up clusters of synchronized routing
messages also increases.

Definitions: TP, T,, Tc, TCZ, and Td. The time TP is
the constant component of the periodic timer and T. is the
magnitude of the random component. Each router’s routing
timer is drawn at each round from the uniform distribution
on [TP – T~, TP + T,] seconds. Each router requires T.
seconds of computation time to process an outgoing routing
message, and TC2 seconds of computation time to process an
incoming routing message; each routing message could consist
of multiple packets. In this paper we assume that TC2 and TC
are the same. T~ seconds after a router’s routing timer expires,
other routers receive the first packet of the routing message. ❑

For the simulations in this section, TP is 121 seconds, T, is
0.11 seconds, and Td is set to zero; for the initial simulations in
this section T, is set to 0,1 seconds. The average timer-value
of 12 I seconds was chosen to give a minimum timer-value
comparable to the 120 second timer used by the DECnet
routers on our local network. The value of 0.11 seconds for
T. was chosen somewhat arbitrarily to model an estimated
computation time of 0.1 seconds and transmission time of 0.01
seconds for a router to compute and transmit packets for an
outgoing routing message after a timer expiration; these values

are not based on any measurements of actual networks. Section

V-C discusses how the results scale with different values for
the various parameters.
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When a node’s routing timer expires, the node takes T.
seconds to prepare and transmit its routing message. We call
this time the busy period. For each routing message received
while a node is in its busy period, that node’s busy period
is extended by the TC2 = T= seconds required to process an
incoming routing message.

For simplicity, in the simulations in this section Td is

set to zero; that is, when node A’s timer expires the other
nodes immediately receive the first packet of node A‘s routing
message. Thus in the simulations, when node A‘s timer
expires node A immediately spends T. seconds preparing and
transmitting its routing message, and at the same time the other
routing nodes each spend TC2 = TC seconds receiving and
processing the routing message from node A. This assumption
most plausibly reflects a network with low propagation delay,

where a router’s routing message consists of several packets

transmitted over a T.-second period. Section V-D shows the
results of simulations with ‘1” > 0.

The first set of simulations investigates the process by which
initially unsynchronized routing messages become synchro-
nized. The routing messages for the N nodes are initially
unsynchronized, for each node the time at which the first
routing message is sent is chosen from the uniform distribution
on [0, TP] seconds. For the simulation in Fig. 4, T. is set to 0.1
seconds. Each jittery line in Fig. 4 is composed of hundreds
of points, and each point represents one routing message sent
by a routing node. The x-axis shows the time in seconds at
which the routing message was sent, and the y-axis shows the
rime-c$%et, i.e., the time modttlo T, for T = TP + TC seconds.
This time-offset gives the time that each routing message was
sent relative to the start of each round.

The simulation in Fig. 4 begins with unsynchronized routing

messages and ends with the IV = 20 routers transmitting their
routing messages at essentially the same time each round. At

the left-hand side of the figure the twenty jittery lines represent
the time-offsets of the transmit times for the twenty nodes. In
the absence of synchronization each router’s timer expires, on
the average, TP + TC seconds after that router’s previous timer

expiration. These successive timer expirations give a jittery
but generally horizontal line for the timer expirations for a
single router. However, as we explain below, when routers
become synchronized this increases the time interval between
successive routing messages from a single router. At the end

of the simulation the routing messages are fully synchronized,
and all of the nodes set their timers at the same time each
round. In this case each router has a busy period of 20 * T=
seconds rather than of T= seconds, increasing the time interval
between successive routing messages.

Fig. 5 is an enlargement of a small section of Fig. 4. This
figure illustrates the synchronization of routing messages from
two routers; each’ ‘x” marks a timer expiration, and each “0”
marks the timer being reset. In the first five rounds of Fig. 5

the two nodes are independent, and each node sets its timer

exactly Tc seeonds after its previous timer expires. However,
in the sixth round, node A‘s timer expires, say, at time t, and

node A begins preparing its routing message. Before node A
finishes preparing and sending its routing message, node 13’s
timer expires; node A has to finish sending its own routing

1 I I I 1 , 1 I
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Fig. 5. An enlargement of the simulation in Fkg. 4.
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message and to process node 13’s routing message before it
can reset its own timer. These two tasks take T= + TC2 = 2TC
seconds, so node A resets its timer at time t + 2TC.

In our model node B begins processing node A’s routing

message at time t+ Td, and in the simulation in Fig. 5 Td is set
to zero. While node B is receiving and processing node A’s
routing message, node B‘s own timer expires; node El has to
prepare and send its own outgoing routing message and finish
processing node A’s routing message before resetting its timer.
These tasks take T=+ TCZ= 2TC seconds, so for Td = O node

B also resets its timer at time t + Td + 2TC = t + 2TC. At this
point node A and node B are synchronized and we say that

they form a chafer; node A and node B set their timers at the
same time. The two nodes remain synchronized, setting their
timers at roughly the same time, as long as the timers expire
within TC —Td seconds of each other each round. The cluster

breaks up again when, because of the random component, node
A and node B‘s timers expire more than T=– Td seconds apart.

More generally, a cluster of size z refers to a set of z routing

messages that have become synchronized. Each of the z nodes
in a cluster is busy processing incoming routing messages and

preparing its own outgoing routing message for ZTCseconds
after the first timer in the cluster expires. For Td = O, the z
nodes in a cluster reset their timers at exactly the same time.

One way to think of the simulation in Fig. 4 is as a system
of ZVparticles, each with some random movement in a one-
dimensional space. For a particle in a lone ciuster (a cluster of
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size one), each timer-offset differs from the previous round’s

timer-offset by an amount drawn from the uniform distribution
on [–T,, +T,. ] seconds. In Fig. 4 the successive timer-offsets

for an unsynchronized routing node (the movement of a single

particle) are represented by a jittery but generally horizontal
line.

For particles (or routing nodes) in a cluster of size i, T, +
(1 – i)~.2 = iT, seconds are spent processing routing mes-
sages after the first timer of the cluster expires; then the nodes
in the cluster all reset their timers. A cluster of z particles

moves ahead a “distance” of roughly (i – 1)T,. seconds in

each round. In Fig. 4 the movement of a cluster is represented

by an irregular line with positive slope; the larger the cluster,
the steeper the slope. When two clusters meet, the nodes in
the two clusters all reset their timers at the same time; the two
clusters merge, for the moment, into a larger cluster.

As Fig. 4 shows, a cluster of i particles can sometimes break
up into two smaller clusters. Even though the i nodes set their
routing timers at the same time, it is possible for one node’s
routing timer to expire more than T,. – T,f seconds before

any of the other nodes in the cluster, because of the random

component in the timer interval for each node. When this
happens, the first node breaks out of the cluster, as discussed
further in Section V-A. The break-up of a cluster can be seen
in Fig. 5 where a cluster of size two forms and then breaks
up again.

The first part of the simulation in Fig. 4 shows small
clusters occasionally forming and breaking up. Towards the
end of the simulation a sufficiently large cluster is formed,
moving rapidly across the space and incorporating all of the

uncluttered nodes that it encounters along its path. As the
cluster size increases, the average period of the cluster also
increases; the larger the cluster, the more quickly it “bumps
into” and incorporates the smaller clusters.

A simulation at any point in time can be partially charac-
terized by the size of the largest cluster of routing messages.
Fig. 6 shows a cluster-graph of the simulation in Fig. 4. The
x-axis shows time and the y-axis shows the size of the largest
cluster in the current round of N routing messages.

Fig. 7 shows a simulation identical to that in Fig. 4, except
that the simulation was started with a different random seed.
Unlike the simulation in Fig. 4, the simulation in Fig. 7 ends
with unsynchronized routing messages. For the simulation in
Fig. 7, a cluster as large as five occasionally forms but each
time the cluster breaks up again.

Fig. 9 shows the cluster graphs from several simulations that
start with unsynchronized routing messages. The parameters
are the same as the previous simulations, except that the
random component T, mnges from ().6’T to 1.4TC. Note that

the time scale is different from the cluster graphs on previous
pages; in Fig. 9 the simulations run for 107 seconds (115
days) instead of 105 seconds (just over I day). As the random
component increases, the simulations take longer and longer
to synchronize.

These simulations do not specifically include updates trig-
gered by a change in the network. We can instead begin our
simulations with synchronized routing messages, which can
result from triggered updates. These simulations are shown
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Fig. 7. A simulation showing unsynchronized routing messages.
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Fig, 8. The cluster graph, showing the largest cluster for each round.

in Fig. 10; the random component T. ranges from 2.3TC to
2.8TC. As the random component increases, the simulations
return more quickly to the unsynchronized state.

Our simulation results are consistent with simulations of the
same model in [29]. In addition to simulations, preliminary
results from experiments by Treese have shown synchroniza-

tion of systems on an Ethernet [30]. The experiments use an
algorithm similar to the Periodic Messages model. The results
suggest that the Periodic Messages model captures a realistic
possible behavior of real computer systems.

V. THE MARKOV CHAIN MODEL

This section uses a Markov chain mcdel to further explore
the behavior of the Periodic Messages system. The Markov
chain explores the behavior of a system of N routers that

each implement the Periodic Messages model described in the
previous section. The Markov chain model assumes that each
router receives a periodic routing message from every other
route~ this would be the case, for example, for N routers
on a broadcast network. Section V-F discusses the issues in
extending these results to N routers connected in an arbitrary
topology, Section V-D discusses the effects of a nonzero trans-

mission and propagation delay between routers, and Section
VI discusses other analytical approaches to synchronization.
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The Markov chain model is used to compute the expected

time for the system to move from an unsynchronized state

to a synchronized state, and vice versa. This Markov chain
model uses several simplifying assumptions and therefore only

approximates the behavior of the Periodic Messages model.

Nevertheless, the Markov chain model illustrates some signif-

icant properties of the simulations of the Perio&c Messages

model.
The Markov chain has N states;when the largest cluster from

a round of N routing messages is of size i, the Markov chain is

defined to be in state i. Fig. 11 shows the Markov chain, along
with the transition probabilities. The transition probability p~,j
is the probability that a Markov chain in state z moves to state

j in the next round.

The Markov chain model is based on several simplifying

assumptions:
● The first simplifying assumption of the Markov chain

model is that the future behavior of the system depends only

on the current state and is independent of past states. This
assumption is clearly not true for the Periodic Messages model,
where the future behavior of the system depends not only on

the size of the largest cluster but on the transmit times of the
other routing messages.

● The second simplifying assumption is that the size of

the largest cluster changes by at most one from one round
to the next. Again, this assumption is not strictly accurate,

particularly for huge values of N or T.. For example, in the
Periodic Messages model it is possible for two clusters of sizes
z and 2 respectively to merge and form a cluster of size z + 2
in the next round.

● The analysis of the Markov chain model assumes that

except for the largest cluster of size i, all other clusters are lone
clusters of size one; again, this conservative assumption is not
strictly accurate. Given a cluster of size i, the~ollowing cluster
is defined as the cluster that follows the cluster of size i in

time. At each round, we assume that the ‘‘dknce” between
the largest cluster of size z and the following lone cluster
is given by an exponential random variable with expectation
T“/(lV – z + 1). This distance is defined as the wait between
the time when the nodes in the cluster of size z set their
timer and the time when the timer expires for the node in
the following lone cluster. ~ts expected value is based on the
average distance between N – z + 1 clusters.

As in the Periodic Messages model, we assume that each
node’s timer expires after a time drawn from the uniform
distribution on [TP – TV, TP + T,] seconds. For a node in a
cluster of size i, the node takes T. + (i – 1)TC2 = ZTCseconds
to process the incoming and outgoing routing messages in the
cluster, and other nodes receive the first packet of the routing
message Td seconds after the timer expires. In this section we
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assume that ‘~. < 2T,. + T,f; if not, then a cluster never breaks
up into smaller clusters.

The next two sections define the transition probabilities for
the Markov chain. Given these transition probabilities, we
compute the average time for the Markov chain to move from
state I to state N, and the average time for the Markov chain to

move from state IV back down to state 1. This analysis shows

that when 7’,. is sufficiently large, the Markov chain moves

quickly from a synchronized state to an unsynchronized state.

A. Cluster Breukup and Gtmth

This section estimates p,,, _ 1, the probability that the
Markov chain moves from state i to state i – 1 in one round.
The second half of this section estimates PZ,i+1. In the Markov

chain, a cluster of size i can break up to form a cluster of size
1– 1 either by breaking up into a cluster of size one followed

by a cluster of size i – 1. or vice versa. Because the first of

the two cases is more likely,~ for simplicity we only consider
this case. We say that the first node breaks away from the
head of the cluster.

Thus, p,,, _ I is the probability that the node whose timer
expires first, node A, resets its timer before it receives any
routing messages from any of the other i – 1 nodes in the

cluster. For i nodes in a cluster, the i timers are all set within
T,~seconds of each other: in this analysis we estimate that the

i timers are all set at the same time and the timers expire at
i times uniformly distributed in a time interval of length 2TT.
Let L be the time from the expiration of the first timer until
the expiration of the second of the i timers. In the absence
of incoming messages, node .4 resets its timer T. seconds
after its timer expires, and receives notification of a routing
message from another node in the cluster L + Td seconds after
its timer expires. Because we assume that Tc < 2Tr + T,l,
there is always a nonzero probability that a cluster of size i
breaks up into smaller clusters.

From [8, p. 22],

for i > 1.
Now we estimate p,,, + 1, the probability that the system

moves from state i to state i + 1 in one round. We leave Pl,z
as a variable; p],2 depends largely on T,, the random change
in the timer-offsets from one round to the next. For simplicity,

this analysis assumes that Tc = T,z.
The probability that a cluster of size two or more incor-

porates additional routing nodes, forming a larger cluster,
depends largely on the fact that larger clusters have larger
average periods than smaller clusters. After some time the
larger cluster “collides” with a smaller cluster, and the two

clusters merge.
For a cluster of size i, each node in the cluster sets its

timer 7, + (i – 1)T,.z = irT,. seconds after the first timer in
the cluster expires (or after it receives the first packet from

‘The second of [he two cases occurs only if the last node transmits its
routing message after il has had lime to process routing messages from all
previous nodes m lhe cluster.

that node’s routing message). For Td = O, each of the z timer
expirations is uniformly distributed in the interval [TP – T,,
TP + T.]. Given i events uniformly distributed on the interval
[0, 1], the expected value of the smallest event is l/(i + 1)
[8, p.24]. Thus the first of the z timers expires, on average,
TP – T, + 2T. /(i + 1) = TP – Tr(i – 1)/(z + 1) seconds

after the timers are set. The average total period for a node in
a cluster of size z is therefore TP – T.(z – 1)/(i + 1) + ZTC
seconds.

In one round the timer-offset for a cluster of size z moves
an average distance of (i – l)T, – T.(z – 1)/(i + 1) seconds
relative to the timer-offset for a cluster of size one. For
simplicity, in estimating Pi, i+l we assume that the timer-
offset for a cluster of size i moves in each round exacdy
(i - l)TC - T.(i – 1)/(z + 1) seconds relative to the timer-

offset for a cluster of size one. (This assumption ignores the

somewhat remote possibility that a cluster of size i could
$‘jump over” a smaller cluster. ) What is the probability that,

after one round, the timer-offset for a cluster of size i moves to
within TC seconds of the timer-offset for a cluster of size one?

The Markov chain model assumes that the distance between
a cluster of size i and the following small cluster is an
exponential random variable with expectation TP/( N – z + 1).
Thtts for a Markov chain in state i, Pi,i+ 1 is the probability that

an exponential random variable with expectation TP/( N – i +
l)isless than (i–l)T, –T,(i–l)/(i +l). For2< i < N–1,

this gives

P~,l+l = 1 – e -(( N-i+l)/TP )((t-l)T= -T. (i-1)/(2+1)) (2)

For all i, Pl,i = 1 – pi,a_l – Pl,i+l.

B. Average Time to Cluster, and to Break Up a Cluster

This section investigates the average time for the Markov

chain to move from state 1 to state N, and vice versa.
Definitions: tl,1 and ~(i). Let i?i,j be the expected number

of rounds until the Markov chain moves from state z to state
j, given that it moves from state z directly to state j. Let f(i)
be the expected numlxx of rounds until the Markov chain first
enters state i, given that the Markov chain starts in state 1. We
leave j(2) as a variable. •1

We give a recursive definition for j(i) for z > 2. The

expected number of rounds to first reach state i equals tbe
expected number of rounds to first reach state i – 1, plus
the additional expected number of rounds, after first entering
state z – 1, to enter state i. After state z – 1 is first reached,
the next state change is either to state i – 2, with probability

(Pi-l, i-2)/(~,-l,i-2 + Pi-l.*)* or to state Z! with probability

(~i-l,i)/(Pi-1,~-2 + 7~i-1.i)- me expected number of rounds
to reach state i, after first entering state i – 2, is f(i) – f(i – 2).
This leads to the following recursive equation for ~(i):

+
PI-1,1

t*_l,j.
pl–l, z–2 +P, –l,i
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ThUS for C(Z) = t~–1,~ + (Pi–l,i–Z/pi–l, i)tz-l,i-2,

f(i) -
Pa-1,2--2+iPa-l, af(2 _ ~) +

‘~~J~2f(i -2)= c(i).

(3)
From Appendix A, (3) has the solution5:

‘(z)=’(’)(’+:,(E=))
“=(c(k)ma(4)

Consider tj,j+l, the expected number of rounds to move
from state j to state j + 1, given that the Markov chain in fact
moves from state j to state j + 1. Let Pj,x be the probability
that the Markov chain in state j first moves to state j + 1 on
round z, given that the Markov chain moves from state j to
state ~ + 1. The equation for tj,j+l is as follows [25, p. 37]:

Similarly, the equation for tj,j_1 is as fOllOws:

tj,j_l=
Pj,j-1

(Pij-1 + Pij+l)2 “

Next we investigate the average time for the Markov chain
to move from state N to state 1.

Definitions: g(i). Let g(i) be the expected number of rounds
for the Markov chain to first enter state i, given that the
Markov chain starts in state IV.

Thus g(lV) = O and

+
~i+l,i

t~+l,i.
Pi+l,i+2 + Pi+l,i

For 40 = ~i+l,i + (pi+l,i+2/pi+l, i)~i+l,i+2, this gives he

recursive equation

g(i) - pi+l’i;:+:ip~+l’’g(i+1)+ ‘~~~~2 g(i + 2) = d(i).

(5)

Equation (5) has the solution below:

5This solution could also be verified by the reader by substituting the
right-hand side of (4) into (3) .
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Fig. 13. The expected time to reach cluster size i, starting from cluster size
,Y, for T,. = 0,3 seconds.

The derivation of this equation is similar to that of ~(i).
Note that this equation does not depend on the values of pl,2
or of ~(2).

The solid line in Fig. 12 shows ~(i), computed from (4),
for N = 20, TP = 121 seconds, Tc = 0.11 seconds, T. = 0.1
seconds, Td = O seconds, and j(2) = 19 rounds, (This value
for f(2) is based both on simulations and on an approximate
analysis that is not given here.b) The x-axis shows the time
in seconds, computed as (TP + TC)f(i). The y-axis shows the

cluster size i; a mark is placed at cluster size i when the system
first reaches that cluster size. The results of twenty simulations
are shown by light dashed lines. Each simulation was started
with unsynchronized routing messages, with the values for N,
TP, T,, Td, and T. described above; these simulations differ
only in the random seed. The heavy dashed line shows the
results averaged from twenty simulations.

cThe dynamics for moving from a cluster of size two or more to a larger
cluster is based largely on the fact that larger clusters have larger average
periods. In contrast, the dynamics for moving from a cluster of size one to
a cluster of size two depends on how frequently two clusters of size one
‘collide’, where all clusters of size one have the same average period; this
requires a different analysis.
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The solid line in Fig. 13 shows g(i), computed from (6),
for the same parameters for N, TP, T~, and T, as in Fig. 12,
and for T,. = ().:1()seconds; for the value of T. in Fig. 12, the
system takes a long time to unsynchronized, making simulations
unrealistic. The heavy dotted line averages the results from
twenty simulations.

Figs. 12 and 13 show that the average times predicted
by the Markov chain are two or three times the average

times from the simulations. This discrepancy is not surprising,

because the Markov chain is only a rough approximation of

the behavior of the Periodic Messages system. Aside from
the difference in magnitude, however, the functions predicted
from the Markov chain and computed from the simulations are
reasonably similar. Thus the Markov chain model does in fact
capture some essential properties of the Periodic Messages
system.

C. Results ,frmn the Marlim Chain Model

This section explores the general behavior of the Markov
chain model. We compute the expected time for the Markov
chain to synchronize and to unsynchronized, for a range of
values for V, T<..and T,., and compare these analytical results
to the results of simulations. This comparison shows that the
Markov chain model is e.rplanatory rather than predictive; the
Markov chain model and the simulations exhibit the same
qualitative behavior. and the Markov chain model can be used

to e.qdain the behavior of the simulations, but the Markov
model is not sufficiently accurate to predict the exact results

of the simulations.
The analysis in this section, along with the simulations,

shows that for a wide range of parameters, choosing Tr as
a small multiple of T,. ensures that the system is almost
always unsynchronized. The analysis further shows that for
fixed values for T, and T., the transition to synchronization
is an abrupt function of the number of nodes N. Finally, in

this section we consider a system of routers in an arbitrary

topology, where each router only receives periodic messages
from its immediate neighbors. We suggest that the model of
synchronized routing messages in this paper is likely to hold
in arbitrary topologies on] y for connected subsets of nodes
with similar degree.

Fig. 14 considers the expected time for the Markov chain to
synchronize or to unsynchronized, as a function of the parameter
~.. Fig. 14 gives f(N), from (4), and g(l), from (6), for T.
ranging from zero to 4.57:., given N = 20, TP = 121 seconds,

~. = 0. I I seconds, and ~i = O seconds. The solid line on
the right shows the expected time for the Markov chain to
move from state N to state 1: the solid line on the left shows
the expected time for the Markov chain to move from state
I to state N. The dotted line on the left was computed using
values for ~(2) based on an approximate analysis that is not
given here; the solid line on the left uses f(2) set to zero. For
7,. < 0.5(7. – T(l), clusters never break up once they have
formed, and the time to synchronize depends largely on the
time to first form a cluster of size two; this time increases as
7:. approaches 0.7 Note that the y-axis is on a log scale, and

7As Fig 14 shows, for exmemely small values of T, there is little

4, ,
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Fig. 14. Expected time to go from cluster size 1 to cluster size ,V, and vice
versa, as a function of T,

ranges from less than 103 seconds (roughly 16 minutes) up to

1011 seconds (over 3 thousand years).
Fig. 14 can be used as a general guide in choosing a

sufficiently large value of T., given the values for the other
parameters in a system, so that the system moves easily from
state N to state I and rarely moves from state 1 back to state
N. The figure shows the regions of low, moderate, and high
randomization. In the region of low randomization the system
moves easily from state 1 to state N; in the region of high
randomization the system moves easily from state N to state
1. In the region of moderate randomization the system takes a
significant period of time to move either from state 1 to state
N, or from state N back to state 1. In the low and moderate
regions ~(lV), the expected time for the Markov chain to
move from state 1 to state N, grows exponentially with T..
The “X” marks on Fig. 14 show simulations that start with
unsynchronized routing messages and the ‘‘+‘’ marks show
simulations that start with synchronized routing messages.

Fig. 15 shows the same analytical results as in Fig. 14 for

the number of nodes N ranging from 10 to 30, and for a range
of values for T=. These simulations were performed to check
how accurately the analytical results predict the simulation
results for a range of parameters. Note that for larger values
of TC and of N, the analytical results significantly overestimate
the time required by the simulations to go from state N to state
1. The analytical results use the simplifying assumption that
the size of the largest cluster changes by at most one from one
round to the next. As the parameters TC and N increase, this

assumption becomes less applicable.

The figures show that for a wide range of parameters,
choosing T. at least ten times greater than T, ensures that
clusters of routing messages will be quickly broken up. For any
range of parameters, choosing T. as TP/2 should eliminate any
synchronization of routing messages. This would be equivalent
to setting the routing timer each time to an amount from the
uniform disrnbution on the interval [0.5TP. 1.5TP] seconds.
This introduces a high degree of randomization into the

randomness in the system, and it can take some time for two nodes to first
fomr a ctuster.
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Fig. 15. Expected time to go from cluster size 1 to cluster size N, and vice
versa, as a function of iv and of Tr.

system, yet ensures that the interval between routing messages
is never too small or too large.

D. Incorporating Delays Between Routers

The analysis and simulations in the paper so far have
assumed that Td = O; that is, that when a node’s timer
expires, other routers are immediately notified of the timer
expiration. While small values for Td accurately reflect a

model of routing nodes where propagation delay is low and

-~
0 1 2 3 4

RandeorNoiseTr (as a mulriileofTc)
Te,Te2-O.l 10 aacxmds,Td=O.02seconds.N=20.

Fig. 16, Time to go from a cluster of size 1 to a cluster of size Y, and vice
ve&a, for Td = 0:02 seconds.
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Fig. 17. Time to go from a cluster of size 1 to a cluster of size -V, and vice
versa, for Td = O.(I4 seconds.

each routing message consists of a number of packets, it is
physically impossible for Td to be zero. In this section we
explore simulations with small nonzero values for Td.

Recall that, in the absence of incoming routing messages,
router A resets its timer TC seconds after its timer expires, and
router B is notified of router A’s incoming routing message
Td seconds after router A’s timer expires. If Td > T= (for

example, because router A resets its timer before it transmits
the first packet of the routing timer), then there is little
coupling between adjacent routers. In this case, if two routers’

timers expire at the roughly same time, then each router
resets its timer before receiving a routing message from the
other router, and clusters break up quickly. In this section
we explore simulations with O < Td < TC. This reflects
a model where each routing message consists of multiple
packets, and neighboring routers receive the first packet of

a routing message before the source router resets its timer.
Fig 16 shows the results of simulations with T~ = 0.02

seconds. The lines show the same analytical results given
in Fig. 14, but computed for Td = 0.02 seconds. From the
analysis in Section V, pi,z_l, the probability that a cluster of
size i breaks into a chtster of size i – 1 in one round, can be
estimated by

“’-’=(’-%)’ (7)
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Fig. 18. The fraction of time synchronized versus the random component ~,.

for i >1 and TC – Td < 2TV. As this equation describes, the

main effect of increasing T~ is to increase pi,i– 1.
In general, five simulations were run for each value of T.,

and each simulation was terminated after 108 seconds. The
“X” marks show simulations that start with unsynchronized
routing messages and the “+” marks show simulations that
start with synchronized routing messages. Note that with Td set
to 0.02 seconds rather than to zero, the simulations take longer

to synchronize and less long to unsynchronized. Nevertheless,
the basic behavior of synchronization is preserved. As Fig, 17

shows, increasing Td from 0.02 seconds to 0.04 seconds further
increases the time required for synchronization.

The simulations and analysis show that the time to syn-
chronize increases as T. – Td increases. After a node’s timer
expires, this is the time between when other nodes are notified
of the timer expiration, and when the node resets its own timer
(in the absence of incoming routing messages). This interval
can be affected by a number of factors, such as the propagation

delay, the number of packets in the routing message and the

timing between the transmission of these packets, and the
promptness with which nodes reset their routing timers.

E. Steady-State Beha\ior

One quantity of interestis the fraction of time that the
Markov chain spends with low cluster sizes. We were only
able to estimate the equilibrium distribution for the Markov
chain by further approximating the transition probabilities.
However, one simple way to estimate the fraction of time that

the Markov chain spends in synchronized states is to compute

!)( 1)/(.f(~) +.Y(l)). Recall that ~(N) is the expected number
of rounds for the system to move from state 1 to state N;
for most of this time the system is largely unsynchronized.
Similarly, g(1) is the expected number of rounds for the
system to move from state N to state 1; for most of this time
the system is largely synchronized.

In Fig. 18 the x-axis shows T,; the other parameters are
N = 20, T,, = 121 seconds, T~ = O, and T, = 0.11

seconds. The y-axis is g(l)/ (\(IV) + g(l)), the estimated
fraction of time for which the system is synchronized. As
Fig. 18 shows, as T, is increased, the system makes a sharp
transition from predominately-synchronized to predominately-
unsynchronized. The simulations and analysis in Fig. 15
show that for a wide range of values for N and T,, the
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Fig. 19. The fraction of time synchronized versus the number of nodes, for
T,- = 0.11 seconds
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Fig. 20. The fraction of time synchronized versus the number of nodes, for
T, = 0.30 seconds.

transition from predominately-synchronized to predominately-
unsynchronized occurs for T, a small multiple of T,.

Figs. 19 and 20 show the estimated fraction of time that

the Markov chain spends synchronized as a function of the
number N of nodes in the network. The parameters for these
figures are TP = 121 seconds, Td = O, and TC = 0.1 I seconds;

T, is 0,11 seconds in Fig. 19 and 0.3 seconds in Fig. 20. For
each figure, as the number of nodes is increased the system
makes a sharp transition from predominately-unsynchronized
to predominately -synchronized. This corresponds in practice
to a network that moves from an unsynchronized to a fully
synchronized state when one additional router is added to the
system.

Figs. 19 and 20 show that the number of nodes where the

transition to synchronization takes place is a function of the
other parameters of the system; in Figure 15 the transition
occurs for N = 9, and for Fig. 20 the transition occurs for
N = 22. Recall that because of the simplifying assumptions,
the analysis is explanatory rather than predictive; the analysis
explains why the transition to synchronization is an abrupt
function of the number of nodes, but the analysis does not

necessarily accurately predict the exact number of nodes at
which this transition takes place.

F. Topologies with Point-to-Point Links

The analysis in this paper applies to a network of N routers
where each router receives a periodic routing message from
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Fig. 21. A ring topologyof routers.
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Fig. 22. A startopology of routers.

each other router. Consider instead f’? routers in an arbitrary
topology, where the routers are connected by point-to-point
links and each router only receives periodic messages from

its immediate neighbors. It is still possible for all N routers
in an arbitrary topology to become synchronized, using the

mechanisms described in this paper, but the synchronization

dynamics depend strongly on the particular network topology.
For example, for the topology of routers in Fig. 21 each

router receives a routing message from two neighboring
routers. Thus each router has to prepare its own outgoing
routing message and to process two incoming routing
messages. If all four routers become synchronized, then each
router’s timer expires on the average TP+Tc + 2TC2 = TP+3T~

seconds after its busy period begins, and each router’s busy
period begins when either its timer or one of its neighbors’

timers expires. The process of synchronization in a network
where each routing node has constant degree is similar to

the process described in Section V-B, and for small values

of T, such a network is likely to remain synchronized once
synchronization occurs.

For the star topology of routers in Fig. 22, however, given

the Periodic Messages model discussed in this paper, the

synchronization of routing messages is less likely to occur.

In Fig. 22 Router A has to process four incoming routing
messages, while each of the other routers processes only
one incoming routing message. Assume that all five routers
transmit a routing message at the same time. Then router

A’s timer expires on the average TP + 5TC seconds later,
while each of the other routers’ timers expires on the average

TP + 2TC seconds later. This difference in period should break

up synchronization fairly rapidly.
Thus for routers in an arbitrary topology the tendency

towards synchronization can depend heavily on the details of
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the topology. Current intemet topologies where most routers

have a similar and low degree should lend themselves

synchronization.

VI. OTHER APPROACHESTO SYNCHRONIZATION

The Markov chain model in Section V was designed

to

to

capture some key properties of the routing messages model
such as the role of randomization in producing an initial cluster
of size two, the role of changes in period in enabling the
formation of larger clusters, and the role of randomization in

breaking up clusters once they have formed. In addition, this
Markov model seems (to us) fairly simple and straightforward.
However, there are many possible approaches to the analysis
of synchronization; in this section we discuss briefly cou-
pled nonlinear oscillators and coupling methods for Markov
processes.

The approach to synchronization in [2] concerns coupled
nonlinear oscillators and uses the tools from nonlinear dynamic
systems. The book shows that the tendency of synchronization

is characteristic of a broad class of dynamic systems. Because
[2] does not treat the question of synchronization in the
presence of randomization, the results are not immediately
applicable to the synchronization of routing messages.

Mathematical models have recently been developed to ana-
lyze “pulse-coupled” oscillator systems [28] such as communi-
ties of Thai fireflies, where the periodic pattern of one firefly’s
flashing is affected by the others nearby. At dusk male fireflies

gather in trees by the edge of the river and flash on and off in
an unsynchronized fashion but, as the night progresses, whole
trees of fireflies will flash in synchronization for hours. These
“pulse-coupled” oscillator systems are similar to our model
of routing messages where the timing of one router’s routing
messages can be affected by the arrival of routing messages
from a neighboring router.

A different approach to synchronization comes from the
literature on coupling methods for Markov processes [12]. In
the classical coupling [12, p. 13], two independent copies of
a Markov process evolve until they reach a common state

then, from that point, the two Markov processes use the same
transition mechanism and follow the same path. It might
be possible to express our model for the synchronization
of routing messages as an example of coupled stochastic
processes, with each routing node a separate Markov process,
but the analysis that we use does not come from the literature
of coupled Markov processes.

VII. CONCLUSIONSAND OPEN QUESTfONS

In this section we give some specific conclusions about
the synchronization of routing messages, then discuss con-
clusions and open questions about the more general problem
of unanticipated structure in the Internet.

As the simulations and analysis in this paper demonstrate,
periodic routing messages from a system of routers in a
network can easily become synchronized. The simulations and

analysis both show that this synchronization is an emergent
property at a particular scale with an abrupt transition from

unsynchronized to synchronized behavior. Thus the behavior
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of the system with a small number of routers can not neces-

sarily be extrapolated to explain the behavior of the system
with a large numkr.

Synchronization can be avoided with appropriate imple-
mentation of the routing protocols. One possible method is
the addition of a random component to the routing timer
intervals. Our analysis provides general guidelines on deter-

mining the magnitude of the random component necessary
to avoid synchronization. In particular, setting the timer each
round to a time from the uniform distribution on the interval
[0.5TP, 1.5TP] seconds is a simple way to avoid synchro-
nized routing messages.8 Adding a random component to the
routing timers changes the strict periodicity of the routing
messages but does not affect the convergence properties of
the underlying routing protocols.

A second method for avoiding synchronization is to imple-

ment a routing timer that is independent of external events
(as mentioned in the specifications for RIP) [13, p. 23]. If
each router resets its timer immediately after the timer expires
(regardless of its activities when the timer expires) and if
routers don ‘t reset their timers after triggered updates, then the
process of timer synchronization described in this paper might
be avoided. There are, however, drawbacks to this approach:
if routers are initially synchronized (either by chance, or

because they were restarted at the same time) then they will

remain synchronized since there is no mechanism to break up
synchronization if it does occur.

It is also possible to reduce the negative impact of synchro-
nized routing updates by modifying routers to give acceptable
performance in the presence of large or synchronized routing
updates. While it is often more efficient to exploit traffic
structure rather than to engineer it out, this does not seem
to be the case for synchronized routing messages. Even with

tuned router implementations, synchronized routing messages
place an unnecessary burden on the network, and a preferable
solution is to avoid synchronization in the first place.

Periodic routing messages are not the only example of
unintended structure in the Internet. Our “ping” experiments
suggest that many periodic processes are at work. From these
experiments we conjecture that a significant number of the
packet drops in the Internet are associated with some form of
periodic process, but the causes of structure in current Internet

traffic are only beginning to be explored.
One model of large-scale structure comes from the kinetic

theory of automobile traffic [24]. Individual drivers, each
seeking to optimize their own goals, can produce collective
traffic patterns akin to the coordinated motion of flocks of
birds or schools of fish. Individual strategies of reducing speed
during congestion result in a collective decrease in traffic flow
as the vehicle concentration increases past a certain density.
[16] shows that given an initially homogeneous traffic flow,
regions of high density and low average velocity (clusters of

cars) can spontaneously appear. These high-density regions
can move either with or against the flow of traffic, and two
clusters with different velocities, widths, and amplitudes merge
when they meet, resulting in a single cluster. We believe

‘Pseudo-random numbers can be efficiently generated by a random number
generator [4].

there are analogous interactions between packet streams and
we intend to explore these mechanisms for the emergence of
large-scale structure in packet-switched networks.

As the Internet expands to new types of traffic (e.g., voice
and video), new routing patterns (multicast distribution), and
new gateway scheduling disciplines (Quality-of-Service for
realtime traffic), it is important to anticipate the large-scale

structure that might be introduced by these changes. But, as
our analysis of routing shows, large scale structure is often an
emergent property that cannot be observed or inferred from
small scale simulations or measurements. Although they do
not currently exist, we feel that large scale simulators are a
necessary tool for exploring questions of large scale structure.
Large scale simulations can help us build intuition about the
behavior of large-scale networks, better understand behavior

of current Internet traffic, and predict how this behavior might

change as Internet traffic types, routing patterns, and gateway
scheduling disciplines evolve.
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APPENDIX

SOLUTtON To RECURSIVE FORMULA

This section gives the solution for the following recursive
equation for ~(i):

j(i) - -“’--:_+ip*f(i*f(i-1)+ ~;:::’f(i -2) = C(7),

where C(Z) = tl_I,i + (P, –l,, –2/Pi–l,, )t, –I, i–2. We exPress

this, using operator notation, as

(E2 - ‘2-1”-2 ‘P*-l° E + ‘~~~;jz)f,-’ = C(Z)
Pz–l, i

e (E – ‘i–1’*-2 )(E - 1)~,-2 = c(i).
PI-1,1

For an explanation
equations, see [ 11]

of operator notation in solving recursive
or [19]. Let

~i = (E – l)~l_2.
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This gives the first order difference equation

(E - ~i-::;’)zi = C(2)

Pi-l,i–2
+ z~+l = .q + c(i).

Pi–l,i

Therefore

22 = b(i)%i-1 + C(i – 1) for b(i) = ‘2-2’i-3 .
Pi–2,i–l

with the initial condition Z3 = ~2 – .fl, and for jl = 0. This
has the solution [11, p. 18]

“( “)zi=z3fiW)+~ C(lC-l) fi b(j) .

)=4 k=4 j=k+l

Now solving for

we have that

j=4 k=.1 \ j=k+l )

with the initial condition j2. This has the solution

“( ).fi = f2 + ~ f2 ‘nfi’ W

m =3 jE4

‘(+&‘nyC(k – 1) ‘~ b(j
m=3 k=4 jck+l

Substituting for b(j), we get

i/m-l\
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