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Motivation: MapReduce is becoming popular

§ Open-source implementation, Hadoop, used by Yahoo!, 
Facebook, Last.fm, …

§ Scale: 20 PB/day at Google, O(10,000) nodes at Yahoo, 3000 
jobs/day at Facebook
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Stragglers in MapReduce

§ Straggler is a node that performs poorly or not performing
at all.

§ Original MapReduce mitigation approach was:
§ To run a speculative copy (called a backup task)
§ Whichever copy or original would finish first would be included

§ Without speculative execution, a job would be slow as the
slowest sub-task

§ Google notes that speculative execution can improve job
response times by 44%

§ Is this approach good enough for modern clusters?
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Modern Clusters: Heterogeneity is the norm
§ Cloud computing providers like Amazon’s Elastic Compute
Cloud (EC2) provide cheap on-demand computing:
§ Price: 2 cents / VM / hour
§ Scale: thousands of VMs
§ Caveat: less control of performance

§ Main challenge for Hadoop on EC2 is performance
heterogeneity, which breaks task scheduler assumptions

§ This lecture/paper is on a new LATE scheduler that can cut
response time in half
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MapReduce Revised
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MapReduce Implementation, Hadoop
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Scheduling in MapReduce
§ When a node has an empty slot, Hadoop chooses one from
the three categories in the following priority:
1. A failed task is given higher priority
2. Unscheduled tasks. For maps, tasks with local data to the node are
chosen first.

3. Looks to run a speculative task.
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Deciding on Speculative Tasks

§ Which task to execute speculatively?
§ Hadoop monitors tasks progress using a progress score: a
number from 0, …, 1

§ For mappers: the score is the fraction of input data read
§ For reducers: the execution is divided into three equal phases,
1/3 of the score each:
§ Copy phase: percent of maps that output has been copied from

§ Sort phase: map outputs are sorted by key: percent of data merged

§ Reduce phase: percent of data passed through the reduce function

§ Example: a task halfway through the copy phase has

progress score = 1/2*1/3 = 1/6.

§ Example: a task halfway through the reduce phase has
progress score = 1/3 + 1/3 + 1/2 * 1/3 = 5/6
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Deciding on Speculative Tasks (con’t)

§ Hadoop looks at the average progress of each category of
maps and reduces and defines a threshold:

§ When a task’s progress is less than the average for its
category minus 0.2, and the task has run at least one
minute, it is marked as a straggler:

threshold = avgProgress – 0.2

§ All tasks with progress score < threshold are stragglers
§ Ties are broken by data locality

§ This approach works reasonably well in homogeneous clusters
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Scheduler’s Assumptions

1. Nodes can perform work at roughly the same rate
2. Tasks progress at constant rate all the time
3. There is no cost to starting a speculative task
4. A task’s progress is roughly equal to the fraction of its total
work

5. Tasks tend to finish in waves, so a task with a low progress
score is likely a slow task

6. Different task of the same category (maps or reduces) take
roughly the same amount of work
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Revising Scheduler’s Assumptions

1. Nodes can perform work at roughly the same rate
2. Tasks progress at constant rate all the time

§ (1) In heterogeneous clusters some nodes are slower (older)
than others

§ (2) Virtualized clusters “suffer” from co-location interference
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Heterogeneity in Virtualized Environments

§ VM technology isolates CPU and memory, but disk and 
network are shared
§ Full bandwidth when no contention
§ Equal shares when there is contention

§ 2.5x performance difference
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Revising Scheduler’s Assumptions
3. There is no cost to starting a speculative task
4. A task’s progress is roughly equal to the fraction of its total
work

5. Tasks tend to finish in waves, so a task with a low progress
score is likely a slow task

§ (3) Too many speculative tasks can take away resources
from other running tasks

§ (4) The copy phase of reducers is the slowest part, because
it involves all-pairs communications. But this phase counts
for 1/3 of the total reduce work.

§ (5) Tasks from different generations will be executed
concurrently. So newer faster tasks are considered with older
show tasks, avgProgress changes a lot.
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Idea: Progress Rates

§ Instead of using progress score values, compute progress
rates, and back up tasks that are “far enough” below the
mean

§ Problem: can still select the wrong tasks
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min 2 min
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)

Node 2 is slowest, but should back up Node 3�s 
task!

time left: 1 min
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Our Scheduler: LATE

§ Insight: back up the task with the largest estimated finish 
time
§ “Longest Approximate Time to End” à LATE
§ Look forward instead of looking backward

§ Sanity thresholds:
§ Cap number of backup tasks
§ Launch backups on fast nodes
§ Only back up tasks that are sufficiently slow
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LATE Details

§ Estimating finish times:

progress score 

execution time
progress rate  =

1 – progress score

progress rate
estimated time left  =
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LATE Scheduler

§ If a task slot becomes available and there are less than 
SpeculativeCap tasks running, then:
1. Ignore the request if the node’s total progress is below 

SlowNodeThreshold (=25th percentile)
2. Rank currently running, non-speculatively executed tasks by 

estimated time left
3. Launch a copy of the highest-ranked task with progress rate below 

SlowTaskThreshold (=25th percentile)

§ Threshold values:
§ 10% cap on backups, 25th percentiles for slow node/task
§ Validated by sensitivity analysis
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LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8Progress = 66%

LATE correctly picks Node 3
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Evaluation

§ Environments:
§ EC2 (3 job types, 200-250 nodes)
§ Small local testbed

§ Self-contention through VM placement
§ Stragglers through background processes
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EC2 Sort without Stragglers (Sec 5.2.1)
§ 106 machines , 7-8 VMs per machine à total of 243 VMs 
§ 128 MB data per host, 30 GB in total 
§ 486 map tasks and 437 reduce tasks
§ average 27% speedup over native, 31% over no backups
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EC2 Sort with Stragglers  (Sec 5.2.2)
§ 8 VMs are manually slowed down out of 100 VMs in total
§ running background of CPU- and disk-intensive jobs
§ average 58% speedup over native, 220% over no backups
§ 93% max speedup over native
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Conclusion

§ Heterogeneity is a challenge for parallel apps, and is 
growing more important

§ Lessons:
§ Back up tasks which hurt response time most

§ 2x improvement using simple algorithm
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Summary

§ MapReduce is a very powerful and expressive model
§ Performance depends a lot on implementation details

§ Material is from the paper:
“Improving MapReduce Performance in Heterogeneous Environments”, 
By Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz and 
Ion Stoica, published in Usenix OSDI conference, 2008

§ and their presentation at OSDI
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