Compiler Construction
Lent Term 2020
Parsing Part |
Lecture 14

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

Lecture 14 -- 16
Parsing (some) context-free grammars

1. Context-free grammars
2. The ambiguity problem
3. Top-down parsing (LL(1))

1. Recursive descent parsing (hand
coded)

2. Predictive parsing (table driven)
4. Bottom-up parsing (Lectures 15,16)

1. SLR(1) (Simple LR)

2. LR(1)

Programming Language Syntax

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listop: ;
static_assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersp,
type-specifier declaration-specifiersp,
type-qualifier declaration-specifiersgp,
function-specifier declaration-specifiersgp
alignment-specifier declaration-specifiers,p

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

A small fragment of the C standard. How can we turn this
specification into a parser that reads a text file and produces a
syntax tree?

Context-Free Grammars (CFGs)
G=(N,T,P,S)

N :set of nontermina Is

T :set of terminals

Pc Nx(NUT) :aset of production s
S € N :start symbol

Each (A,«) € P is written as A — o

Example CFG
G, =(N,,T,,R,E)
N, ={E} T, ={+*. (), id}
P :
E—>E+E|E*E|(E)]|id

This Is shorthand for
P ={(E, E+E),(E,E*E), (E (E)), (E 1d)}

Derivations
Notation convention s:

a,B,v,--e(NUT)

A B,C,---eN
Given oA and a production A — y
a derivation step Is written as

aApL = ayl
—" means one or more derivation steps and

—" means zero or more derivation steps -

Example derivations

E=E*E
= (E)*E
= (E+E)*E
= (Xx+E)*E
= (X+y)*E
= (x+Yy)*(E)
= (X+y)*(E+E)
= (X+Yy)*(z+E)
= (X+y)*(z+X)

E=E*E
= E*(E)
= E*(E+E)
= E*(E+X)
= E*(2+X)
= (E)*(z+X)
= (E+E)*(z+X)
= (E+Yy)*(z+X)
= (X+Y)*(z+X)

A leftmost derivation

A rightmost derivation

Derivation Trees

The derivation tree for (X +y) * (z + X).
All derivations of this expression will
produce the same derivation tree.

Concrete vs. Abstract Syntax Trees

parse tree = An AST contains only the
derivation tree = information needed to
concrete syntax tree generate an intermediate

representation

L(G) = The Language Generated by Grammar G

L(G):{WeT*|S :>+W}

For example, if G has production s
S—aSb|e
then

L(G)=1{a"b" [n>0}
So CFGs can capture more than
regular languages!

10

Pushdown Automata (PDAs)

Regular languages are accepted by Finite Automata.
Context-free languages are accepted by Pushdown Automata,

a finite automata augmented with a stack.

lllustration from https://en.wikipedea.org/wiki/Pushdown_automaton

finite top
control | 0 p
state
'Z
a ‘
Input tape
stack

A diagram of a pushdown automaton

Pushdown Automata (PDAs)
M=(Q,%2,1,0,q,,Z)

Q :states X :alphabet I :stack symbols
g, € Q:start state

Z eI :inttial stack symbol

o0.VqeQ,aeEu{e}), X T,
5(0,a,X) cQxI"

Pushdown Automata (PDAs)

(g',) € 6(q,a, X) means that when the
machine Iis In state reading a with X on
top of the stack, it can move to state g' and
replace X with £. That is, it "pops™ X and
"pushes” A (leftmost symbol is top of stack).

Pushdown Automata (PDAs)

ForqeQ,weX ,aecl’

(g, w,a)
Is called an instantane ous
descriptio n (ID). It denotes the PDA
In state g looking at the first symbol
of w, with « on the stack (top at left).

Language accepted by a PDA
For (q, #) € 0(q,a, X), a X define

the relation — on IDs as
(q,aw, Xx) —> (q', W, Sa)
and for (g,) € 6(q, &, X) as
(., w, X)) = (q',w, fa)
L(M) =

{weX |3q€Q, (9,, W, Z) >" (q,&,6)}

Exercise : work out the details of this PDA

(g, aaabbb, Z)
— (q,,aabbb, A)

5 (q,,abbb, Aa) M=

5 (q,.bbb, AAA) 12D"In=0]
— (q,,bb, AA)

— (0, b, A)

— (Qy, &, &)

PDAs and CFGs Facts

(we will not prove them)

1) For every CFG G there is a PDA M
such that L(G)= L(M).

2) Forevery PDA M there iIs a CFG G
such that L(G)= L(M).

Parsing problem solved? Given a CFG G
just construct the PDA M ? Not so fast!
For programmin ¢ languages we want

M to be determinis tic!

Origins of nondeterminism?
Ambiguity!

Both derivation trees correspond “x +y * Z".
But (x+y) * z Is not the same as X + (y * 2).

This type of ambiguity will cause problems
when we try to go from program texts to
derivation trees! Semantic ambiguity!

18

We can often modify the grammar in order to eliminate ambiguity

Gz — (NZ’Tl’ sz E)
N,={ET,F} T, ={+*() id}
P, :
E—->E+T|T (expressio ns)
To>T*F|F (terms)
F— (E)|d (factors)

Can you prove that L(G,)= L(G,)?

The modified grammar eliminates
ambiguity

This I1s now
the unique
derivation
tree for
X+y*z

20

Fun Fun Facts

(1) Some context-free languages are
Inherently ambiguous --- every context-free
grammar for them will be ambiguous. For example:

L={a"b"c"d" |m>1,n>1{
u{a”b”‘c”‘d”\mkl,nkl}

(2) Checking for ambiguity in an arbitrary context-free
grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking
L(G1) = L(G2) is not decidable! Ouch!

See Hopcroft and Uliman, “Introduction to Automata 21
Theory, Languages, and Computation”

Two approaches to building stack-
based parsing machines: top-down and
bottom-up

e Top Down : attempts a left-most derivation. We will
look at two techniques:

 Recursive decent (hand coded)
e Predictive parsing (table driven)

e Bottom-up : attempts a right-most derivation
backwards. We will look at two techniques:

e SL(1) : Simple LR(1)
e LR(1)

Bottom-up techniques are strictly more powerful.
That Is, they can parse more grammars.

Recursive Descent Parsing

«35) int tok = getToken();

void advance() {tok = getToken();}
S:-=ifEthen Selse S void eat (int t) {if (tok == t) advance(); else

| begin S L errorQ);}
| print E void SO {switch(tok) {
case IF: eat(IF); E(); eat(THEN);
E = NUM = NUM S(); eat(ELSE); S(); break;

case BEGIN: eat(BEGIN); S(O; L(Q; break;
case PRINT: eat(PRINT); E(Q); break;

L ::= end default: errorQ;
| ;SL 1
void L() {switch(tok) {
Parse Corresponds to case END: eat(END); break;
. . case SEMI: eat(SEMI); SO:; LQ; break;
a left-most d_erlvatlon default: error():
constructed in 1}

a “top-down" manner void EQ {eat(NUM) ; eat(EQ); eat(NUM); }

23
Example From Andrew Appel, “Modern Compiler Implementation in Java” page 46

But the production E -1 in G, will

lead to an infinite loop! A
Eliminate left recursion! AL @
| A/ N
04
A->Acl |[Aa2|...|Ack | AB
BL|B2]...|Bn
A
{ A
P
A->BIA|B2A|...|BNA OLA\A,
N
AN->o1A|a2A|...|akA |

For eliminating left-recursion in general, see Aho and Ullman®*

Eliminate left recursion

G,=(N,,T,,P;, E)

N, ={E, E, T, T,F} T, ={+*,(),1d}
P,:
E->TE
E'>+T E'|¢
To>FT
T'> *FT'|e
F— (E)|id
Can you prove that L(G,)= L(G,)?

Recursive descent pseudocode

getE() = getT(); getE' ()
getE'() = 1If token() ="+"then eat("+"); getT (); getE'()
getT() = getF (); getT ()
getT'() =1If token() =" then eat("*"); getF(); getT"()
getF() = 1f token() =1id

then eat(id)

else eat(" ("); getE(); eat(")")

Where’s the stack machine?
It’s implicit in the call stack!

Parsing (x+y)*(z+x) using a call to getE()

eat("(") getE()

getF() getF() getF()

getT() getT() getT() getT()
getE() getE() getE() getE() getE()

call stack over time ...

