Bioinformatics

Computer Laboratory

Computer Science Tripos Part II

Pietro Lio`

BioInformatics 2019-2020

At the core of life there is a sort of programming; the DNA sequence contains both the code for the structure of the 3d parts (usually proteins, programmed self assembly process) and the code that represents the manual of instructions -how much, where, when a certain part should be produced.
Bioinformatics is about algorithms and machine learning methods to identify the coding elements in the DNA sequences and characterise the parts.
Both DNA sequence and protein structure research have adopted good abstractions: 'DNA-as-string' (a mathematical string is a finite sequence of symbols) and 'a protein-as-a three-dimensional-labelledgraph'.

Models of DNA and proteins

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

ABSTRACTIONS:

DNA AS A STRING,

PROTEIN AS A LABELLED GRAPH
DNA AND PROTEINS AS NETWORKS
sources: Photograph 51', March 1953, by Rosalind Franklin; Pencil sketch of the DNA double helix by Francis Crick; Replica of Crick and Watson's 1953 DNA Double Helix Model, https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/

What is Biolnformatics

Biology and Medicine
 > Machine learning

 Machine

 Machine learning

 learning}Algorithms

Drug Discovery Pipeline

Bioinformatics: a central position in medicine

NGS= next generation sequenging

DNA for genomic diagnostics

Cost per Genome

Impact on Personalised Medicine

- Cancer: Disease stratification based on driver mutations
- Rare diseases: Most patients now receive a genetic diagnosis
- Drugs: Patient-specific prediction of efficacy and side effects

High-performance computing

1979

today

Who has a computer?

- 1960s: Major research institutes
- 1970s: University departments
- 1980s: Companies and schools
- 2019: Almost everybody \& always

Genome sequencing

2006

today

Whose genome has been sequenced?

- 1996: First bacterium (E. coli)
- 2001: Human reference genome
- 2007: First personal genomes
- 2019: Millions personal genomes

Garage genomics

DNA is big data

Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nlm.nih.gov/ ; http://genome.ucsc.edu/ www.ensembl.org

Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	$0.5-15$ billion tweets/year	500-900 million hours/year	1 zetta-bases/year
Storage	$1 \mathrm{~EB} / \mathrm{year}$	1-17 PB/year	1-2 EB/year	2-40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~ 2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, $\sim 10,000$ trillion CPU hours
Distribution	Dedicated lines from antennae to server ($600 \mathrm{~TB} / \mathrm{s}$)	Small units of distribution	Major component of modern user's bandwidth ($10 \mathrm{MB} / \mathrm{s}$)	Many small ($10 \mathrm{MB} / \mathrm{s}$) and fewer massive ($10 \mathrm{~TB} / \mathrm{s}$) data movement
doi:10.1371/journal.pbio.1002195.t001				

How much DNA in the body and in the biosphere

Each base pair take a couple of bits to encode (because you have to choose between G, A, T and C.

You have 46 chromosomes in each (autosomal) cell (3 billion base pairs, 2 meters long, 2 nm thick, folded into a $6 \mu \mathrm{~m}$ ball). If you teased out those 46 strands and placed them end to end they'd be about 2 metres long - but that's just one cell. Every time a cell replicates it has to copy 2 meters of DNA reliably.

As there are about 3.7×10^{13} cells in the human body (and hence 1.7×10^{15} chromosomes or strands), your entire DNA would stretch about $7.4 \times 10^{10} \mathrm{~km}$ or fifty thousand million miles (133 Astronomical Units long) - DNA in human population 20 million light years long (the Andromeda Galaxy is 2.5 Million light years).

Lower bound on the total information content in the biosphere: $5.3 \times 10^{31}(\pm 3.6 \times$ 1031) megabases (Mb) of DNA. Taking the rate of DNA transcription as an analogy for processing speed, they further estimated Earth's computational power: 1015 yottaNOPS (1024 Nucleotide Operations Per Seconds).

Genetic Code

Central Dogma

Transcriptio

Gene cells express different subset of the genes In different tissues and under different conditions

CCUGAGCCAACUAUUGAUGAA

1st position	2nd position				3rd position
(5 ' end) \dagger	0	0	A	8	(3^{\prime} end)
	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Trp	G
	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	C
	ll	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	
	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val	Ala		Gly	11 G

Healthy Individual

sequences

in Fasta format

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGДGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]
MVHLTP EKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN ALAHKYH

Individual with Sickle Cell Anemia

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]
MVHLTP
V
EKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN ALAHKYH

- Gene and protein interactions as graphs

Genes are activated or repressed by regulatory proteins which bind to gene flanking sequences (promoter) and are coded by the same or other genes.

Logic gates: The Cell as an information processing device

Toggle switch (cro and cl are genes;
 proteins of genes cro and cl)

The Cell is a Computer in Soup

ABOVE: Idealized promoter for a gene involved in making hair. Proteins that bind to specific DNA sequences in the promoter region together turn a gene on or off. These proteins are themselves regulated by their own promoters leading to a gene regulatory network with many of the same properties as a neural network. We use chips (right) to monitor the activity of all the genes in different conditions (gene expression).

(B) yeast cell (specifically, S. cerevisiae: $V \approx 30 \mu \mathrm{~m}^{3} ; \mathrm{L} \approx 5 \mu \mathrm{~m} ; \tau \approx 3$ hours)

(C) mammalian cell (specifically, HeLa:V $\approx 3000 \mu \mathrm{~m}^{3} ; \mathrm{L} \approx 20 \mu \mathrm{~m} ; \tau \approx 1$ day)

Cells versus Computers

E. coli transcriptional regulatory network

Linux call graph

workhorse

Fig. 1. The hierarchical layout of the E. coli transcriptional regulatory network and the Linux call graph. (Left) The transcriptional regulatory network of E. coli, (Right) The call graph of the Linux Kernel. Nodes are classified into three categories on the basis of their location in the hierarchy: master regulators (nodes with zero in-degree, Yellow), workhorses (nodes with zero out-degree, Green), and middle managers (nodes with nonzero in- and out-degree, Purple). Persistent genes and persistent functions (as defined in the main text) are shown in a larger size. The majority of persistent genes are located at the workhorse level, but persistent functions are underrepresented in the workhorse level. For easy visualization of the Linux call graph, we sampled 10% of the nodes for display Under the sampling, the relative portion of nodes in the three levels and the ratio between persistent and nonpersistent nodes are preserved compared to the original network. The entire E. coli transcriptional regulatory network is displayed.
A

regulatory network $\begin{gathered}\text { call graph }\end{gathered}$

master regulator	4.6	29.6
middle manager	5.1	58.2
workhorse	90.2	12.3

B

The transcriptional regulatory network (1,378 nodes) follows a conventional hierarchical picture, with a few top regulators and many workhorse proteins. The Linux call graph (12,391 nodes), on the other hand, possesses many regulators; the number of workhorse routines is much lower in proportion. The regulatory network has a broad out-degree distribution but a narrow in-degree distribution. The situation is reversed in the call graph, where we can find in-degree hubs, but the out-degree distribution is rather narrow. Yan et al. PNAS 2010, 107, 20.

Scales of electronic and bio devices

proteins inside a bacterium

$\overline{A B}$
(a) NAND gate layout geometry.

The network level: can you spot the difference?

Nature is programmed for self-assemble; Bioinformatics is needed to identify the key elements

- DNA, RNA and proteins can:
- Organize themselves to self assemble different types of devices (mechanisms such rotors, motors) or structures with different shapes across time and space scales.
- Organise other types of molecules such as lipids, sugars and artificial ones.
- Organise large set of reactions (such as metabolic networks) and Execute different kinetics
- Self-Assemble control devices

microscale IKEA: Nature is programmed for self assembly

24 to 200 nanometers they're 10 to 100 times smaller than the average bacterium, much too small to see with an ordinary light microscope.
5. We absorb about 30 billion phages into our bodies every day. They form an integral part of our microbial ecosystem.

The genome contains both the instructions for assembly and for the parts and it is shipped with the virus

Cells versus Computers

- Base-4 (ACGT)
- DNA
- Bases
- Codons (triplets of bases for each amino acid)
- Genetic Code (translate codons into amino acids)
- Gene/Protein
- Chromosome
- Genome Size
- Base-2 (101010)
- Magnetic tape/Disk
- Bits/Transistors
- Bytes
- Instruction Set
- File, Program
- Hard Disk
- Disk Capacity

Cells versus Computers

Biology

1. Digital alphabet consists of bases A, C, T, G
2. Codons consist of three bases
3. Genes consist of codons
4. Promoters indicate gene locations
5. DNA information is transcribed into hnRNA and processed into mRNA
6. mRNA information is translated into proteins
7. Genes may be organized into operons or groups with similar promoters
8. "Old" genes are not destroyed; their promoters become nonfunctional
9. Entire chromosomes are replicated
10. Genes can diversify into a family of genes through duplication
11. DNA from a donor can be inserted into host chromosomes
12. Biological viruses disrupt genetic instructions
13. Natural selection modifies the genetic basis of organism design
14. A successful genotype in a natural population outcompetes others

Computer science

1. Digital alphabet consists of 0,1
2. Computer bits form bytes
3. Files consist of bytes
4. File-allocation table indicates file locations
5. Disc information is transcribed into RAM
6. RAM information is translated onto a screen or paper
7. Files are organized into folders
8. "Old" files are not destroyed; references to their location are deleted
9. Entire discs can be copied
10. Files can be modified into a family of related files
11. Digital information can be inserted into files
12. Computer viruses disrupt software instructions
13. Natural selection procedures modify the software that specifies a machine design
14. A successful website attracts more "hits" than

A free book is this: cell biology by the numbers http://book.bionumbers.org/

- Genetics for Computer Scientists
 https://www.cs.helsinki.fi/group/genetics/ Genetics for CS March 04.pdf
- Molecular Biology for Computer Scientists: http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf Biology and Computers: A lesson in what is possible https://ethw.org/ https://www.wehi.edu.au/wehi-tv/

General references for course

BIOINFORMATICS ALGORTTHMS

An Active Learning Approach and Edition, Vol. I

BIOINFORMATICS ALGORTTHMS

An Active Learning Approach

Partly based on book: Compeau and Pevzner Bioinformatics algorithms (chapter 3,5,7-10 chapter).
also Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison
Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids

No biology in the exam questions (You need to know only the reason of the algorithms).

Structure of the course

Aligning DNA and Protein Sequences

- how to align two sequences?
- Trees (what is the relationships of multiple sequences and what has to do with species evolutionary history)
- Genome sequence (how to analyse a genome)

How Do We Compare Biological Sequences?

- From Sequence Comparison to Biological Insights
- The Alignment Game and the Longest Common Subsequence
- Dynamic Programming and Backtracking Pointers
- From Global to Local Alignment
- Penalising Insertions and Deletions in Sequence Alignment
- Space-Efficient Sequence Alignment
- Nussinov folding algorithm (RNA 2dimensional folding)

Summary for alignment lectures

Algorithms in this lecture: Longest common subsequence, Needleman-Wunsch, Smith-Waterman, Affine gap, Hirschberg, Nussinov RNA folding. Typical tasks: align genome and protein sequences; we want to detect all differences at the single base to block of bases levels. In the RNA folding problem we want to align a molecule with itself.
Data: DNA or protein (amino acid) sequences considered as strings; input: two strings (Nussinov accepts one string in input and search for internal similarities). Output: a set of aligned positions that makes easy the identification of conserved patterns. Note that each string belongs to a double helix so the information could be related to one of the two strands and read in one or the opposite orientation.
Many events (mutations) could lead to sequence changes. Therefore the conservation of a substring between two strings may suggest to a crucial functional role for the cell. The dynamic programming algorithms could be used to detect similarities within a single string (last section of the lecture). This is particularly useful to find the folding of RNA moleculaes (in a RNA molecule the T is replaced by U).
Main question in this lecture: how similar are these two sequences?

What Is the Sequence Alignment?

matches insertions deletions mismatches

Alignment of two sequences is a two-row matrix:
$1^{\text {st }}$ row: symbols of the $1^{\text {st }}$ sequence (in order) interspersed by "-" $2^{\text {nd }}$ row: symbols of the $2^{\text {nd }}$ sequence (in order) interspersed by "-"

Longest Common Subsequence

$$
\begin{aligned}
& \mathbf{A} T-\mathbf{G} T \mathbf{A} T \mathbf{A} \\
& \mathbf{A} \mathbf{T} \mathbf{C} \mathbf{T}=\mathbf{C}=\mathbf{C}
\end{aligned}
$$

Matches in alignment of two sequences (ATGT) form their Common Subsequence

Longest Common Subsequence Problem: Find a longest common subsequence of two strings.

- Input: Two strings.
- Output: A longest common subsequence of these strings.

Alignment: 2 row representation

Given 2 DNA sequences \mathbf{v} and \mathbf{w} :

$$
\begin{array}{lll}
\text { v: } & \text { ATGTTAT } & m=7 \\
\text { w: } & \text { ATCGTAC } & n=7
\end{array}
$$

Alignment : 2 * \mathbf{k} matrix ($\mathbf{k}>\mathbf{m}, \mathbf{n}$)
letters of \mathbf{v}
letters of w

A	T	--	G	T	T	A	T	--
A	T	C	G	T	--	A	--	C

4 matches 2 insertions 2 deletions

Longest Common Subsequence

Longest Common Subsequence (LCS) -the simplest form of sequence alignment - allows only insertions and deletions (no mismatches). In the LCS Problem, we scored 1 for matches and 0 for indels; in real analysis we consider penalising indels and mismatches with negative scores.

- Given two sequences

$$
\mathbf{v}=v_{1} v_{2} \ldots v_{m} \text { and } \mathbf{w}=w_{1} w_{2} \ldots w_{n}
$$

- The LCS of \mathbf{v} and \mathbf{w} is a sequence of positions in

$$
\mathbf{v}: 1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{t}} \leq \mathrm{m}
$$

and a sequence of positions in

$$
\mathbf{w}: 1 \leq \mathrm{j}_{1}<\mathrm{j}_{2}<\ldots<\mathrm{j}_{\mathrm{t}} \leq \mathrm{n}
$$

such that i_{t}-th letter of \mathbf{v} equals to j_{t}-th letter of \mathbf{w} and \mathbf{t} is maximal.

Longest Common Subsequence

i coords: elements of v elements of w

j coords: $\begin{array}{llllllllllll}0 & 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 6 & 7\end{array}$
$(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(3,3) \rightarrow(3,4) \rightarrow(4,5) \rightarrow(5,5) \rightarrow(6,6) \rightarrow(7,6) \rightarrow(8,7)$ positions in v: $\quad 2<3<4<6<8$ positions in w: $1<3<5<6<7$
Every common subsequence is a path in 2-D grid

Longest Common Subsequence

The Edit distance between two strings is the minimum number of operations (insertions, deletions, and substitutions) to transform one string into the other

Hamming distance always compares
$\mathrm{i}^{- \text {th }}$ letter of \mathbf{v} with
$i^{-t h}$ letter of \mathbf{w}

$$
\begin{array}{lll}
\mathbf{V}=\text { ATATATAT } & \text { Just one shift } & \mathbf{V}=- \text {-ATATATAT } \\
\mathbf{W}=\text { TATATATA } & \text { Make it all line up } & \mathbf{W}=\text { TATATATA- }
\end{array}
$$

Edit distance may compare $\mathbf{i}^{\text {-th }}$ letter of \mathbf{v} with $j^{-t h}$ letter of \mathbf{w}

Hamming distance:

$$
d(\mathbf{v}, \mathbf{w})=8
$$

Computing Hamming distance is a trivial task

Edit distance:

$$
d(\mathbf{v}, \mathbf{w})=2
$$

Computing edit distance is a non-trivial task

Edit Distance: Example

TGCATAT \rightarrow ATCCGAT in 4 steps

TGCATAT \rightarrow (insert A at front)
ATGCATA $\top \rightarrow$ (delete $6^{\text {th }}$ T)
ATGCATA \rightarrow (substitute G for $5^{\text {th }}$ A)
ATGCGTA \rightarrow (substitute C for $3^{\text {rd }}$ G)
ATCCGAT (Done)

Alignment as a Path in the Edit Graph

Old Alignment 0122345677
$\mathrm{v}=\mathrm{AT}$ _GTTAT_
W= ATCGT_A_C 0123455667
New Alignment
0122345677
$\mathrm{v}=\mathrm{AT}$ _GTTAT_
W= ATCG_TA_C
0123445667

Two similar alignments; the score is 5 for both the alignment paths.

LCS Problem as - Edit Graph

Every path is a common subsequence.

Every diagonal edge adds an extra element to common subsequence

LCS Problem: Find a path with maximum number of diagonal edges

Computing LCS

Let $\mathbf{v}_{\mathrm{i}}=$ prefix of \mathbf{v} of length $\mathrm{i}: \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{i}}$ and $\mathbf{w}_{j}=$ prefix of \mathbf{w} of length $j: w_{1} \ldots w_{j}$ The length of $\operatorname{LCS}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{j}}\right)$ is computed by:

$$
s_{i, j}=\text { MAX } \quad\left\{\begin{array}{l}
s_{i-1, j}+0 \\
s_{i, j-1}+0 \\
s_{i-1, j-1}+1, \quad \text { if } v_{i}=w_{j}
\end{array}\right.
$$

	W			T	C	G
V		0	1	2	3	4
	0					
A	1					
T	2			1		
G	3					
T	4					

Every Path in the Grid Corresponds to an Alignment

$$
\begin{aligned}
& \downarrow \rightarrow \downarrow \downarrow \\
& 012234 \\
& V=A T-G T \\
& \text { | | | } \\
& W=A T C G- \\
& 012344
\end{aligned}
$$

LCS Algorithm

```
\(\operatorname{LCS}(\mathbf{v}, \mathbf{w})\)
    for \(i \leftarrow 0\) to \(n\)
        \(s_{i, 0} \leftarrow 0\)
    for \(j \leftarrow 1\) to \(m\)
        \(s_{0, j} \leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\)
        for \(j \leftarrow 1\) to \(m\)
\(7 \quad s_{i, j} \leftarrow \max \left\{\begin{array}{l}s_{i-1, j} \\ s_{i, j-1} \\ s_{i-1, j-1}+1, \quad \text { if } v_{i}=w_{j}\end{array}\right.\)
            \(b_{i, j} \leftarrow \begin{cases}" \uparrow{ }^{\prime \prime} & \text { if } s_{i, j}=s_{i-1, j} \\ " \leftarrow " & \text { if } s_{i, j}=s_{i, j-1} \\ " \ltimes ", & \text { if } s_{i, j}=s_{i-1, j-1}+1\end{cases}\)
9 return \(\left(s_{n, m}, \mathbf{b}\right)\)
8
```

```
\(\operatorname{PrintLCS}(\mathbf{b}, \mathbf{v}, i, j)\)
    if \(i=0\) or \(j=0\)
        return
    if \(b_{i, j}=" \nwarrow "\)
        PrintLCS(b, \(\mathbf{v}, i-1, j-1)\)
        print \(v_{1}\)
    else
        if \(b_{l, j}=" \uparrow "\)
            PRINTLCS(b, \(\mathbf{v}, i-1, j)\)
    else
                            \(\operatorname{PrinTLCS}(\mathbf{b}, \mathbf{v}, i, j-1)\)
```

The above recursive program prints out the longest common subsequence using the information stored in b. The initial invocation that prints the solution to the problem is PRINTLCS(b, v, n,m).

Alignment Graph

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}-\sigma \\
s_{i, j-1}-\sigma \\
s_{i-1, j-1}+1, \text { if } v_{i}=W_{j} \\
s_{i-1, j-1}-\mu, \text { if } v_{i} \neq W_{j}
\end{array}\right]
$$

All genomes are littered with repeats so alignment of large sequences is difficult

- Single nucleotide polymorphisms (SNPs)
- 1 every few hundred $b p$, mutation rate $* \approx 10^{-9}$
- Short indels (=insertion/deletion)
- 1 every few kb, mutation rate v . variable
- Microsatellite (STR) repeat number
- 1 every few kb, mutation rate $\leq 10^{-3}$
- Minisatellites
- 1 every few kb, mutation rate $\leq 10^{-1}$
- Repeated genes
- rRNA, histones
- Large deletions, duplications, inversions
- Rare, e.g. Y chromosome

TGCATTGCGTAGGC
TGCATTCCGTAGGC

TGCATT---TAGGC
TGCATTCCGTAGGC

TGCTCATCATCATCAGC TGCTCATCA------GC

increased difficulty with a puzzle with many repetitions

Figure : Type and frequency of mutations (replacements, insertions, deletions) in the human genome per generation; mutations change single DNA bases (SNP polymorphism) or rearrange DNA strings at different length scales. In sequence alignment we compare sequences that are different because of mutations.

Towards an algorithm to align biological sequences (note I am using a DIFFERENT NOTATION!)

Notice three possible cases:

1. x_{i} aligns to y_{j}
$x_{1} \ldots \ldots . x_{i-1} \quad x_{i}$
$y_{1} \ldots \ldots y_{j-1} \quad y_{j}$

2. x_{i} aligns to a gap

$$
\begin{aligned}
& x_{1} \ldots \ldots x_{\mathrm{i}-1} \\
& \mathrm{y}_{1} \ldots \ldots \mathrm{x}_{\mathrm{j}}
\end{aligned}
$$

$$
F(i, j)=F(i-1, j)-d
$$

3. y_{j} aligns to a gap

$$
x_{1} \ldots \ldots x_{i} \quad-
$$

$$
y_{1} \ldots \ldots y_{j-1} y_{j} \quad F(i, j)=F(i, j-1)-d
$$

Alignment

- How do we know which case is correct?

Inductive assumption:
$F(i, j-1), F(i-1, j), F(i-1, j-1) \quad$ are optimal

$F[i-1, j-1]$	$F[i, j-1]$
$F[i-1, j]$	$F[i, j]$

Then,

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right.
$$

Where

$$
F\left(x_{i}, y_{j}\right)=m, \text { if } x_{i}=y_{j} ; \quad-s, \text { if not }
$$

- The Global Alignment Problem tries to find the longest path between vertices $(0,0)$ and (n, m) in the edit graph.
- The Local Alignment Problem tries to find the longest path among paths
 between arbitrary vertices (i, j) and (i^{\prime}, $\left.j^{\prime}\right)$ in the edit graph.
- Global Alignment

- Local Alignment—better alignment to find highly conserved segments

local alignment to detect regulatory sites

Global Alignment

Global Alignment Problem: Find the highest-scoring alignment between two strings by using a scoring matrix.

- Input: Strings v and w as well as a matrix score.
- Output: An alignment of v and w whose alignment score (as defined by the scoring matrix score) is maximal among all possible alignments of v and w.

The Needleman-Wunsch Algorithm (Global alignment)

1. Initialization.
a. $F(0,0)=0$
b. $F(0, j) \quad=-j \times d$
c. $F(i, 0)=-i \times d$
2. Main Iteration. Filling-in partial alignments
d is a penalty
a. For each $i=1 \ldots . . . \mathrm{M}$

For each $\mathrm{j}=1 \ldots . . \mathrm{N}$

3. Termination. $F(M, N)$ is the optimal score, and from $\operatorname{Ptr}(M, N)$ can trace back optimal alignment

```
Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)
```


The Overlap Detection variant

Maybe it is OK to have an unlimited \# of gaps in the beginning and end:

Changes:

1. Initialization

For all i, j,
$F(i, 0)=0$
$F(0, j)=0$
2. Termination

$$
F_{\text {OPT }}=\max \left\{\begin{array}{l}
\max _{\mathrm{i}} F(\mathrm{i}, \mathrm{~N}) \\
\max _{\mathrm{j}} \mathrm{~F}(\mathrm{M}, \mathrm{j})
\end{array}\right.
$$

Can we use a similar algorithm to align entire genomes?

Mouse and Human Genetic Similarities

Courtesy Lisa Stubbs
Oak Ridge National Laboratory

Local Alignment= Global Alignment in a subrectangle

Local Alignment Problem

Local Alignment Problem: Find the highest-scoring local alignment between two strings.

- Input: Strings v and w as well as a matrix score.
- Output: Substrings of v and w whose global alignment (as defined by the matrix score), is maximal among all global alignments of all substrings of v and w.

The local alignment: Smith-Waterman algorithm
 T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol vol 147,195-197, 1981.

Idea: Ignore badly aligning regions: Modifications to
Needleman-Wunsch
e.g. $x=$ aaaacccccgggg
y = cccgggaaccaacc
Initialization: $F(0,0)=F(0, j)=F(i, 0)=0$

Iteration:

$$
F(i, j)=\max \left\{\begin{array}{l}
0 \\
F(i-1, j)-d \\
F(i, j-1)-d \\
F(i-1, j-1)+s\left(x_{i}, y_{j}\right)
\end{array}\right.
$$

Termination:

1. If we want the best local alignment...

$$
\mathrm{F}_{\mathrm{OPT}}=\max _{\mathrm{i}, \mathrm{j}} \mathrm{~F}(\mathrm{i}, \mathrm{j})
$$

2. If we want all local alignments scoring >t

For all i, j find $\mathrm{F}(\mathrm{i}, \mathrm{j})>\mathrm{t}$, and trace back

David Watermán

Which Alignment is Better?

- Alignment 1: score $=22$ (matches) -20 (indels) $=2$.

$$
\begin{aligned}
& \text { GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA- } \\
& \text { GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT }
\end{aligned}
$$

- Alignment 2: score = 17 (matches) -30 (indels)=-13.

Scoring Gaps

- We previously assigned a fixed penalty σ to each indel.
- However, this fixed penalty may be too severe for a series of 100 consecutive indels.
- A series of k indels often represents a single evolutionary event (gap) rather than k events:

two gaps	GATCCAG	GATCCAG	a single gap (lower score)
	GA-C-AG	GA--CAG	(higher score)
			or maybe 2 events

Mismatches and Indel Penalties

\#matches $-\mu \cdot$ \#mismatches $-\sigma \cdot$ \#indels

$$
\begin{gathered}
\text { A T - GTTATA } \\
\text { A T C G T }-\mathrm{C}-\mathrm{C} \\
+1+1-2+1+1-2-3-2-3=-7
\end{gathered}
$$

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-		\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-	
\mathbf{A}	+1	$-\mu$	$-\mu$	$-\mu$	$-\sigma$		\mathbf{A}	+1	-3	-5	-1	-3
\mathbf{C}	$-\mu$	+1	$-\mu$	$-\mu$	$-\sigma$		\mathbf{C}	-4	+1	-3	-2	-3
\mathbf{G}	$-\mu$	$-\mu$	+1	$-\mu$	$-\sigma$		\mathbf{G}	-9	-7	+1	-1	-3
\mathbf{T}	$-\mu$	$-\mu$	$-\mu$	+1	$-\sigma$		\mathbf{T}	-3	-5	-8	+1	-4
$\mathbf{-}$	$-\sigma$	$-\sigma$	$-\sigma$	$-\sigma$			-	-4	-2	-2	-1	

Scoring matrix
Even more general scoring matrix

How to compare amino acids: scoring matrices

example: $\mathrm{Y}(\mathrm{Tyr})$ often mutates into F (score +7) but rarely mutates into P (score595)

More Adequate Gap Penalties

Affine gap penalty for a gap of length $k: \sigma+\varepsilon \cdot(k-1)$
σ - the gap opening penalty
ε - the gap extension penalty
$\sigma>\varepsilon$, since starting a gap should be penalized more than extending it.

- Thinking on 3 levels

bottom level (insertions)

upper level (deletions)
middle level (matches/mismatches)

How can we emulate this path in the 3-level?

lower $_{i, j}=\max \left\{\begin{array}{l}\text { lower }_{\text {i-1,j }}-\varepsilon\end{array}\right.$

lower ${ }_{i, j}$
middle $_{i, j}=\max \left\{\right.$ middle $_{i-1, j-1}+\operatorname{score}\left(v_{j}, w_{j}\right)$
upper $_{i, j}$

- Modelling Affine Gap Penalties by Long Edges

double gap: 2 events

double gap: 1 event

Alignment with gaps

Current model: a gap of length n incurs penalty $n \times d$ Gaps usually occur in bunches so we use a convex gap penalty function:
$\gamma(\mathrm{n})$: for all $\mathrm{n}, \gamma(\mathrm{n}+1)-\gamma(\mathrm{n}) \leq \gamma(\mathrm{n})-\gamma(\mathrm{n}-1)$
$\gamma(\mathrm{n})$

Initialization: same

Iteration:

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
\max _{k=0 . . i-1-1} F(k, j)-\gamma(i-k) \\
\max _{k=0 . . . j-1} F(i, k)-\gamma(j-k)
\end{array}\right.
$$

Termination: same

Running Time: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{M}\right)$
(assume $\mathrm{N}>\mathrm{M}$)
Space: \quad O(NM)

A compromise: affine gaps

$$
\gamma(n)=d+(n-1) \times e \quad \mid
$$

$F(i, j)$:score of alignment $x_{1} \ldots x_{i}$ to $y_{1} \ldots y_{j}$ if $\quad x_{i}$ aligns to y_{j}
$G(i, j)$:score if x_{i}, or y_{j}, aligns to a gap
Initialization:

$$
F(i, 0)=d+(i-1) \times e ; \quad F(0, j)=d+(j-1) \times e
$$

Iteration:

$$
\begin{aligned}
& F(i, j)=\max \\
& G(i, j)=\max
\end{aligned}
$$

Termination: same

$$
\begin{aligned}
& \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
G(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right. \\
& \left\{\begin{array}{l}
G(i, j-1)-e \\
G(i-1, j)-e
\end{array}\right.
\end{aligned}
$$

Banded DP: a special case

Assume we know that x and y are very similar: If the optimal alignment of x and y has few gaps, then the path of the alignment will be close to the diagonal

Assumption: \# gaps(x, y) < k(N) (say N>M)

$$
\begin{aligned}
& x_{i} \\
& y_{j}
\end{aligned} \text { implies }|i-j|<k(N)
$$

Time, Space: $\mathrm{O}(\mathrm{N} \times \mathrm{k}(\mathrm{N})) \ll \mathrm{O}\left(\mathrm{N}^{2}\right)$

Banded Dynamic Programming

Initialization:

$F(i, 0), F(0, j)$ undefined for $\mathrm{i}, \mathrm{j}>\mathrm{k}$

Iteration:

```
For \(\mathrm{i}=1 . . . \mathrm{M}\)
    For \(\mathrm{j}=\max (1, \mathrm{i}-\mathrm{k}) \ldots \min (\mathrm{N}, \mathrm{i}+\mathrm{k})\)
```

 \(F(i, j)=\max \left\{\begin{array}{l}F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\ F(i, j-1)-d, \text { if } j>i-k(N) \\ F(i-1, j)-d, \text { if } j<i+k(N)\end{array}\right.\)
 Termination: same
Easy to extend to the affine gap case

Example global alignment

	0	A 1	C	G 3	C 4	T 5	G 6
0							
C 1							
A 2							
T 3							
G 4							
T 5							

	0	A 1	C	G 3	C 4	T 5	G 6
0	$0 \leftarrow-1 \leftarrow-2 \leftarrow-3 \leftarrow-4 \leftarrow-5 \leftarrow-6$						
C 1				ACGCTG			
A 2							
T 3							
G 4							
T 5							

	0	A 1	C	G 3	C 4	T 5	G 6
0		-1	-2	-3	-4	-5	-6
C 1	-1						
A 2	-2						
T 3	-3						
G 4	-4						
T 5	-5						

	0	A 1	C	G 3	C 4	T 5	G 6
0	0		-	-3	-4	-5	-6
C 1	-1	-1	1				
A 2	-2						
T 3	-3						
G 4	-4						
T 5	-5						

	0	A 1	C	G 3	C 4	T 5	G 6
0	0		-2	3	-4	-5	-6
C 1	-1	-1	1	0			
A 2	-1						
T 3	-						
G 4	-4						
T 5	$\stackrel{\text { - }}{\text { - }}$						

	0	A 1	C	G 3	C 4	T 5	G 6
0	$\begin{array}{c\|c\|ccc} \hline 0 \leftarrow-1 \leftarrow-2 \leftarrow-3 \leftarrow-4 \leftarrow & \text { ACGC } \\ -1 & -1 & 1 \leftarrow 0 & -1 & --C \end{array}$						
C 1							
A 2	-2			ACGC -C--			
	-						
T 3	-3						
G 4	-4						
	\uparrow						
T 5	-5						

	0	A 1	C	G	C	T 5	G 6
0	0	1	2	-3		-5	-6
C 1	-1	-1		0	-1	-2	-3
A 2	-2	1	0	0			
T 3	-3						
G 4	-4						
	-						
	-5						

$\begin{aligned} & \text { match=2 } \\ & \text { mismatch=-1 } \\ & \text { gap=-1 } \end{aligned}$	0	A 1	C	G 3	C 4	T 5	G
0						5	6
C 1	-1	-1	1	0	-1	-2	3
A 2	-2		0			-2	
T 3	-3		0		-1		0
G 4	-4		1				3
T 5	-5	-2	2	1	1	3	

	0	A 1	C	G 3	C 4	T 5	G 6
0			-2	-3	-4	-5	-6
C 1	-1	-1	1	0	-1	-2	-3
A 2	-2		0	0		-2	-3
T 3	-3	0	0	-1	-1		0
G 4	-4	-1	-1	2		0	3
T 5	-5	-2	-2	1	1		(2)

	0	A 1	C	G 3	C 4	T 5	G 6
0							
C 1	-1						
A 2		1_{k}			-1		
T 3			0				
G 4							3
T 5							

$\begin{aligned} & \text { matan }=2 \\ & \text { gism }=-2=1 \end{aligned}$	0	A 1	C 2	G 3	C 4	T 5	G 6
0					$\begin{aligned} & \text { ACGCTG- } \\ & \text {-C-ATGT } \end{aligned}$		
C 1	-1,		$1-0$				
A 2		1					
T 3			0				
G 4					1.		3
T 5						3.	2

$\begin{aligned} & \text { matan }=2 \\ & \text { gism }=-2=1 \end{aligned}$	0	A 1	C 2	G 3	C 4	T 5	G 6
0					$\begin{aligned} & \text { ACGCTG- } \\ & \text {-CA-TGT } \end{aligned}$		
C 1	-1.		1	0			
A 2		1		$0 \leftarrow-1$			
T 3			0			1	
G 4					1		3
T 5						3.	2

Example local alignment
match=1
mismatch=-1 gap $=-1$

$$
\begin{aligned}
& y=\text { TAATA } \\
& x=\text { TACTAA }
\end{aligned}
$$

X		A	T	C	T	A	A
Y	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
T 1	0						
A 2	0						
A 3	0						
T 4	0						
A 5	0						

Local Alignment Example

Local Alignment Example

Local Alignment Example

```
match=1
mismatch=-1
gap=-1
\[
\begin{aligned}
& y=---T A A T A \\
& x=T A C T A A--
\end{aligned}
\]
```


Computing Alignment Score with Linear

Memory

Alignment Score

- Space complexity of computing just the score itself is $O(n)$
- We only need the previous column to calculate the current column, and we can
 then throw away that previous column once we're done using it

Computing Prefix(i)

- prefix (i) is the length of the longest path from $(0,0)$ to $(i, m / 2)$
- Compute prefix(i) by dynamic programming in the left half of the matrix

Computing Suffix(i)

- suffix (i) is the length of the longest path from $(i, m / 2)$ to (n, m)
- suffix (i) is the length of the longest path from (n, m) to $(i, m / 2)$ with all edges reversed
- Compute suffix(i) by dynamic programming in the right half of the "reversed" matrix

store suffix(i) column

Length(i) $=\operatorname{Prefix}(i)+$ Suffix (i)

- Add prefix(i) and suffix(i) to compute length(i):
- length $(i)=$ prefix $(i)+\operatorname{suffix}(i)$
- You now have a middle vertex of the maximum path ($i, m / 2$) as maximum of length(i)

$$
0 \quad m / 2 \quad m
$$

middle point found

Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any given time

memory for column 1 is used to calculate column 3

memory for column 2 is used to calculate column 4

Crossing the Middle Line

We want to calculate the longest
 path from $(0,0)$ to (n, m) that passes through ($i, m / 2$) where i ranges from 0 to n and represents the i-th row

Define
length(i)
as the length of the longest path from $(0,0)$ to (n, m) that passes through vertex ($i, m / 2$)

Crossing the Middle Line

Define ($m i d, m / 2$) as the vertex where the longest path crosses the middle column.

$$
\text { length }(\text { mid })=\text { optimal length }=\max _{0 \leq i \leq n} \text { length }(i)
$$

Middle Column of the Alignment

Middle Node of the Alignment

(a node where an optimal alignment path crosses the middle column; note that different longest paths may have different middle nodes, and a given longest path may have more than one middle nodẹ़)

Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
find MiddleNode

Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
find MiddleNode
AlignmentPath(source, MiddleNode)

Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
find MiddleNode
AlignmentPath(source, MiddleNode) AlignmentPath(MiddleNode, sink)

The only problem left is how to find this middle node in linear space!

Computing Alignment Score in Linear Space

Finding the longest path in the alignment graph requires storing all backtracking pointers - $\mathrm{O}(\mathrm{nm})$ memory.

Finding the length of the longest path in the alignment graph does not require storing any backtracking pointers - O(n) memory.

Recycling the Columns in the Alignment Graph

Can We Find the Middle Node without Constructing the Longest Path?

4-path that visits the node
(4, middle)
In the middle column
i-path - a longest path among paths that visit the i-th node in the middle column

Can We Find The Lengths of All i-paths?

length(i):
length of an i path:
length(0)=2 length(4)=4

Can We Find The Lengths of All i-paths?

Can We Find The Lengths of i-paths?

length(i)=fromSource(i)+toSink(i)

Computing FromSource and toSink

Computing FROMSOURCE(i) for all i can be done in $O(n)$ space and $O(n \cdot m / 2)$ time. Computing TOSINK(i) for all i can also be done in $O(n)$ space and $O(n \cdot m / 2)$ time; this requires reversing the direction of all edges and treating the sink as the source. Instead of reversing the edges, we can reverse the strings $v=v_{1} \ldots v_{n}$ and $w=w_{1} \ldots w_{m}$ and find $s_{n-i, m-m i d d l e}$ in the alignment graph for $v_{n} \ldots v_{1}$ and $w_{m} \ldots w_{1}$.

How Much Time Did It Take to Find the Middle Node?

In total, we can compute all values LENGTH(i) $=$ FROMSOURCE $(\mathrm{i})+$ TOSINK(i) in linear space with runtime proportional to $\mathrm{n} \cdot \mathrm{m} / 2+\mathrm{n} \cdot \mathrm{m} / 2=\mathrm{n} \cdot \mathrm{m}$, which is the total area of the alignment graph.

Laughable Progress: $\mathrm{O}(\mathrm{nm})$ Time to Find ONE Node!

How much time would it take to conquer 2 subproblems?

Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

Each subproblem can be conquered in time
proportional to its area:
area/8+area/8+ area/8+area/8= area/4

How much time would it take to conquer 4 subproblems?
$\mathrm{O}(n m+n m / 2+n m / 4)$ Time to Find NEARLY ALL Nodes!

How much time would it take to conquer ALL subproblems?

The Middle Edge (just to save memory a little bit more)

Middle Edge: an edge in an optimal alignment path starting at the middle node

The Middle Edge Problem

Middle Edge in Linear Space Problem. Find a middle edge in the alignment graph in linear space.

- Input: Two strings and matrix score.
- Output: A middle edge in the alignment graph of these strings (as defined by the matrix score).

A middle edge (shown in bold) starts at the middle node (shown as a black circle). The optimal path travels inside the first highlighted rectangle, passes the middle edge, and travels inside the second highlighted rectangle afterwards.

We can eliminate the remaining parts of the alignment graph, which takes up over half of the area formed by the graph, from further consideration.

Finding middle edges (shown in bold) within previously identified rectangles.

Recursive LinearSpaceAlignment

```
LinearSpaceAlignment(top,bottom,left,right)
    if left = right
        return alignment formed by bottom-top edges "\downarrow"
    middle < L(left+right)/2」
    midNode < MiddleNode(top,bottom,left,right)
    midEdge \leftarrow MiddleEdge(top,bottom,left,right)
    LinearSpaceAlignment(top,midNode,left,middle)
    output midEdge
    if midEdge = " }->\mathrm{ " or midEdge = "\"
        middle < middle+1
    if midEdge = " }\downarrow\mathrm{ " or midEdge = "\"
        midNode < midNode+1
    LinearSpaceAlignment(midNode,bottom,middle,right)
```

A Linear-Space Sequence Alignment

A: space complexity
B: time complexity

Total Time: area+area/2+area/4+area/8+area/16+...

Can we compute the edit distance faster than $\mathrm{O}(\mathrm{nm})$?

- yes: The Four Russians Technique
- Arlazarov, V.; Dinic, E.; Kronrod, M.; Faradžev, I.
- The basic idea is to precompute parts of the computation involved in filling out the dynamic programming table.
- time $O\left(n^{\wedge} 2 / \operatorname{logn}\right)$
- Assume the block-function b(A, B, C, X[i+1 .. i+t], $Y[j+1$.. $j+t])$ has been precomputed for all possible inputs.
- Article in Russian, easier to look at Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. (1974), The design and analysis of computer algorithms, Addison-Wesley

NOT EXAMINABLE

Self Alignment

https://www.sciencedirect.com/science/article/pii/S0958166916301082\#fig0020

RNA Secondary Structure: The Nussinov Folding Algorithm Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop matchings, SIAM J. Appl. Math

$(((\ldots .)).) . . .(((\ldots .))).$.

Ruth Nussinov
dot-bracket representation for a pseudoknot free structure, as well as the extended pseudoknot representation for a structure containing a pseudoknot.

```
                                    free energy in kcal/mol
((((((((\ldots. (((,\ldots...)))))\ldots........((((\ldots..))))(((((\ldots.....))))))))))))). - 28.10
((((((()..((((......)))))...((((.(.......).))))((((((.......))))))))))))). -27.90
```



```
(((((((().((((\ldots....)))) ((((((((((\ldots. ((((\ldots...))))...))).)))))))....))))))))). -27.80
((((((()..((((......))))....((((...........))))((((((.......))))))))))))). -27.60
((((((((\ldots..(((\ldots....))))....(((..(.......)..)))(((((.......))))))))))))). - 27.50
(((((((((. ((((\ldots....))))).(((((((((..((((\ldots...))))..)))).)))).....))))))))). -27.20
((((((((. ((((.......)))).(((((((((..((((....))))...))).)))))).....))))))))). -27.20
((((((()(.((((\ldots....))))............((((\ldots..)))).((((.......))))))))))))). - 27. 20
(((((((\ldots. ((((\ldots....)))))\ldots........((((\ldots...))))((((((\ldots....)))))).))))))). -27.20
(((((((\ldots..(((\ldots..(((\ldots..(((.....)))..)))..)))...(((((.......))))))))))))). -27.10
```



```
(((((((().((((\ldots....)))) (((((((((\ldots...(((\ldots...))))...)).)))))))....))))))))). -27.00
((((((((. ((((......)))))...(((((.(.......).)))).((((.......))))))))))))). - 27.00
((((((((\ldots. (((, \ldots....)))).(((((((\ldots..).))))).\ldots..(((((\ldots.....))))))))))))). - 27.00
((((((((\ldots. ((((\ldots....)))))..........(((\ldots....)))(((((\ldots.....))))))))))))). - 27.00
((((((...((((......))))....((((.(.......).))))(((((.......)))))..)))))). - 27.00
```



```
((((((((. ((((.......))))....((((...........)))).((((.......))))))))))))). -26.70
```



```
(((((((\ldots. ((((\ldots....)))))....((((\ldots........))))((((((.......)))))).))))))). -26.70
```

usually the more the links the more the binding energy. Above: Ensemble of all possible structures for a given RNA sequence, with the corresponding binding energy. The potential energy is negative because you need to give energy to break the links (i.e. the structure), for example by heating.

RNA Secondary Structure

secondary structure=topology of local segments

- Secondary Structure :
- Set of paired positions on interval $[i, j]$
- This tells which bases are paired in the subsequence from x_{i} to x_{j}
- Every optimal structure can be built by extending optimal substructures.
- Suppose we know all optimal substructures of length less than $j-i+1$. The optimal substructure for $[i, j]$ must be formed in one of four ways:

1. i,j paired
2. i unpaired
3. j unpaired
4. combining two substructures

Note that each of these consists of extending or joining substructures of length less than $j-i+1$.

i,j pair

i unpaired

j unpaired

bifurcation

RNA Secondary Structure: The Nussinov Folding Algorithm Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop matchings, SIAM J. Appl. Math

Example: GGGAAAUCC

$\gamma(i, j)$ is the maximum number
of base pairs in segment $[i, j]$

$\gamma(\mathrm{i}, \mathrm{j})=$
$\max \left\{\begin{array}{c}\gamma(\mathrm{i}+1, \mathrm{j}) \\ \gamma(\mathrm{i}, \mathrm{j}-1) \\ \gamma(\mathrm{i}+1, \mathrm{j}-1)+\delta(\mathrm{i}, \mathrm{j}) \\ \max _{\mathrm{i}<\mathrm{k}<\mathrm{j}}[\gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})]\end{array}\right.$

Where $\mathrm{d}(i, j)=1$ if x_{i} and x_{j} are a complementary base pair, and $\mathrm{d}(i, j)=0$, otherwise.

๑	0								
\bigcirc	0	0							
\bigcirc		0	0						
>			0	0					
$>$				0	0				
>					0	0			
\subset						0	0		
\bigcirc							0	0	
\bigcirc								$0{ }^{122}$	0

Nussinov Folding Algorithm:

After scores for subsequences of length 2

$\gamma(\mathrm{i}, \mathrm{j})=$
$\max \left\{\begin{array}{c}\gamma(\mathrm{i}+1, \mathrm{j}) \\ \gamma(\mathrm{i}, \mathrm{j}-1) \\ \gamma(\mathrm{i}+1, \mathrm{j}-1)+\delta(\mathrm{i}, \mathrm{j}) \\ \max _{\mathrm{i}<\mathrm{k}<\mathrm{j}}[\gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})]\end{array}\right.$

	G G		G	A	A	A	U	C	C
Q	0	0							
\square	0	0	0						
\square		0	0	0					
\pm			0	0	0				
\pm				0	0	0			
\pm					0	0	1		
C						0	0	0	
\bigcirc							0	0	0
\bigcirc								0	0

Nussinov Folding Algorithm:

 After scores for subsequences of length 3

Nussinov Folding Algorithm:

 After scores for subsequences of length 4

Two optimal substructures for same subsequence

Nussinov Folding Algorithm:

After scores for subsequences of length 5

	G G				A	A			U	C	C
Q	0	0	0		0	0					
(0	0	0		0	0	0				
\bigcirc		0	0		0	0	0		1		
D			0		0	0	0		1	1	
$>$					0	0	0		1	1	1
>						0	0		1	1	1
\subset							0		0	0	0
\bigcirc									0	0	0
\bigcirc										0	0

Nussinov Folding Algorithm:

 After scores for subsequences of length 6$\gamma(\mathrm{i}, \mathrm{j})=$
$\max \left\{\begin{array}{c}\gamma(\mathrm{i}+1, \mathrm{j}) \\ \gamma(\mathrm{i}, \mathrm{j}-1) \\ \gamma(\mathrm{i}+1, \mathrm{j}-1)+\delta(\mathrm{i}, \mathrm{j}) \\ \max _{\mathrm{i}<\mathrm{k}<\mathrm{j}}[\gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})]\end{array}\right.$

	G G		G	A	A	A	U	C	C
๑	0	0	0	0	0	0			
\bigcirc	0	0	0	0	0	0	1		
\bigcirc		0	0	0	0	0	1	2	
D			0	0	0	0	1	1	1
$>$				0	0	0	1	1	1
>					0	0	1	1	1
\subset						0	0	0	0
\bigcirc							0	0	0
\bigcirc								0	0

Nussinov Folding Algorithm After scores for subsequences of length 7
$\gamma(\mathrm{i}, \mathrm{j})=$
$\max \left\{\begin{array}{c}\gamma(\mathrm{i}+1, \mathrm{j}) \\ \gamma(\mathrm{i}, \mathrm{j}-1) \\ \gamma(\mathrm{i}+1, \mathrm{j}-1)+\delta(\mathrm{i}, \mathrm{j}) \\ \max _{\mathrm{i}<\mathrm{k}<\mathrm{j}}[\gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})]\end{array}\right.$

	G G		G	A	A	A			C
(1)	0	0	0	0	0	0	1		
(1)	0	0	0	0	0	0	1	2	
(1)		0	0	0	0	0	1	2	2
D			0	0	0	0	1	1	1
D				0	0	0	1	1	1
D					0	0	1	1	1
C						0	0	0	0
\bigcirc							0	0	0
\bigcirc								0	0

Nussinov Folding Algorithm After scores for subsequences of length 8

	$G G$		G	A	A	A			
(1)	0	0	0	0	0	0	1	2	
(1)	0	0	0	0	0	0	1	2	3
()		0	0	0	0	0	1	2	2
D			0	0	0	0	1	1	1
>				0	0	0	1	1	1
∇					0	0	1	1	1
\subset						0	0	0	0
Q							0	0	0
\bigcirc								0	0

Nussinov Folding Algorithm After scores for subsequences of length 9

	G G		G	A	A	A	U	C	C
Q	0	0	0	0	0	0	1	2	3
(0	0	0	0	0	0	1	2	3
(0	0	0	0	0	1	$\underline{2}$	2
D			0	0	0	0	1	1	1
>				0	0	$\underline{0}$	1	1	1
>					0	0	1	1	1
\subset						0	0	0	0
\bigcirc							0	0	0
\bigcirc								0	0

Nussinov Folding Algorithm Traceback

Nussinov algorithm (a different example): fill-stage

G	G	C	C	A	G	U	U	C
1	2	3	4	5	6	7	8	9

0	0	1	2	2	2	3	4	4
0	0	1	1	1	2	2	3	3
	0	0	0	0	1	1	2	2
		0	0	0	1	1	2	2
			0	0	0	1	2	2
				0	0	1	1	1
					0	0	0	0
						0	0	0
							0	0

Algorithm: Nussinov RNA folding, fill stage

Initialisation:

$$
\begin{aligned}
\gamma(i, i-1)=0 & \text { for } i=2 \text { to } L ; \\
\gamma(i, i)=0 & \text { for } i=1 \text { to } L .
\end{aligned}
$$

Recursion: starting with all subsequences of length 2 , to length L :

$$
\gamma(i, j)=\max \left\{\begin{array}{l}
\gamma(i+1, j), \\
\gamma(i, j-1), \\
\gamma(i+1, j-1)+\delta(i, j), \\
\max _{i<k<j}[\gamma(i, k)+\gamma(k+1, j)] .
\end{array}\right.
$$

Scoring system:
$\delta(i, j)=1$ for all RNA Watson-Crick basepairs including G-U else $\delta(i, j)=0$.

Blue: addition of unpaired base 3 or 7

Green: addition of paired bases 1,7
Pink: joining of substructures $1 . .4$ and $5 . .8$

Nussinov algorithm: trace-back

G	G	C	C	A	G	U	U	C
1	2	3	4	5	6	7	8	9

| G | 1 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| G | 2 | | | | | | | | |
| C | 3 | | | | | | | | |
| C | 4 | | | | | | | | |
| A | 5 | | | | | | | | |
| G | 0 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | |
| 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
| | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | |
| | | 0 | 0 | 0 | 1 | 1 | 2 | 2 | |
| | | | 0 | 0 | 0 | 1 | 2 | 2 | |
| | | | | 0 | 0 | 1 | 1 | 1 | |
| | | | | | 0 | 0 | 0 | 0 | |
| | 7 | 8 | | | | | | | |
| | | | | | | 0 | 0 | 0 | |
| | 9 | | | | | | | | |
| | | | | | | | 0 | 0 | |

- pop (i, j).
- if $i>=j$ continue;
else if $\gamma(i+1, j)=\gamma(i, j)$ push $(i+1, j)$;
else if $\gamma(i, j-1)=\gamma(i, j)$ push $(i, j-1)$;
else if $\gamma(i+1, j-1)+\delta_{i, j}=\gamma(i, j)$:
- record i, j base pair.
- push $(i+1, j-1)$.
else for $k=i+1$ to $j-1$: if $\gamma(i, k)+\gamma(k+1, j)=\gamma(i, j)$:
- push $(k+1, j)$.
- push (i, k).
 - break.
a Recursive definition of the best score for a sub-sequence i, j looks at four possibilities:

1. i,j pair

2. i unpaired

3. junpaired

4. Bifurcation
b Dynamic programming algorithm for all sub-sequences i, j, from smallest to largest:

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases examined by the dynamic programming recursion. Red dots mark the bases being added onto previously calculated optimal sub-structures (i, j pair, unpaired i or unpaired j). Gray boxes are a reminder that the recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves. Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming algorithm in operation, showing the matrix $S(i, j)$ for a sequence GGGAAAUCC after initialization, after the recursive fill, and after an optimal structure with three base pairs has been traced back.

Initialisation $\gamma(\mathrm{i}, \mathrm{i}-1)=0 \& \gamma(\mathrm{i}, \mathrm{i})=0$
$\gamma(\mathrm{i}, \mathrm{j})=$
$\max \left\{\begin{array}{c}\gamma(\mathrm{i}+1, \mathrm{j}) \\ \gamma(\mathrm{i}, \mathrm{j}-1) \\ \gamma(\mathrm{i}+1, \mathrm{j}-1)+\delta(\mathrm{i}, \mathrm{j}) \\ \max _{\mathrm{i}<\mathrm{k}<\mathrm{j}}[\gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})]\end{array}\right.$
There are $\mathrm{O}\left(\mathrm{n}^{2}\right)$ terms to be computed, each requiring calling of $O(n)$ already computed terms for the case of bifurcation. Thus overall complexity is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ in time and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in space.

- Initialise:
- Sequence: GGGAAAUCC, length $(\mathrm{L})=9$.
- $N_{i, i-1}=0$ for $i=2-L$
- $N_{i, i}=0$ for $i=1-L$

	G	G	G	A	A	A	U	C	C
G	0								
G	0	0							
G		0	0						
A			0	0					
A				0	0				
A					0	0			
U						0	0		
C							0	0	
C								0	0

Summary

(note different notation!)

- Recursion:
- $\rho(i, j)=1$ if s_{i} and s_{j} are complementary, otherwise $\rho(i, j)=0$.

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G		0	0	0	0	0	1	2	2
A			0	0	0	0	1	1	1
A				0	0	0	1	1	1
A					0	0	1	1	1
U						0	0	0	0
C							0	0	0
C								0	0

$$
N_{i, j}=\max \begin{cases}N_{i+1, j-1}+\rho(i, j), & i, j \text { pair } \\ N_{i+1, j}, & i \text { unpaired } \\ N_{i, j-1,}, & j \text { unpaired } \\ \max _{i<k<j}\left[N_{i, k}+N_{k+1, j}\right] & \text { bifurcation }\end{cases}
$$

- Traceback:

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	$\mathbf{3}$
G	0	0	0	0	0	0	1	2	$\mathbf{3}$
G		0	0	0	0	0	1	$\mathbf{2}$	2
A			0	0	0	0	$\mathbf{1}$	1	1
A				0	0	$\mathbf{0}$	1	1	1
A					0	$\mathbf{0}$	1	1	1
U						0	0	0	0
C						0	0	0	
C							0	0	

$((A,(B, C)),(D, E))=$ The above phylogeny as nested parentheses

Did the Florida Dentist infect his pati
Phylogenetic tree of HIV sequences from the DENTIST, his Patients, \& Local HIV-infected People:

Phylogenetic tree applications

\longleftarrow Yes:
The HIV sequences from these patients fall within the clade of HIV sequences found in the dentist.

Local control 2
Local control 3
Patient $\mathrm{F} \longleftarrow \mathrm{No}$
Local control 9
Local control 35
Local control 3
Patient D \longleftarrow No

EXAMPLE: Phylogenetic-inspired techniques for reverse engineering and detection of malware families

For example, given an execution trace of instructions,

```
push ebp
```

mov ebp, esp
mov eax, dword ptr [ebp-0x4]
jmp +0x14
it is abstracted as a sequence of mnemonics, i.e. push, mov, mov, jmp
ignoring the operands. Each mnemonic is then mapped to a unique alphabet-pair, e.g. mov $=M O$, push $=P H$, jmp $=\mathrm{JM}$. The resulting sequence is thus PHMOMOJM.

dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHLMGADCMHLMGADCMHYMG IMMG IMADMGIMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGPPPPPPMGPPRE def PHMGPHMGMGADCMHLMGADCMHLMGADCMHYMGIMMGIMADMG IMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGMGPPRE
spd PHMGPHMGPHMGLECMHLLECMHLLECMHLMGMGIMIMMGPH IMLECMHZMGCMPPHZCMHZCMHZPPPPGRPPRE- \qquad
(b)
dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHTMGADCMHTMGADCMHYMGIMMGIMADMG---- IMCMHZZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGPPPPPPMGPPRE def PHMG--PH----------MGMGAD CMHT MGADCMHT MGAD CMHYMGIMMG MADMG----IMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMG------MGPPRE

(c)
dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHLMGADCMHTMGADCMHYMGTMMGIMADMGIMCMHZMGGRMGHMMGCMHZMG/RMZMGCMHYMGGRMMGPPPPPPMGPPRE
def -----------------
spd ---------------PHMGPHMGPHMGLECMHLLECMHILECMHLMGMGLIMMGPHIMLECCMH---------------ZMGCMPPHZCMHZCMHZPPPPGRPPRE-------
Sequence alignment (dbg: with debugging symbols, def: default settings, spd: optimised for speed). (a) Before alignment. (b) After alignment using an identity substitution matrix. (c) After alignment using a substitution matrix

Trees and Phylogeny Outline

- Transforming Distance Matrices into Evolutionary Trees
- Toward an Algorithm for Distance-Based Phylogeny Construction
- Additive Phylogeny
- Using Least-Squares to Construct Distance-Based Phylogenies
- Ultrametric Evolutionary Trees
- The Neighbor-Joining Algorithm
- Character-Based Tree Reconstruction
- The Small Parsimony Problem
- The Large Parsimony Problem
- Back to the alignment: progressive alignment

Constructing a Distance Matrix

$D_{i, j}=$ number of differing symbols between i-th and j-th rows of a "multiple alignment".

SPECIES	AlIGNMENT	DISTANCE MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

Constructing a Distance Matrix

$D_{i, j}=$ number of differing symbols between i-th and j-th rows of a "multiple alignment".

SPECIES	AlIGNMENT	DISTANCE MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

Constructing a Distance Matrix

$D_{i, j}=$ number of differing symbols between i-th and j-th rows of a multiple alignment.

SPECIES	AlIGNMENT	DISTANCE MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

How else could we form a distance matrix?

Tree: Connected graph containing no cycles.

Leaves (degree = 1): present-day species

Internal nodes
(degree ≥ 1):
ancestral species

Trees

Rooted tree: one node is designated as the recent common ancestor)

Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an evolutionary tree from a distance matrix.

- Input: A distance matrix.
- Output: The unrooted tree "fitting" this distance matrix.

Constructing a Distance Matrix

$D_{i, j}=$ number of differing symbols between i-th and j-th rows of a "multiple alignment".

SPECIES	AlIGNMENT	DISTANCE MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

Fitting a Tree to a Matrix

Chimp Human Seal Whale

Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

Return to Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an evolutionary tree from a distance matrix.

- Input: A distance matrix.
- Output: The unrooted tree fitting this distance matrix.

Now is this problem well-defined?

Return to Distance-Based Phylogeny

Exercise Break: Try fitting a tree to the following matrix.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	2
\boldsymbol{I}	3	5	2	0

No Tree Fits a Matrix

Exercise Break: Try fitting a tree to the following matrix.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	2
\boldsymbol{I}	3	5	2	0

Additive matrix: distance matrix such that there exists an unrooted tree fitting it.

More Than One Tree Fits a Matrix

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

More Than One Tree Fits a Matrix

Which Tree is "Better"?

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an additive matrix.

Reformulating Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an evolutionary tree from a distance matrix.

- Input: A distance matrix.
- Output: The simple tree fitting this distance matrix (if this matrix is additive).

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they share the same parent).

Theorem: Every simple tree with at least two nodes has at least one pair of neighboring leaves.

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

How do we compute the unknown distances?

Toward a Recursive Algorithm

Toward a Recursive Algorithm

$$
\begin{aligned}
& d_{i, j}=d_{i, m}+d_{j, m} \\
d_{k, m}= & {\left[\left(d_{i, m}+d_{k, m}\right)+\left(d_{j, m}+d_{k, m}+d_{k, m}\right)-\left(d_{i, m}+d_{j, m}\right)\right] / 2 } \\
d_{k, m}= & \left(d_{i, k}+d_{j, k}-d_{i, j}\right) / 2 \\
d_{k, m}= & \left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \\
\therefore d_{i, m}= & D_{i, k}-\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \\
d_{i, m}= & \left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2
\end{aligned}
$$

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Whale	6	7	0	2
$d_{i, m}=\left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2$				

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
$d_{i, m}=\left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2$	2	0		

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

$d_{\text {Seal, } m}=\left(D_{\text {Seal,Chimp }}+D_{\text {Seal,Whale }}-D_{\text {Whale,Chimp }}\right) / 2$

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0
Chimp				

An Idea for Distance-Based Phylogeny

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale	\boldsymbol{m}
Chimp	0	3	6	4	4
Human	3	0	7	5	5
Seal	6	7	0	2	2
Whale	4	5	2	0	0
\boldsymbol{m}	4	5	2	0	0
Chimp					

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale	\boldsymbol{m}
Chimp	0	3	6	4	4
Human	3	0	7	5	5
Seal	6	7	0	2	2
Whale	4	5	2	0	0
\boldsymbol{m}	4	5	2	0	0
Chimp					
Human					

An Idea for Distance-Based Phylogeny

	Chimp	Human	\boldsymbol{m}
Chimp	0	3	4
Human	3	0	5
\boldsymbol{m}	4	5	0

An Idea for Distance-Based Phylogeny

	Chimp	Human	\boldsymbol{m}
Chimp	0	3	4
Human	3	0	5
\boldsymbol{m}	4	5	0

An Idea for Distance-Based Phylogeny

An Idea for Distance-Based Phylogeny

An Idea for Distance-Based Phylogeny

	Chimp	Human	\boldsymbol{m}
Chimp	0	3	4
Human	3	0	5
\boldsymbol{m}	4	5	0

An Idea for Distance-Based Phylogeny

	Chimp	Human	\boldsymbol{m}
Chimp	0	3	4
Human	3	0	5
\boldsymbol{m}	4	5	0

An Idea for Distance-Based Phylogeny

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

An Idea for Distance-Based Phylogeny

Exercise Break: Apply this recursive approach to the distance matrix below.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	13	21	22
\boldsymbol{j}	13	0	12	13
\boldsymbol{k}	21	12	0	13
\boldsymbol{I}	22	13	13	0

What Was Wrong With Our Algorithm?

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	13	21	22
\boldsymbol{j}	13	0	12	13
\boldsymbol{k}	21	12	0	13
\boldsymbol{I}	22	13	13	0

What Was Wrong With Our Algorithm?

$$
\begin{array}{ccccc}
& \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} \\
\boldsymbol{i} & 0 & 13 & 21 & 22 \\
\boldsymbol{j} & 13 & 0 & 12 & 13 \\
\boldsymbol{k} & 21 & 12 & 0 & 13 \\
\boldsymbol{I} & 22 & 13 & 13 & 0
\end{array}
$$

What Was Wrong With Our Algorithm?

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	13	21	22
\boldsymbol{j}	13	0	12	13
\boldsymbol{k}	21	12	0	13
\boldsymbol{I}	22	13	13	0

What Was Wrong With Our Algorithm?

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	13	21	22
\boldsymbol{j}	13	0	12	13
\boldsymbol{k}	21	12	0	13
\boldsymbol{I}	22	13	13	0

From Neighbors to Limbs

Rather than trying to find neighbors, let's instead try to compute the length of limbs, the edges attached to leaves.

From Neighbors to Limbs

$$
\begin{aligned}
& d_{l, k}=d_{i, m}+d_{l, m}, d_{i, k}=d_{l, m}+d_{k, m}, \cdots \\
& d_{k, m}= \\
& \left.d_{k, m}=\left(d_{i, m}+d_{i, k}+d_{k, m}\right)+\left(d_{j, k}+d_{j, m}+d_{k, m}\right)-\left(d_{i, m}+d_{j, m}\right)\right] / 2 \\
& d_{k, m}=\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \\
& \therefore d_{i, m}=D_{i, k}-\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \\
& d_{i, m}=\left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2
\end{aligned}
$$

From Neighbors to Limbs

$$
\begin{aligned}
& \\
& d_{i, j}=d_{i, m}+d_{j, m} \\
& d_{k, m}=\left[\left(d_{i, m}+d_{k, m}\right)+\left(d_{j, m}+d_{k, m}\right)-\left(d_{i, m}+d_{j, m}\right)\right] / 2 \\
& d_{k, m}=\left(d_{i, k}+d_{j, k}-d_{i, j}\right) / 2 \\
& d_{k, m}=\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \\
& \therefore d_{i, m}=D_{i, k}-\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2 \quad \text { Assumes that } i \text { and } \\
& d_{i, m}=\left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2 \quad \quad j \text { are neighbors... }
\end{aligned}
$$

Computing Limb Lengths

Limb Length Theorem: LimbLength (i) is equal to the minimum value of $\left(D_{i, k}+D_{i, j}-D_{j, k}\right) / 2$ over all leaves j and k.

Limb Length Problem: Compute the length of a limb in the simple tree fitting an additive distance matrix.

- Input: An additive distance matrix D and an integer j.
- Output: The length of the limb connecting leaf j to its parent, LimbLength(j).

Code Challenge: Solve the Limb Length Problem.

Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is equal to the minimum value of $\left(D_{\text {chimp }, k}+D_{\text {chimp }, j}-D_{\mathrm{j}, \mathrm{k}}\right) / 2$ over all leaves j and k.

Chimp	Human	Seal	Whale
0	3	6	4
3	0	7	5
6	7	0	2
4	5	2	0

$\left(D_{\text {chimp, human }}+D_{\text {chimp, seal }}-D_{\text {human, seal }}\right) / 2=(3+6-7) / 2=1$

Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is equal to the minimum value of $\left(D_{\text {chimp, }, k}+D_{\text {chimp }, j}-D_{\mathrm{j}, \mathrm{k}}\right) / 2$ over all leaves j and k.

Chimp	Human	Seal	Whale
0	3	6	4
3	0	7	5
6	7	0	2
4	5	2	0

$$
\begin{array}{ll}
\left(D_{\text {chimp, human }}+D_{\text {chimp, seal }}-D_{\text {human, seal }}\right) / 2 & =(3+6-7) / 2=1 \\
\left(D_{\text {chimp, human }}+D_{\text {chimp, whale }}-D_{\text {human, whale }}\right) / 2=(3+4-5) / 2=1
\end{array}
$$

Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is equal to the minimum value of $\left(D_{\text {chimp, }, k}+D_{\text {chimp }, j}-D_{\mathrm{j}, \mathrm{k}}\right) / 2$ over all leaves j and k.

Chimp	Human	Seal	Whale
0	3	6	4
3	0	7	5
6	7	0	2
4	5	2	0

$$
\begin{array}{ll}
\left(D_{\text {chimp, human }}+D_{\text {chimp, seal }}-D_{\text {human, seal }}\right) / 2 & =(3+6-7) / 2=1 \\
\left(D_{\text {chimp, human }}+D_{\text {chimp, whale }}-D_{\text {human, whale }}\right) / 2=(3+4-5) / 2=1 \\
\left(D_{\text {chimp, whale }}+D_{\text {chimp, seal }}-D_{\text {whale, seal }}\right) / 2 & =(6+4-2) / 2=4
\end{array}
$$

Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is equal to the minimum value of $\left(D_{\text {chimp }, k}+D_{\text {chimp }, j}-D_{\mathrm{j}, \mathrm{k}}\right) / 2$ over all leaves j and k.

Chimp	Human	Seal	Whale
0	3	6	4
3	0	7	5
6	7	0	2
4	5	2	0

$\left(D_{\text {human, chimp }}+D_{\text {chimp, seal }}-D_{\text {human, seal }}\right) / 2=(3+6-7) / 2=1$
$\left(D_{\text {human, chimp }}+D_{\text {chimp, whale }}-D_{\text {human, whale }}\right) / 2=(3+4-5) / 2=1$
$\left(D_{\text {whale, chimp }}+D_{\text {chimp, seal }}-D_{\text {whale, seal }}\right) / 2=(6+4-2) / 2=4$

Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is equal to the minimum value of $\left(D_{\text {chimp, }, k}+D_{\text {chimp }, j}-D_{\mathrm{j}, \mathrm{k}}\right) / 2$ over all leaves j and k.

AdditivePhylogeny In Action

$$
\begin{array}{cccccc}
& & \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{I} \\
\mathbf{i} & 0 & 13 & 21 & 22 \\
\boldsymbol{j} & 13 & 0 & 12 & 13 \\
\boldsymbol{k} & 21 & 12 & 0 & 13 \\
\boldsymbol{I} & 22 & 13 & 13 & 0
\end{array}
$$

AdditivePhylogeny In Action

$$
\begin{array}{cccccc}
& & \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{I} \\
\mathbf{i} & 0 & 13 & 21 & 22 \\
\boldsymbol{j} & 13 & 0 & 12 & 13 \\
\boldsymbol{k} & 21 & 12 & 0 & 13 \\
\boldsymbol{I} & 22 & 13 & 13 & 0
\end{array}
$$

1. Pick an arbitrary leaf j.

AdditivePhylogeny In Action

$$
\begin{aligned}
& i \quad j \quad k \quad l \\
& \begin{array}{lllll}
\boldsymbol{i} & 0 & 13 & 21 & 22
\end{array} \\
& \begin{array}{cccccc}
D & \boldsymbol{j} & 13 & 0 & 12 & 13 \\
& \boldsymbol{k} & 21 & 12 & 0 & 13
\end{array} \\
& \begin{array}{lllll}
\text { I } & 22 & 13 & 13 & 0
\end{array} \\
& \text { LimbLength }(j)=2
\end{aligned}
$$

2. Compute its limb length, LimbLength(j).

AdditivePhylogeny In Action

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
	\boldsymbol{i}	0	11	21	22
Dbald	\boldsymbol{j}	11	0	10	11
	\boldsymbol{k}	21	10	0	13
	\boldsymbol{I}	22	11	13	0

3. Subtract LimbLength(j) from each row and column to produce $D^{\text {bald }}$ in which j is a bald limb (length 0).

AdditivePhylogeny In Action

		\boldsymbol{i}	j	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	11	21	22	
$D^{\text {trim }}$	j	11	0	10	11
\boldsymbol{k}	21	10	0	13	
	\boldsymbol{I}	22	11	13	0

4. Remove the j-th row and column of the matrix to form the $(n-1) \times(n-1)$ matrix $D^{\text {trim. }}$.

AdditivePhylogeny In Action

5. Construct Tree($\left.D^{\text {trim }}\right)$.

AdditivePhylogeny In Action

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
	\boldsymbol{i}	0	11	21	22
Dbald	\boldsymbol{j}	11	0	10	11
	\boldsymbol{k}	21	10	0	13
	\boldsymbol{I}	22	11	13	0

6. Identify the point in $\operatorname{Tree}\left(D^{\text {trim }}\right)$ where leaf j should be attached.

AdditivePhylogeny In Action

$$
\begin{aligned}
& i \quad j \quad k \quad l \\
& \begin{array}{lllll}
i & 0 & 13 & 21 & 22
\end{array} \\
& \begin{array}{cccccc}
D & \boldsymbol{j} & 13 & 0 & 12 & 13 \\
& \boldsymbol{k} & 21 & 12 & 0 & 13
\end{array} \\
& \begin{array}{lllll}
\text { I } & 22 & 13 & 13 & 0
\end{array} \\
& \operatorname{LimbLength}(j)=2
\end{aligned}
$$

7. Attach j by an edge of length LimbLength(j) in order to form Tree (D).

AdditivePhylogeny

AdditivePhylogeny (D):

1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to produce $D^{\text {bald }}$ in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to form the $(n-1) \times(n-1)$ matrix $D^{\text {trim. }}$.
5. Construct Tree ($\left.D^{\text {trim }}\right)$.
6. Identify the point in $\operatorname{Tree}\left(D^{\text {trim }}\right)$ where leaf j should be attached.
7. Attach j by an edge of length LimbLength(j) in order to form $\operatorname{Tree}(D)$.

AdditivePhylogeny

AdditivePhylogeny (D):

1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to produce $D^{\text {bald }}$ in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to form the $(n-1) \times(n-1)$ matrix $D^{\text {trim. }}$.
5. Construct Tree ($\left.D^{\text {trim }}\right)$.
6. Identify the point in $\operatorname{Tree}\left(D^{\text {trim }}\right)$ where leaf \boldsymbol{j} should be attached.
7. Attach j by an edge of length LimbLength(j) in order to form $\operatorname{Tree}(D)$.

Attaching a Limb

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
	\boldsymbol{i}	0	11	21	22
Dbald	\boldsymbol{j}	11	0	10	11
	\boldsymbol{k}	21	10	0	13
	\boldsymbol{I}	22	11	13	0

Limb Length Theorem: the length of the limb of j is equal to the minimum value of ($D^{\text {bald }}{ }_{i, j}+D^{\text {bald }}{ }_{j, k}-$ $\left.D^{\text {bald }}{ }_{i, k}\right) / 2$ over all leaves i and k.

Attaching a Limb

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
	\boldsymbol{i}	0	11	21	22
Dbald	\boldsymbol{j}	11	0	10	11
	\boldsymbol{k}	21	10	0	13
	\boldsymbol{I}	22	11	13	0

Limb Length Theorem: the length of the limb of j is equal to the minimum value of ($D_{i, j}^{\text {bald }}+D_{j, k}^{\text {bald }}-$ $\left.D^{\text {bald }}{ }_{i, k}\right) / 2$ over all leaves i and k.

$$
\left(D_{i, j}^{\text {bald }}+D^{\text {bald }}{ }_{j, k}-D^{\text {bald }},\right) / 2=\mathbf{0}
$$

Attaching a Limb

$$
\begin{aligned}
& \left(D^{\text {bald }_{i, j}}+D^{\text {bald }}{ }_{j, k}-D^{\text {bald }}{ }_{i, k}\right) / 2=\mathbf{0} \\
& D^{\text {bald }}{ }_{i, j}+D_{j, k}^{\text {bald }}=D^{\text {bald }}{ }_{i, k}
\end{aligned}
$$

Attaching a Limb

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
	\boldsymbol{i}	0	11	21	22
Dbald	\boldsymbol{j}	11	0	10	11
	\boldsymbol{k}	21	10	0	13
	\boldsymbol{I}	22	11	13	0

The attachment point for j is found on the path between leaves i and k at distance $D^{\text {bald }}$ from i.

$$
D^{\text {bald }}{ }_{i, j}+D^{\text {bald }}{ }_{j, k}=D_{i, k}^{\text {bald }^{2}}
$$

AdditivePhylogeny

AdditivePhylogeny(D):

1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to produce $D^{\text {bald }}$ in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to form the $(n-1) \times(n-1)$ matrix $D^{\text {trim. }}$.
5. Construct Tree ($\left.D^{\text {trim }}\right)$.
6. Identify the point in $\operatorname{Tree}\left(D^{\text {trim }}\right)$ where leaf j should be attached.
7. Attach j by an edge of length LimbLength(j) in order to form $\operatorname{Tree}(D)$.

Sum of Squared Errors

$$
\begin{aligned}
\operatorname{Discrepancy}(T, D) & =\Sigma_{1 \leq i<j \leq n}\left(d_{i, j}(T)-D_{i, j}\right)^{2} \\
& =1^{2}+1^{2}=2
\end{aligned}
$$

Sum of Squared Errors

Exercise Break: Assign lengths to edges in T in order to minimize $\operatorname{Discrepancy}(T, D)$.

Least-Squares Phylogeny

Least-Squares Distance-Based Phylogeny Problem:

Given a distance matrix, find the tree that minimizes the sum of squared errors.

- Input: An $n \times n$ distance matrix D.
- Output: A weighted tree T with n leaves minimizing $\operatorname{Discrepancy}(T, D)$ over all weighted trees with n leaves.

Unfortunately, this problem is NP-Complete...

Ultrametric Trees

Rooted binary tree: an

 unrooted binary tree with a root (of degree 2) on one of its edges.
edge weights: correspond to difference in ages on the nodes the edge connects.
Ultrametric tree: distance from root to any leaf is the speme (i.e., age of root).

Ultrametric Trees

UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each containing a single leaf.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	2
\boldsymbol{I}	3	5	2	0

UPGMA: A Clustering Heuristic

2. Find the two closest clusters C_{1} and C_{2} according to the average distance

$$
D_{\text {avg }}\left(C_{1}, C_{2}\right)=\sum_{i \text { in } C 1, j \text { in } C 2} D_{i, j} /\left|C_{1}\right| \bullet\left|C_{2}\right|
$$

where $|C|$ denotes the number of elements in C.

$$
\begin{array}{ccccc}
& \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} \\
\boldsymbol{i} & 0 & 3 & 4 & 3 \\
\boldsymbol{j} & 3 & 0 & 4 & 5 \\
\boldsymbol{k} & 4 & 4 & 0 & \mathbf{2} \\
\boldsymbol{I} & 3 & 5 & \mathbf{2} & 0
\end{array}
$$

UPGMA: A Clustering Heuristic

3. Merge C_{1} and C_{2} into a single cluster C.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	$\mathbf{2}$
\boldsymbol{I}	3	5	$\mathbf{2}$	0

UPGMA: A Clustering Heuristic

4. Form a new node for C and connect to C_{1} and C_{2} by an edge. Set age of C as $D_{\text {avg }}\left(C_{1}, C_{2}\right) / 2$.

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	$\mathbf{2}$
\boldsymbol{I}	3	5	$\mathbf{2}$	0

(i) 0 i 0

UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the average distance between each pair of clusters.

	\boldsymbol{i}	\boldsymbol{j}	$\{\boldsymbol{k}, \boldsymbol{I}\}$
\boldsymbol{i}	0	3	3.5
\boldsymbol{j}	3	0	4.5
$\{\boldsymbol{k}, \boldsymbol{I}\}$	3.5	4.5	0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

	$\{i, j\}$	$\{k, I\}$
$\{i, j\}$	0	4
$\{k, I\}$	4	0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

UPGMA(D):

1. Form a cluster for each present-day species, each containing a single leaf.
2. Find the two closest clusters C_{1} and C_{2} according to the average distance

$$
D_{\text {avg }}\left(C_{1}, C_{2}\right)=\Sigma_{i \text { in } C 1, j \text { in } C 2} D_{i, j} /\left|C_{1}\right| \bullet\left|C_{2}\right|
$$

where $|C|$ denotes the number of elements in C
3. Merge C_{1} and C_{2} into a single cluster C.
4. Form a new node for C and connect to C_{1} and C_{2} by an edge. Set age of C as $D_{\text {avg }}\left(C_{1}, C_{2}\right) / 2$.
5. Update the distance matrix by computing the average distance between each pair of clusters.
6. Iterate steps 2-5 until a single cluster contains all species.

UPGMA Doesn't "Fit" a Tree to a Matrix

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	2
\boldsymbol{I}	3	5	2	0

UPGMA Doesn't "Fit" a Tree to a Matrix

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{i}	0	3	4	3
\boldsymbol{j}	3	0	4	5
\boldsymbol{k}	4	4	0	2
\boldsymbol{I}	3	5	2	0

In Summary...

- AdditivePhylogeny:
- good: produces the tree fitting an additive matrix
- bad: fails completely on a non-additive matrix
- UPGMA:
- good: produces a tree for any matrix
- bad: tree doesn't necessarily fit an additive matrix
- ?????:
- good: produces the tree fitting an additive matrix
- good: provides heuristic for a non-additive matrix

Neighbor-Joining Theorem

Given an $n \times n$ distance matrix D, its neighbor-joining matrix is the matrix D^{*} defined as
$D^{*}{ }_{i, j}=(n-2) \cdot D_{i, j}-$ TotalDistance $_{D}(i)-$ TotalDistance $_{D}(j)$ where TotalDistance ${ }_{D}(i)$ is the sum of distances from i to all other leaves.

		i	j	k	I	TotalDistance ${ }_{D}$			i	j	k	I
	i	0	13	21	22	56		i	0	-68	-60	-60
D	j	13	0	12	13	38	D*	j	-68	0	-60	-60
	k	21	12	0	13	46		k	-60	-60	0	-68
	I	22	13	13	0	48		I	-60	-60	-68	0

Neighbor-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then the smallest element of D^{*} corresponds to neighboring leaves in $\operatorname{Tree}(D)$.

		i	j	k	I	TotalDistance ${ }_{\text {D }}$			i	j	k	I
	i	0	13	21	22	56		i	0	-68	-60	-60
D	j	13	0	12	13	38	D*	j	-68	0	-60	-60
	k	21	12	0	13	46		k	-60	-60	0	-68
	I	22	13	13	0	48		I	-60	-60	-68	0

Neighbor-Joining in Action

		\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}	TotalDistance $_{\boldsymbol{D}}$
	\boldsymbol{i}	0	-68	-60	-60	56
D *	\boldsymbol{j}	-68	0	-60	-60	38
	\boldsymbol{k}	-60	-60	0	-68	46
	\boldsymbol{I}	-60	-60	-68	0	48

1. Construct neighbor-joining matrix D^{*} from D.

Neighbor-Joining in Action

\[

\]

2. Find a minimum element $D^{*}{ }_{i, j}$ of D^{*}.

Neighbor-Joining in Action

\[

\]

2. Find a minimum element $D^{*}{ }_{i, j}$ of D^{*}.

Neighbor-Joining in Action

$$
\begin{array}{rccccccc}
& & \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} & \boldsymbol{l} & \text { TotalDistance }_{D} & \\
& \boldsymbol{i} & 0 & -68 & -60 & -60 & 56 \\
D^{*} & \boldsymbol{j} & -68 & 0 & -60 & -60 & 38 & \boldsymbol{\Delta}_{i, j}=(56-38) /(4-2) \\
& \boldsymbol{k} & -60 & -60 & 0 & -68 & 46 & \\
& \boldsymbol{l} & -60 & -60 & -68 & 0 & 48 &
\end{array}
$$

3. Compute $\Delta_{i, j}=\left(\right.$ TotalDistance $_{D}(i)-$ TotalDistance $\left.{ }_{D}(j)\right) /(n-2)$.

Neighbor-Joining in Action

4. Set LimbLength(i) equal to $1 / 2\left(D_{i, j}+\Delta_{i, j}\right)$ and LimbLength(j) equal to $1 / 2\left(D_{i, j}-\Delta_{j, i}\right)$.

Neighbor-Joining in Action

		\boldsymbol{m}	\boldsymbol{k}	\boldsymbol{I}	TotalDistance $_{\boldsymbol{D}}$
D^{\prime}	\boldsymbol{m}	0	10	11	21
	\boldsymbol{k}	10	0	13	23
	\boldsymbol{I}	11	13	0	24

5. Form a matrix D^{\prime} by removing i-th and j-th row/ column from D and adding an m-th row/column such that for any $k, D_{k, m}=\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2$.

Flashback: Computation of $\boldsymbol{d}_{k, m}$

$$
\begin{aligned}
& d_{k, m}=\left[\left(d_{i, m}+d_{k, m}\right)+\left(d_{j, m}+d_{k, m}\right)-\left(d_{i, m}+d_{j, m}\right)\right] / 2 \\
& d_{k, m}=\left(d_{i, k}+d_{j, k}-d_{i, j}\right) / 2 \\
& d_{k, m}=\left(D_{i, k}+D_{j, k}-D_{i, j}\right) / 2
\end{aligned}
$$

Neighbor-Joining in Action

6. Apply NeighborJoining to D^{\prime} to obtain $\operatorname{Tree}\left(D^{\prime}\right)$.

Neighbor-Joining in Action

LimbLength $(i)=1 / 2(13+9)=11$
LimbLength $(i)=1 / 2(13-9)=2$
7. Reattach limbs of i and j to obtain $\operatorname{Tree}(D)$.

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain $\operatorname{Tree}(D)$.

Neighbor-Joining

NeighborJoining(D):

1. Construct neighbor-joining matrix D^{*} from D.
2. Find a minimum element $D^{*}{ }_{i, j}$ of D^{*}.
3. Compute $\Delta_{i, j}=\left(\right.$ TotalDistance $_{D}(i)-$ TotalDistance $\left._{D}(j)\right) /(n$ - 2).
4. Set LimbLength(i) equal to $1 / 2\left(D_{i, j}+\Delta_{i, j}\right)$ and LimbLength (j) equal to $1 / 2\left(D_{i, j}-\Delta_{j, j}\right)$.
5. Form a matrix D^{\prime} by removing i-th and j-th row/column from D and adding an m-th row/column such that for any $k, D_{k, m}=\left(D_{k, i}+D_{k, j}-D_{i, j}\right) / 2$.
6. Apply NeighborJoining to D^{\prime} to obtain $\operatorname{Tree}\left(D^{\prime}\right)$.
7. Reattach limbs of i and j to obtain $\operatorname{Tree}(D)$.

Neighbor-Joining

Exercise Break, check the following: Neighbor joining on a set of r taxa requires r-3 iterations. At each step one has to build and search a D^{*} matrix. Initially the D^{*} matrix is size r^{2}, then the next step it is $(r-1)^{2}$, etc. This leads to a time complexity of $\mathrm{O}\left(\mathrm{r}^{3}\right)$.

Neighbor-Joining

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive matrix. How does the result compare with the tree produced by UPGMA?

Example (different notation)

Distance matrix

	A	B	C	D	E
	5				
B	5				
C	4	7			
D	7	10	7		
E	6	9	6	5	
F	8	11	8	9	8

Step 1

S calculations
$S_{x}=\left(\right.$ sum all $\left.D_{x}\right) /(N-2)$, where N is the \# of
OTUs in the set

Step 2

Calculate pair with smallest (\mathcal{M}), where $M_{i j}=D_{i j}-S_{i}-S_{j}$.
$S_{\mathrm{A}}=(5+4+7+6+8) / 4=7.5$
$S_{\mathrm{B}}=(5+7+10+9+11) / 4=10.5$
$S_{\mathrm{C}}=(4+7+7+6+8) / 4=8$
$S_{\mathrm{D}}=(7+10+7+5+9) / 4=9.5$
$S_{\mathrm{E}}=(6+9+6+5+8) / 4=8.5$
$S_{\mathrm{F}}=(8+11+8+9+8) / 4=11$
$M_{A B}=5-7.5-10.5=-13$
$M_{\mathrm{DE}}=5-9.5-8.5=-13$

Choose one of these ($A B$ here).

Step 3

Create a node (U) that joins pair with lowest
$M_{i j}$ such that
$S_{i U}=D_{i j} / 2+\left(S_{i}-S_{j}\right) / 2$.
U_{1} joins A and B :
$S_{A U_{1}}=D_{A B} / 2+\left(S_{A}-S_{B}\right) / 2=1$ $S_{B U_{1}}=D_{A 3} / 2+\left(S_{B}-S_{A}\right) / 2=4$
$S_{\mathrm{U}_{1}}=(3+6+5+7) / 3=7$ $S_{C}=(3+7+6=8) / 3=8$ $S_{\mathrm{D}}=(6+7+5+9) / 3=9$
$S_{\mathrm{U}_{1}}=(3+3+7) / 2=6.5$
$S_{\mathrm{C}}=(3+4+8) / 2=7.5$
$S_{\mathrm{U}_{2}}=(3+4+6) / 2=6.5$
$S_{\mathrm{F}}=(7+8+6) / 2=10.5$

5
$-2=0$ we cannot do this
calculation.
$S_{\mathrm{E}}=(5+6+5+8) / 3=8$
$S_{\mathrm{F}}=(7+8+9+8) / 3=10.6$

Smallest is
$M_{C U_{1}}=3-7-8=-12$
$M_{\mathrm{OE}}=5-9-8=-12$
Choose one of these (DE here).
Smallest is
$M_{\mathrm{CU}_{1}}=3-6.5-7.5=-11$
Smallest is
$M_{\mathrm{IFF}_{2}}=6-8-12=-14$
$M_{U_{3} F}=6-8-12=-14$
$M_{U_{2} \mathrm{U}_{3}}=2-8-8=-14$
Choose one of these ($\mathrm{M}_{\mathrm{U}_{2} \mathrm{U}_{3}}$ here).
U_{2} joins D and E :
U_{3} joins C and U_{1} :
U_{4} joins U_{2} and U_{3} :
For last pair, connect
$S_{\mathrm{DU}_{2}}=D_{\mathrm{DI}} / 2+\left(S_{\mathrm{D}}-S_{\mathrm{E}}\right) 2=3 \quad S_{\mathrm{CU}_{3}}=D_{\mathrm{CU}_{1} / 2+\left(S_{\mathrm{C}}-S_{\mathrm{U}_{1}} / 2=2\right.} \quad S_{\mathrm{U}_{2} \mathrm{U}_{4}}=D_{\mathrm{U}_{2} \mathrm{U}_{3} / 2+\left(S_{\mathrm{U} 2}-S_{\mathrm{U} 3}\right) / 2=1} \quad U_{4}$ and F with branch $S_{\mathrm{EU}_{2}}=D_{\mathrm{De}} / 2+\left(S_{E}-S_{\mathrm{D}}\right) / 2=2 \quad S_{\mathrm{U}_{1} \mathrm{U}_{3}}=D_{\mathrm{CU}_{1}} / 2+\left(S_{\mathrm{U} 1}-S_{\mathrm{C}} / / 2=1 \quad S_{\mathrm{U}_{3} \mathrm{U}_{4}}=D_{\mathrm{U}_{2} \mathrm{U}_{3} / 2}+\left(S_{\mathrm{U}_{3}}-S_{\mathrm{U} 2}\right) / 2=1 . \quad\right.$ length $=5$.

Step 4

Join i and j according to S above and make all other taxa in form of a star. Branches in black are of unknown length. Branches in red are of known length.

Step 5

Calculate new distance matrix of all other taxa to U with
$D_{x \cup}=D_{i x}+D_{j x}-D_{i j}$, where i and j are those selected from above.

Comments

Note this is the same tree we started with (drawn in unrooted form here).

Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree reconstruction say nothing about ancestral states at internal nodes.

We lost information when we converted a multiple alignment to a distance matrix...

SPECIES	AlIGNMENT	DISTANCE MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

An Alignment As a Character Table

Toward a Computational Problem

Toward a Computational Problem

Toward a Computational Problem

Toward a Computational Problem

Parsimony score: sum of Hamming distances along each edge.

Toward a Computational Problem

Parsimony score: sum of Hamming distances along each edge.

Parsimony Score: 8

Toward a Computational Problem

Small Parsimony Problem: Find the most parsimonious labeling of the internal nodes of a rooted tree.

- Input: A rooted binary tree with each leaf labeled by a string of length m.
- Output: A labeling of all other nodes of the tree by strings of length m that minimizes the tree's parsimony score.

Toward a Computational Problem

Small Parsimony Problem: Find the most parsimonious labeling of the internal nodes of a rooted tree.

- Input: A rooted binary tree with each leaf labeled by a string of length m.
- Output: A labeling of all other nodes of the tree by strings of length m that minimizes the tree's parsimony score.

Is there any way we can simplify this problem statement?

Toward a Computational Problem

Small Parsimony Problem: Find the most parsimonious labeling of the internal nodes of a rooted tree.

- Input: A rooted binary tree with each leaf labeled by a single symbol.
- Output: A labeling of all other nodes of the tree by single symbols that minimizes the tree's parsimony score.

Toward a Computational Problem

A Dynamic Programming Algorithm

Let T_{v} denote the subtree of T whose root is v.

Define $s_{k}(v)$ as the minimum parsimony score of T_{v} over all labelings of T_{v}, assuming that v is labeled by k.

The minimum parsimony score for the tree is equal to the minimum value of $s_{k}(r o o t)$ over all symbols k.

A Dynamic Programming Algorithm

For symbols i and j, define

- $\delta_{i, j}=0$ if $i=j$
- $\delta_{i, j}=1$ otherwise.

Exercise Break: Prove the following recurrence relation:
$s_{k}(v)=\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Daughter}(v))+\delta_{i, k}\right\}+\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Son}(v))+\delta_{j, k}\right\}$

A Dynamic Programming Algorithm

$s_{k}(v)=\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Daughter}(v))+\delta_{i, k}\right\}+\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Son}(v))+\delta_{j, k}\right\}$

A Dynamic Programming Algorithm

$s_{k}(v)=\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Daughter}(v))+\delta_{i, k}\right\}+\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Son}(v))+\delta_{j, k}\right\}$

A Dynamic Programming Algorithm

$s_{k}(v)=\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Daughter}(v))+\delta_{i, k}\right\}+\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Son}(v))+\delta_{j, k}\right\}$

A Dynamic Programming Algorithm

$s_{k}(v)=\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Daughter}(v))+\delta_{i, k}\right\}+\min _{\text {all symbols } i}\left\{s_{i}(\operatorname{Son}(v))+\delta_{j, k}\right\}$

A Dynamic Programming Algorithm

Exercise Break: "Backtrack" to fill in the remaining nodes of the tree.

A Dynamic Programming Algorithm

Solve the Small Parsimony
Problem.

Parsimony

> Exercise Break, check the following: Complexity: if we want to calculate the overall length (cost) of a tree with m species, n characters, and k states, the Parsimony algorithm is of complexity $\mathrm{O}\left(\mathrm{mnk}^{2}\right)$.

Parsimony

Exercise Break, check the following: Complexity: if we want to calculate the overall length (cost) of a tree with m species, n characters, and k states, the Parsimony algorithm is of complexity $\mathrm{O}\left(\mathrm{mnk}^{2}\right)$.

COMMENT: if each mutation costs the same then a simplified, earlier version of this algorithm from Walter Fitch gives a run time complexity of O(mnk). If Each mutation $\boldsymbol{a} \leftrightarrow \boldsymbol{b}$ costs differently you have a weighted edit distance (particularly for amino acid sequences) then your complexity is likely to be $\mathrm{O}\left(\mathrm{mnk}^{2}\right)$

Simple example

$$
R_{i}=\left\{\begin{array}{l}
R_{j} \cap R_{k} \text { if } R_{j} \cap R_{k} \neq \phi \\
R_{j} \cup R_{k} \text { otherwise }
\end{array}\right\}
$$

 equivalent to computing this

using this scoring matrix

	A	T	G	C
A	0	1	1	1
T	1	0	1	1
G	1	1	0	1
C	1	1	1	0

Bottom-UP phase

$$
R_{i}=\left\{\begin{array}{l}
R_{j} \cap R_{k} \text { if } R_{j} \cap R_{k} \neq \phi \\
R_{j} \cup R_{k} \text { otherwise }
\end{array}\right\}
$$

Top-down phase

$$
s_{j}=\left\{\begin{array}{l}
s_{i} \text { if } \quad s_{i} \in R_{j} \\
\text { arbitrary state } \in R_{j} \text { otherwise }
\end{array}\right\}
$$

How to compare amino acids: scoring matrices

example: $\mathrm{Y}(\mathrm{Tyr})$ often mutates into F (score +7) but rarely mutates into P (scores25)

Top-down phase

Sankoff's Algorithm

Pick states for each internal node

- Select minimal cost character for root (s minimizing $R_{\text {root }}(s)$)
- Do pre-order (from root to leaves) traversal of tree:
- For internal node \boldsymbol{j}, with parent \boldsymbol{i}, select state that produced minimal cost at i (use pointers kept in $1^{\text {st }}$ stage)

The Worst Case Complexity of Maximum Parsimony

AMIR CARMEL, NOA MUSA-LEMPEL, DEKEL TSUR, and MICHAL ZIV-UKELSON

ABSTRACT

One of the core classical problems in computational biology is that of constructing the most parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of evolutionarily related organisms. We reexamine the classical maximum parsimony (MP) optimization problem for the general (asymmetric) scoring matrix case, where rooted phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new agglomerative, "bottom-up" approach we present in this article. We show that the second and third approaches are faster than the first one by a factor of $\Theta(\sqrt{n})$ and $\Theta(n)$, respectively, where n is the number of species.

Key words: maximum parsimony, large parsimony, phylogeny, phylogenetic reconstruction, asymmetric scoring matrix, dendograms.

simple versus more general case

Measuring SP and MP complexity in terms of basic operations. SP and MP algorithms work by computing some information for every internal vertex of the input phylogeny. This information, as well as the complexity of its computation, depend on the scoring fcheme employed by the parsimony algorithm. Thus, in what follows, we will use the term basic operation to denote the work invested in the computation of the information of a single vertex of a considered phylogeny for a specific scoring scheme. For example, in the Fitch SP algorithm (Fitch, 1971), which computes a minimal Hamming distance SP score, an $O(m)$-time basic operation is applied, while in the Sankoff algorithm (Sankoff, 1975), which optimizes an SP score of minimal weighted edit distance, an $O\left(m \Sigma^{2}\right)$-time basic operation is applied, where Σ denotes the size of the alphabet spelling the input sequences.

Recreating a Functional Ancestral Archosaur Visual Pigment

Belinda S. W. Chang, Karolina Jönsson, Manija A. Kazmi, Michael J. Donoghue, Thomas P. Sakmar

Molecular Biology and Evolution, Volume 19, Issue 9, 1 September 2002, Pages 1483-1489, https://doi.org/10.1093/oxfordjournals.molbev.a004211

Why is interesting to know internal node's

 composition?

Small Parsimony for Unrooted Trees

Small Parsimony in an Unrooted Tree Problem: Find the most parsimonious labeling of the internal nodes of an unrooted tree.

- Input: An unrooted binary tree with each leaf labeled by a string of length m.
- Output: A position of the root and a labeling of all other nodes of the tree by strings of length m that minimizes the tree's parsimony score.

Solve this problem.

Finding the Most Parsimonious Tree

Parsimony Score: 8

Finding the Most Parsimonious Tree

Parsimony Score: 11

Finding the Most Parsimonious Tree

Parsimony Score: 14

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings, find a tree (with leaves labeled by all these strings) having minimum parsimony score.

- Input: A collection of strings of equal length.
- Output: A rooted binary tree T that minimizes the parsimony score among all possible rooted binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings, find a tree (with leaves labeled by all these strings) having minimum parsimony score.

- Input: A collection of strings of equal length.
- Output: A rooted binary tree T that minimizes the parsimony score among all possible rooted binary trees with leaves labeled by these strings.

Unfortunately, this problem is NP-Complete...

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge connecting two internal nodes (along with the nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge connecting two internal nodes (along with the nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge connecting two internal nodes (along with the nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Rearranging these subtrees is called a nearest neighbor interchange.

A Greedy Heuristic for Large Parsimony

Nearest Neighbors of a Tree Problem: Given an edge in a binary tree, generate the two neighbors of this tree.

- Input: An internal edge in a binary tree.
- Output: The two nearest neighbors of this tree (for the given internal edge).

Solve this problem.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:

1. Set current tree equal to arbitrary binary rooted tree structure.
2. Go through all internal edges and perform all possible nearest neighbor interchanges.
3. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over optimal tree, set it equal to the current tree. Otherwise, return current tree.

Implement the nearest-neighbor interchange heuristic.

Tree validation: the bootstrap algorithm

- If there are m sequences, each with n nucleotides, a phylogenetic tree can be reconstructed using some tree building methods.
- From each sequence, n nucleotides are randomly chosen with replacements, giving rise to m rows of n columns each. These now constitute a new set of sequences.
- A tree is then reconstructed with these new sequences using the same tree building method as before.
- Next the topology of this tree is compared to that of the original tree. Each interior branch of the original tree that is different from the bootstrap tree is given a score of 0 ; all other interior branches are given the value 1.
This procedure of resampling the sites and tree reconstruction is repeated several hundred times, and the percentage of times each interior branch is given a value of 1 is noted. This is known as the bootstrap value. As a general rule, if the bootstrap value for a given interior branch is 95% or higher, then the topology at that branch is considered "correct".

Tree validation: the bootstrap algorithm

EXAMPLE: Phylogenetic-inspired techniques for reverse engineering and detection of malware families

For example, given an execution trace of instructions,

```
push ebp
mov ebp, esp
mov eax, dword ptr [ebp-0x4]
jmp +0x14
```

it is abstracted as a sequence of mnemonics, i.e. push, mov, mov, jmp

Phylogenetic tree applications in computer science

ignoring the operands. Each mnemonic is then mapped to a unique alphabet-pair, e.g. mov $=\mathrm{MO}$, push $=\mathrm{PH}$, jmp $=$ JM. The resulting sequence is thus PHMOMOJM.
dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHLMGADCMHLLMGADCMHYMGIMMG IMADMG IMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGPPPPPPMGPPRE def PHMGPHMGMGADCMHLMGADCMHLMGADCMHYMGIMMGIMADMG IMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGMGPPRE
spd PHMGPHMGPHMGLECMHLLECMHLLECMHLMGMGIMIMMGPH IMLECMHZMGCMPPHZCMHZCMHZPPPPGRPPRE-
(b)
dbg PFMGSSVPHPHPHLEMGMGRPMGMGAD CMFTMGADCCMFTMGADCMHYMG IMMG TMADMG---- IMCMMZZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMGPPPPPPMGPPRE def PHMG--PH---------MGMGADCMHT MGADCMHTMGADCMHYMGIMMG MADMG---- IMCMHZ MGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMGMG------MGPPRE spd PHMG--PHMGP---------HMGLECMHHL--ECMHIL--ECMHIMG--MGLMIIMMGPHIMLECMH ZMG--------CMPPHZCMHZ--CMH
(c)
dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHLMGADCMHTMGADCMHYMGTTMGIMADMGIMCMHZMGGRMGHMMGCMHZMGCMHZMGCMHYMGGRMMGPPPPPPMGPPRE def -----------------

Sequence alignment (dbg: with debugging symbols, def: default settings, spd: optimised for speed). (a) Before alignment. (b) After alignment using an identity substitution matrix. (c) After alignment using a substitution matrix

More species increases power to detect conserved sequence elements: the phylogeny becomes a weight

Data from Eric Green at NGHRI, alignments by Webb Miller

Generalizing Pairwise to Multiple Alignment

- Alignment of 2 sequences is a 2 -row matrix.
- Alignment of 3 sequences is a 3-row matrix

$$
\begin{aligned}
& \text { A T - G C G - } \\
& \text { A - C G T - A } \\
& \text { A } T \text { C } \mathbf{A}-\mathrm{A}
\end{aligned}
$$

- Our scoring function should score alignments with conserved columns higher.

Alignments $=$ Paths in 3-D

- Alignment of ATGC, AATC, and ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C

\#symbols up to a given position
\square

Alignments $=$ Paths in 3-D

- Alignment of ATGC, AATC, and ATGC

$$
(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)
$$

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

2-D Alignment Cell versus 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

$$
S_{i, j, k}=\max \left\{\begin{array}{l}
s_{i-1, j-1, k-1}+\delta\left(v_{i}, w_{j}, u_{k}\right) \\
s_{i-1, j-1, k}+\delta\left(v_{i}, w_{j},-\right) \\
s_{i-1, j, k-1}+\delta\left(v_{i},-, u_{k}\right) \\
s_{i, j-1, k-1}+\delta\left(-, w_{j}, u_{k}\right) \\
s_{i-1, j, k}+\delta\left(v_{i},-,-\right) \\
s_{i, j-1, k}+\delta\left(-, w_{j},-\right) \\
s_{i, j, k-1}+\delta\left(-,-, u_{k}\right)
\end{array}\right.
$$

- $\delta(x, y, z)$ is an entry in the 3-D scoring matrix.

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is proportional to $7 n^{3}$
- For a k-way alignment, build a k-dimensional Manhattan graph with
$-n^{k}$ nodes
- most nodes have $2^{k}-1$ incoming edges.
- Runtime: $\mathrm{O}\left(2^{k} n^{k}\right)$

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments:

Idea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can we construct a multiple alignment that induces them?
----AAAATTTT
GGGGAAAA----

TTTTGGGG----

- - --GGGGAAAA

Progressive alignment

Progressive alignment methods are heuristic in nature. They produce multiple alignments from a number of pairwise alignments. Perhaps the most widely used algorithm of this type is the software CLUSTAL (https:// www.ebi.ac.uk/Tools/msa/clustalo/)

Pairwise Alignment
\qquad

Guide Tree

Iterative Multiple Alignment

Progressive Alignment

Clustalw:

1. Given N sequences, align each sequence against each other.
2. Use the score of the pairwise alignments to compute a distance matrix.
3. Build a guide tree (tree shows the best order of progressive alignment).
4. Progressive Alignment guided by the tree.

Progressive Alignment

Not all the pairwise alignments build well into a multiple sequence alignment (compare the alignments on the left and right)

Progressive Alignment

The progressive alignment builds a final alignment by merging sub-alignments (bottom to top) with a guide tree

Progressive alignment (Clustal). Input: a set of sequences in Fasta format (also thousands).
Output: alignment of the set of sequences: multi sequence alignment (MSA). Interest: find conserved patterns (across sequences, i.e. columns retaining similar patterns) may indicate functional constraints. In other words, if the same pattern is conserved in multiple sequences from different species, the substring could have an important functional role.
Main question in this lecture: how similar is this group of sequences?

Example of complexity in alignment: bacterial genomes

Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008).

[^0]
Genome Sequencing

- What Is Genome Sequencing: Exploding Newspapers analogy
- The String Reconstruction Problem
- String Reconstruction as a Hamiltonian Path Problem
- String Reconstruction as an Eulerian Path Problem
- De Bruijn Graphs
- Euler's Theorem
- Assembling Read-Pairs
- De Bruijn Graphs Face Harsh Realities of Assembly

Why Do We Sequence Personal Genomes?

- 2010: Nicholas Volker became the first human being to be saved by genome sequencing.
- Doctors could not diagnose his condition; he went through dozens of surgeries.
- Sequencing revealed a rare mutation in a XIAP gene linked to a defect in his immune system.
- This led doctors to use immunotherapy, which saved the child.
- Different people have slightly different genomes: on average, roughly 1 mutation in 1000 nucleotides.

The Newspaper Problem

The Newspaper Problem as Overlapping Puzzle

The Newspaper Problem as Overlapping Puzzle

Multiple Copies of a Genome (Millions of them)

Breaking the Genomes at Random Positions

CTGATG CTGA華ATGGACT CTGATGAGGACTACG

Generating "Reads"

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

"Burning" Some Reads

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

No Idea What Position Every Read Comes From

From Experimental to Computational Challenges

Multiple (unsequenced) genome copies

What Makes Genome Sequencing Difficult?

- Modern sequencing machines cannot read an entire genome one nucleotide at a time from beginning to end (like we read a book)
- They can only shred the genome and generate short reads.
- The genome assembly is not the same as a jigsaw puzzle: we must use overlapping reads to reconstruct the genome, a giant overlap puzzle!

Genome Sequencing Problem. Reconstruct a genome from reads.

- Input. A collection of strings Reads.
- Output. A string Genome reconstructed from Reads.

What Is k-mer Composition?

```
Composition_(TAATGCCATGGGATGTT)=
    TAA
    AAT
        ATG
            TGC
                GCC
            CCA
                CAT
                ATG
                TGG
                GGG
                    GGA
                                    GAT
                                    ATG
                                    TGT
                                    GTT
```


k-mer Composition

Composition ${ }_{3}($ TAATGCCATGGGATGTT) $)=$
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
=
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
e.g., lexicographic order (like in a dictionary)

Reconstructing a String from its Composition

String Reconstruction Problem. Reconstruct a string from its k-mer composition.

- Input. A collection of k-mers.
- Output. A Genome such that Composition ${ }_{k}($ Genome) is equal to the collection of k-mers.

A Naive String Reconstruction Approach

```
ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT
```

TAA
AAT

```
ATG ATG CAT CCA GAT GCC GGA GGG


\section*{Representing a Genome as a Path}


Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only from its composition?

Yes. We simply need to connect \(k-\) mer \(_{1}\) with \(k-\) mer \(_{2}\) if
\(\operatorname{suffix}\left(k-\right.\) mer \(\left._{1}\right)=\) prefix \(\left(k-\right.\) mer \(\left._{2}\right)\).
E.g. TAA \(\rightarrow\) AAT

\section*{A Path Turns into a Graph}


\section*{A Path Turns into a Graph}


Can we still find the genome path in this graph?

\section*{Where Is the Genomic Path?}

A Hamiltonian path: a path that visits each node in a graph exactly once.


What are we trying to find in this graph?

\section*{Does This Graph Have a Hamiltonian Path?}

Hamiltonian Path Problem. Find a Hamiltonian path in a graph. Input. A graph.
Output. A path visiting every node in the graph exactly once.


Icosian game (1857)



TA TGCCATGGGATGTT
A


\section*{A Slightly Different Path}

\section*{TAATGCCATGGGATGTT}


How do we label the starting and ending nodes of an edge?
prefix of TAA \(\xrightarrow{\text { TAA } \rightarrow(A A) ~ s u f f i x ~ o f ~ T A A ~}\)

\section*{Labeling Nodes in the New Path}

\section*{TAATGCCATGGGATGTT}


3 -mers as edges and 2-mers as nodes

\section*{Labeling Nodes in the New Path}


3-mers as edges and 2-mers as nodes

\section*{Gluing Identically Labeled Nodes}


\section*{De Bruijn Graph of TAATGCCATGGGATGTT}


Where is the Genome hiding in this graph?

\section*{It Was Always There!}


\section*{An Eulerian path in a graph is a path that visits each edge exactly once.}

\section*{Eulerian Path Problem}

Eulerian Path Problem. Find an Eulerian path in a graph.
- Input. A graph.

- Output. A path visiting every edge in the graph exactly once.


\section*{Eulerian Versus Hamiltonian Paths}

Eulerian Path Problem. Find an Eulerian path in a graph.
- Input. A graph.
- Output. A path visiting every edge in the graph exactly once. Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
- Input. A graph.
- Output. A path visiting every node in the graph exactly once.

Find a difference!


\section*{What Problem Would You Prefer to Solve?}


Hamiltonian Path Problem


Eulerian Path Problem

While Euler solved the Eulerian Path Problem (even for a city with a million bridges), nobody has developed a fast algorithm for the Hamiltonian Path Problem yet.


\section*{NP-Complete Problems}
- The Hamiltonian Path Problem belongs to a collection containing thousands of computational problems for which no fast algorithms are known.
That would be an excellent argument, but the question of whether or not NP-Complete problems can be solved efficiently is one of seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an efficient solution to one, and you have an efficient solution to them all.

\section*{Eulerian Path Problem}

Eulerian Path Problem. Find an Eulerian path in a graph.
- Input. A graph.

- Output. A path visiting every edge in the graph exactly once.


> We constructed the de Bruijn graph from Genome, but in reality, Genome is unknown!

\section*{What We Have Done: From Genome to de Bruijn Graph}


\section*{What We Want: From Reads (k-mers) to Genome} TAATGCCATGGGATGTT


AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

What We will Show: From Reads to de Bruijn Graph to Genome TAATGCCATGGGATGTT


AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

\section*{Constructing de Bruijn Graph when Genome Is Known} TAATGCCATGGGATGTT


\section*{Constructing de Bruijn when Genome Is Unknown}
\begin{tabular}{lllllllll} 
TAA & ATG & GCC & CAT & TGG & GGA & ATG & \\
\\
AAT & TGC & CCA & ATG & GGG & GAT & TGT
\end{tabular}

Composition \(_{3}\) (TAATGCCATGGGATGTT)

\section*{Representing Composition as a Graph Consisting of Isolated Edges}


\section*{Constructing de Bruijn Graph from k-mer Composition}


\section*{Gluing Identically Labeled Nodes}



\section*{We Are Not Done with Gluing Yet}


\section*{Gluing Identically Labeled Nodes}


\section*{Gluing Identically Labeled Nodes}



\section*{Gluing Identically Labeled Nodes}


The Same de Bruijn Graph:

\section*{DeBruin(Genome)=DeBruin(Genome Composition)}


\section*{Constructing de Bruijn Graph}

\section*{De Bruijn graph of a collection of \(\boldsymbol{k}\)-mers:}
- Represent every \(k\)-mer as an edge between its prefix and suffix
- Glue ALL nodes with identical labels.
```

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers
connect its prefix node with its suffix node by an edge

```

\section*{From Hamilton}


\section*{to Euler}


\section*{to de Bruijn}

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly once.

\section*{000001010011100101110111}


\section*{From Hamilton}


\section*{to Euler}

\section*{to de Bruijn}

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly once.

\section*{000001010011100101110111 \\ }


\section*{From Hamilton}
to Euler

\section*{to de Bruijn}


\section*{De Bruijn Graph for 4-Universal String}


Does it have an Eulerian cycle? If yes, how can we find it?

\section*{Eulerian CYCLE Problem}

Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.
- Input. A graph.
- Output. A cycle visiting every edge in the graph exactly once.


\section*{A Graph is Eulerian if It Contains an Eulerian}

Cycle.

Is this graph Eulerian?


\section*{A Graph is Eulerian if It Contains an Eulerian}

Cycle.

\section*{Is this graph Eulerian?}


\section*{Euler's Theorem}
- Every Eulerian graph is balanced
- Every balanced* graph is Eulerian

\(\left(^{*}\right)\) and strongly connected, of course!

\section*{Recruiting an Ant to Prove Euler's Theorem}

Let an ant randomly walk through the graph. The ant cannot use the same edge twice!


\section*{If Ant Was a Genius...}


A Less Intelligent Ant Would Randomly Choose a Node and Start Walking...

\section*{Can it get stuck? In what node?}


The Ant Has Completed a Cycle
BUT has not Proven Euler's theorem yet...

The constructed cycle is not Eulerian. Can we enlarge it?


\section*{Let's Start at a Different Node in the Green Cycle}

\section*{Let's start at a node with still unexplored edges.}
"Why should I start at a different node? Backtracking? I'm not evolved to walk backwards! And what difference does it make???"


\section*{An Ant Traversing Previously Constructed Cycle}

Starting at a node that has an unused edge, traverse the already constructed (green cycle) and return back to the starting node.


\section*{I Returned Back BUT... I Can Continue Walking!}

Starting at a node that has an unused edge, traverse the already constructed (green cycle) and return back to the starting node.

After completing the cycle, start random exploration of still untraversed edges in the graph.


\section*{Stuck Again!}

No Eulerian cycle yet... can we enlarge the green-blue cycle?
The ant should walk along the constructed cycle starting at yet another node. Which one?


\section*{I Returned Back BUT... I Can Continue Walking!}
"Hmm, maybe these instructions were not that stupid..."


\section*{I Proved Euler's Theorem!}

\section*{EulerianCycle(BalancedGraph)}
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges) while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle' by traversing Cycle from newStart and randomly walking afterwards Cycle \(\leftarrow\) Cycle'

\section*{return Cycle}


\section*{From Reads to de Bruijn Graph to Genome}


AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

\section*{Multiple Eulerian Paths}


\section*{TA TGGGATGCCATGTT}

A


\section*{Breaking Genome into Contigs}

TA TGCCATGGGATGTT
A


\section*{DNA Sequencing with Read-pairs}

Multiple identical copies of genome


\section*{From k-mers to Paired \(k\)-mers}

Genome


A paired k-mer is a pair of \(k\)-mers at a fixed distance \(d\) apart in Genome.
E.g. TCA and TCC are at distance \(\mathrm{d}=11\) apart.

Disclaimers:
1. In reality, Read1 and Read2 are typically sampled from different strands:
\((\rightarrow \ldots \ldots \leftarrow\) rather than \(\rightarrow \ldots \ldots \rightarrow\) )
2. In reality, the distance \(d\) between reads is measured with errors.

What is PairedComposition(TAATGCCATGGGATGTT)?
```

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

```

Representing a paired 3-mer TAA GCC as a 2-line expression:
\(\begin{array}{lllllllllll}\text { TAAA } & \text { AAT } & \text { ATG } & \text { TGC } & \text { GCC } & \text { CCA } & \text { CAT } & \text { ATG } & \text { TGG } & \text { GGG } & \text { GGA }\end{array}\)

PairedComposition(TAATGCCATGGGATGTT)
```

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

```
TAA AAT ATG
AAT ATG ATG CAT CCA

Representing PairedComposition in lexicographic order

\section*{String Reconstruction from Read-Pairs Problem}

String Reconstruction from Read-Pairs Problem. Reconstruct a string from its paired \(k\)-mers.
- Input. A collection of paired \(k\)-mers.
- Output. A string Text such that PairedComposition(Text) is equal to the collection of paired \(k\)-mers.

How Would de Bruijn Assemble Paired \(k\)-mers?

Representing Genome TAATGCCATGGGATGTT as a Path
```

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

```

paired prefix of \(\longrightarrow \quad\) GCA


GCA

\section*{Labeling Nodes by Paired Prefixes and Suffixes}


\section*{Glue nodes with identical labels}


\section*{Glue nodes with identical labels}


Paired de Bruijn Graph from the Genome

\section*{Constructing Paired de Bruijn Graph}

paired prefix of


CCA

\section*{Constructing Paired de Bruijn Graph}

- Paired de Bruijn graph for a collection of paired \(\boldsymbol{k}\)-mers:
- Represent every paired \(k\)-mer as an edge between its paired prefix and paired suffix.
- Glue ALL nodes with identical labels.

\section*{Constructing Paired de Bruijn Graph}


We Are Not Done with Gluing Yet


\section*{Constructing Paired de Bruijn Graph}


Paired de Bruijn Graph from read-pairs
- Paired de Bruijn graph for a collection of paired \(\boldsymbol{k}\)-mers:
- Represent every paired \(k\)-mer as an edge between its paired prefix and paired suffix.
- Glue ALL nodes with identical labels.

\title{
Which Graph Represents a Better Assembly?
}

Unique genome reconstruction

TAATGCCATGGGATGTT
Multiple genome reconstructions

TAATGCCATGGGATGTT

TAATGGGATGCCATGTT


De Bruijn Graph

\section*{Some Ridiculously Unrealistic Assumptions}
- Perfect coverage of genome by reads (every \(k\)-mer from the genome is represented by a read)
- Reads are error-free.
- Multiplicities of \(k\)-mers are known
- Distances between reads within read-pairs are exact.

\section*{Some Ridiculously Unrealistic Assumptions}
- Imperfect coverage of genome by reads (every \(k\) mer from the genome is represented by a read)
- Reads are error-prone.
- Multiplicities of \(k\)-mers are unknown.
- Distances between reads within read-pairs are inexact.
- Etc., etc., etc.

\section*{\(1^{\text {st }}\) Unrealistic Assumption: Perfect Coverage}
```

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

```

250-nucleotide reads generated by Illumina technology capture only a small fraction of 250mers from the genome, thus violating the key assumption of the de Bruijn graphs.

\section*{Breaking Reads into Shorter \(k\)-mers}
```

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

```
```

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact

```

\section*{\(2^{\text {nd }}\) Unrealistic Assumption: Error-free Reads}
```

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact
cgtaCggaca
Erroneous read
(change of t into C)

```
```

atgccgtatggacaacgact

```
atgccgtatggacaacgact
atgcc
atgcc
    tgccg
    tgccg
    gccgt
    gccgt
    ccgta
    ccgta
    cgtat
    cgtat
        gtatg
        gtatg
            tatgg
            tatgg
                atgga
                atgga
                tggac
                tggac
                        ggaca
                        ggaca
                gacaa
                gacaa
                acaac
                acaac
                        caacg
                        caacg
                        aacga
                        aacga
                                    acgac
                                    acgac
                            cgact
                            cgact
            cgtaC
            cgtaC
        gtaCg
        gtaCg
        taCgg
        taCgg
        aCgga
        aCgga
            Cggac
```

 Cggac
    ```

\section*{De Bruijn Graph of ATGGCGTGCAATG... Constructed from Error-Free Reads}


\section*{Errors in Reads Lead to Bubbles in the De Bruijn Graph}


\section*{Bubble Explosion}


A single error in a read results in a bubble of length \(k\) in a de Bruijn graph constructed from k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in reads is rather small (less than 1\% per nucleotide in Illumina reads), most bubbles are small.

\section*{De Bruin Graph of \(N\). meningitidis Genome AFTER Removing Bubbles}


\section*{Example and RECAP}
Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTTT
Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT GGCGTC TATATCT CGGCTCTAGGCCCT CATtTTTT GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT
```

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
 GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT }35\mathrm{ nucleotides

```

\section*{Example and RECAP}
" \(k\)-mer" is a substring of length \(k\)
\(s: \quad\) GGCGATTCATCG
A 4-mer of \(S: \quad\) ATTC
All 3-mers of \(S\) : GGC
GCG
CGA GAT
ATT
TTC

TTCA CAT ATC TCG

I'll use " \(k-1\)-mer" to refer to a substring of length \(k\) - 1

\section*{AAA, AAB, ABB, BBB, BBA}
\(A A B\) is a \(k\)-mer \((k=3)\). \(A A\) is its left \(k-1\)-mer, and \(A B\) is its right \(k\) - 1 -mer.


AAB's left 2-mer \(A A B\) 's right 2-mer

\section*{Example and RECAP}


Genome: ATGGCGTGCAATGGCGT



Hamiltonian cycle
Visit each vertex once
(harder to solve)


Eulerian cycle
Visit each edge once
(easier to solve)

\section*{Example and RECAP}


\section*{Example and RECAP}

\section*{AAABBBA}
take all 3-mers: \(A A A, A A B, A B B, B B B, B B A\)
form \(L / R\) 2-mers: \(A A, A A, A A, A B, A B, B B, B B, B B, B B, B A\)

Let 2-mers be nodes in a new graph. Draw a directed edge from each left 2-mer to corresponding right 2-mer:


Each edge in this graph corresponds to a length-3 input string

\section*{Example and RECAP}


An edge corresponds to an overlap (of length \(k\)-2) between two \(k\) - 1 mers. More precisely, it corresponds to a \(k\)-mer from the input.


If we add one more \(B\) to our input string: \(A A A B B B B A\), and rebuild the De Bruijn graph accordingly, we get a multiedge.

\section*{Example and RECAP}

Node is balanced if indegree equals outdegree
Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node
Eulerian walk visits each edge exactly once
Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)


Is it Eulerian? Yes
Argument 1: \(\mathrm{AA} \rightarrow \mathrm{AA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BB} \rightarrow \mathrm{BB} \rightarrow \mathrm{BA}\)
Argument 2: \(A A\) and \(B A\) are semi-balanced, \(A B\) and \(B B\) are balanced

\section*{De Bruijn graph}

\section*{Example and RECAP}

A procedure for making a De Bruijn graph for a genome

Assume perfect sequencing where each length-k substring is sequenced exactly once with no errors

Pick a substring length \(k\) : 5
Start with each read:
Take each \(k\) mer and split into left and right \(k\) - 1 mers


Add \(\mathrm{k}-1\) mers as nodes to De Bruijn graph (if not already there), add edge from left \(k\) - 1 mer to right \(k\) - 1 mer


\section*{Example and RECAP}


First \(8 k\)-mer additions, \(k=5\)
a_long_long_long_time

\section*{Example and RECAP}


\section*{De Bruijn graph}

\section*{Example and RECAP}

With perfect sequencing, this procedure always yields an Eulerian graph. Why?

Node for \(k\)-1-mer from left end is semi-balanced with one more outgoing edge than incoming *

Node for \(k\)-1-mer at right end is semi-balanced with one more incoming than outgoing *

Other nodes are balanced since \# times \(k\) - 1 -mer occurs as a left \(k-1\)-mer \(=\#\) times it occurs as a right \(k-1-m e r\)
* Unless genome is circular


\section*{De Bruijn graph}

\section*{Example and RECAP}

Assuming perfect sequencing, procedure yields graph with Eulerian walk that can be found efficiently.

We saw cases where Eulerian walk corresponds to the original superstring. Is this always the case?


\section*{Example and RECAP}

How much work to build graph?


For each \(k\)-mer, add 1 edge and up to 2 nodes
Reasonable to say this is \(\mathrm{O}(1)\) expected work
Assume hash map encodes nodes \& edges
Assume \(k\)-1-mers fit in \(\mathrm{O}(1)\) machine words, and hashing \(\mathrm{O}(1)\) machine words is \(\mathrm{O}(1)\) work

Querying / adding a key is \(\mathrm{O}(1)\) expected work
\(\mathrm{O}(1)\) expected work for \(1 k\)-mer, \(\mathrm{O}(N)\) overall

\section*{Example and RECAP}

\section*{In typical assembly projects, average coverage is ~30-50}

Same edge might appear in dozens of copies; let's use edge weights instead

Weight = \# times k-mer occurs

Using weights, there's one weighted edge for each distinct \(k\)-mer

Before: one edge per \(k\)-mer


References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/ CG_deBruijn.ipynb

\section*{Example and RECAP}
-Errors at end of read
- Trim off 'dead-end' tips
-Errors in middle of read
- Pop Bubbles
-Chimeric Edges
- Clip short, low coverage nodes


\title{
Example and RECAP \\ "It was the best of times, it was the worst of \\ times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity,...."
}

\author{
Dickens, Charles. A Tale of Two Cities. 1859. London: Chapman Hall
}
itwasthebestoftimesitwastheworstoftimesitwastheageof wisdomitwastheageoffoolishness...
How do we assemble?
fincreduli geoffoolis Itwasthebe Itwasthebe geofwisdom itwastheep epochofinc timesitwas stheepocho nessitwast wastheageo theepochof stheepocho hofincredu estoftimes eoffoolish lishnessit hofbeliefi pochofincr itwasthewo twastheage toftimesit domitwasth ochofbelie eepochofbe eepochofbe astheworst chofincred theageofwi iefitwasth ssitwasthe astheepoch efitwasthe wisdomitwa ageoffooli twasthewor ochofbelie sdomitwast sitwasthea eepochofbe ffoolishne eofwisdomi hebestofti stheageoff twastheepo eworstofti stoftimesi theepochof esitwasthe heepochofi theepochof sdomitwast astheworst rstoftimes worstoftim stheepocho geoffoolis ffoolishne timesitwas lishnessit stheageoff eworstofti orstoftime fwisdomitw wastheageo heageofwis incredulit ishnessitw twastheepo wasthewors astheepoch heworstoft ofbeliefit wastheageo heepochofi pochofincr heageofwis stheageofw fincreduli astheageof wisdomitwa wastheageo astheepoch olishnessi astheepoch itwastheep twastheage wisdomitwa fbeliefitw bestoftime epochofbel theepochof sthebestof lishnessit hofbeliefi Itwasthebe ishnessitw sitwasthew ageofwisdo twastheage esitwasthe twastheage shnessitwa fincreduli fbeliefitw theepochof mesitwasth domitwasth ochofbelie heageofwis oftimesitw stheepocho bestoftime twastheage foolishnes ftimesitwa thebestoft itwastheag theepochof itwasthewo of beliefit bestof time mitwasthea imesitwast timesitwas orstoftime estoftimes twasthebes stof timesi sdomitwast wisdomitwa theworstof astheworst sitwasthew theageoffo eepochofbe

Step 1:
Convert reads into "Kmers"
Kmer: a substring of defined length
\begin{tabular}{cccccc} 
Reads: & theageofwi & sthebestof & astheageof & worstoftim & imesitwast \\
Kmers: \\
( \(\mathbf{k}=3)\) & sth & ast & wor & ime \\
& eag & the & sth & ors & mes \\
& age & ebe & hea & rst & esi \\
& geo & bes & eag & sto & sit \\
& eof & est & age & oft & itw \\
& ofw & sto & geo & fti & was
\end{tabular}

Step 2:
Build a De-Bruijn graph from the kmers


\section*{Example and RECAP}

Step 3:
Simplify the graph as much as possible:


De Bruijn assemblies 'broken' by repeats longer than kmer
It was the best of times, it was the worst of times it was the age of wisdom, it was thage of foolishness, titwas the epoch of belief, it was the ppoch of incredulity,.... "

\section*{Example and RECAP}

The final assembly ( \(k=3\) )
wor times itwasthe foolishness st wisdom
incredulity age epoch be of belief

Repeat with a longer "kmer" length
A better assembly ( \(\mathrm{k}=20\) )
itwasthebestoftimesitwastheworstoftimesitwastheageofwisdomitwastheageoffoolis...
Why not always use longest ' \(k\) ' possible?


\section*{Clustering Algorithms}
- Clustering as an optimization problem
- The Lloyd algorithm for \(k\)-means clustering
- From Hard to Soft Clustering
- From Coin Flipping to \(k\)-means Clustering
- Expectation Maximization
- Soft \(k\)-means Clustering
- Hierarchical Clustering
- Markov Clustering Algorithm
- Stochastic Neighbor Embedding

\section*{Measuring 3 Genes at 7 Checkpoints}

Measure expression of various yeast genes at 7 checkpoints:

\begin{tabular}{|llllllll|}
\hline YLR258W & 1.1 & 1.4 & 1.4 & 3.7 & 4.0 & 10.0 & 5.9 \\
YPL012W & 1.1 & 0.8 & 0.9 & 0.4 & 0.3 & 0.1 & 0.1 \\
YPR055W & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 \\
\hline
\end{tabular}
\(e_{i j}=\) expression level of gene \(i\) at checkpoint \(j\)


\section*{GSY2 | SGD}
https://www.yeastgenome.org/locus/S000004248 - Traduci questa pagina 30 ago 2005 - Standard Name: GSY2; Systematic Name: YLR258W; SGD ID: SGD: .... of yeast glycogen synthase-2 by COOH-terminal phosphorylation.

\section*{YLR258W - SGD-Wiki}
https://wiki.yeastgenome.org/index.php/YLR258W \(>\) Traduci questa pagina 23 gen 2012 - Description of YLR258W: Glycogen synthase, similar to Gsy1p; expression ... of yeas glycogen synthase-2 by COOH-terminal phosphorylation.

\section*{GSY2 Protein | SGD}
https://www.yeastgenome.org/locus/S000004248/protein • Traduci questa pagina ... Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae. ... GSY2 / YLR258W Protein

GSY2 - Glycogen [starch] synthase isoform 2 - Saccharomyces ... https://www.uniprot.org/uniprot/P27472 • Traduci questa pagina Saccharomyces cerevisiae (strain ATCC \(204508 / \mathrm{S} 288 \mathrm{C}\) ) (Baker's yeast). Status .... BioCyci, YEAST:YLR258W-MONOMER ... Ordered Locus Names:YLR258W

1 atgicccete acctacanaa ccarttetta mtceacacte cgacteaget tgctaaracg 61 еттgetcerta чtractccgr ecranantce angectccca ttacgertgc ccactarai 21 gaccattacc acttgatag gcccttanat anagccactt atcanaatga agttcarata

 361 Gattratgei cattactacg antrccctct cctcacantg attrccagac gantantcl

 541 AAAAGCGTA 1 TCGAGGTAGT TACCATTTTC ACCACTCATG CTACTTTATT GGGACGGTA 661 GAAGCTGGCA GATtTGCCAT ATACCATCGT tatrctarac agacaccgcc gGctcantc


841 gпgttccana atttccatcc ttrgananad ganaanatca atcacttrgr angaggcca

961 tatgagtata anaatacge tgctgacatg ttratteag ctctaccgec trtcanctac



 1321 ссаatagtta cacacaatat getcgatgac gctaatgacc tgatttrana tanaarcag 1381 CAAGTTCAAT TGTTCAATAG CCCAAGTGAI CGTGTTAAAA TGATCTTCCA TCCAGAATTT 1441 тTGAACGCTA ATAATCCGAT CCTTGGTTTA GATTATGATG AGTTCGTTCG тGGTTGCCA

 1621 ATcGAAACCA ACCAAGCGAA AGATtaCGGT ATTTATATTG TGGATCGTCG TTTCAAGGC
1681 cСTGATGAAT CTGTGGAACA ATTAGTTGAC TACATGGAAG AATTTGTAAA AAAGACAGG
 1801 agaatcgetc tcGantacgt cangccaige cagttaccat tancaacagc ctatcctcar 1861 cagttcacag agctcgttce tgangaacta anteattcca acatcgatcc tttaccagg 1921 GGAAAGAAAT tGAAAGTTGC AAGACCGCTT agTgTacctg gctcaccang agatttgag
 2041 gcGeacgart atttttcatt gganteant cctccagcte acgateacga cgatgeccca 2101 tatgctgatg acagttaa

\footnotetext{
\(\pm\) Download Sequence (fss)
Custom Sequence Retrieval
}

\section*{GSY2 / YLR258W Sequence \({ }^{\bullet}\)}
\begin{tabular}{ll} 
Trotein Product: & glycogen (starch) synthase GSY2 \\
=eature Type: & ORF, Verified \\
Jescription: & \begin{tabular}{l} 
Glycogen synthase; expression induced by glucose limitation, nitrogen starvation, heat shock, and stationary \\
phase; activity regulated by cAMP-dependent, Snf1p and Pho85p kinases as well as by the Gac1p-Glc7p \\
phosphatase; GSY2 has a paralog, GSY1, that arose from the whole genome duplication; relocalizes from \\
cytoplasm to plasma membrane upon DNA replication stress \({ }^{123456789} 10\)
\end{tabular} \\
& \begin{tabular}{l} 
GSY1 \({ }^{10}\)
\end{tabular} \\
دaralog: & 2.4.1.11
\end{tabular}

Reference Strain: S288C ©

GSY2 Location: Chromosome XII 660716..662833


> (i) https://www.ncbi.nlm.nih.gov/geo/

\section*{\& NCBI Resources \(\sqrt{\square}\) How To \(\square\)}

GEO Home Documentation * Query \& Browse マ Email GEO

\section*{Gene Expression Omnibus}

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

\section*{Getting Started}

Overview
FAQ
About GEO DataSets
About GEO Profiles
About GEO2R Analysis
How to Construct a Query
How to Download Data

\section*{Tools}

Search for Studies at GEO DataSets Search for Gene Expression at GEO Profiles Search GEO Documentation Analyze a Study with GEO2R
Studies with Genome Data Viewer Tracks
Programmatic Access
FTP Site

Switching to Logarithms of Expression Levels


\section*{Gene Expression Matrix}
```

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00
YNR065C -0.10
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64
YLR258W
YPL012W
YNL141W
-0.16
YJL028W -0.28
YKL026C
YPR055W

```
gene expression vector
\(\left.\begin{array}{c}4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ - \\ -2 \\ -3 \\ -4\end{array}\right]\)

\section*{Gene Expression Matrix}
\begin{tabular}{|lrrrrrrr|}
\hline YLR361C & 0.14 & 0.03 & -0.06 & 0.07 & -0.01 & -0.06 & -0.01 \\
YMR2 90C & 0.12 & -0.23 & -0.24 & -1.16 & -1.40 & -2.67 & -3.00 \\
YNR0 65C & -0.10 & -0.14 & -0.03 & -0.06 & -0.07 & -0.14 & -0.04 \\
YGR0 43C & -0.43 & -0.73 & -0.06 & -0.11 & -0.16 & 3.47 & 2.64 \\
YLR2 58W & 0.11 & 0.43 & 0.45 & 1.89 & 2.00 & 3.32 & 2.56 \\
YPL012W & 0.09 & -0.28 & -0.15 & -1.18 & -1.59 & -2.96 & -3.08 \\
YNL141W & -0.16 & -0.04 & -0.07 & -1.26 & -1.20 & -2.82 & -3.13 \\
Y JL0 28W & -0.28 & -0.23 & -0.19 & -0.19 & -0.32 & -0.18 & -0.18 \\
YKL0 26C & -0.19 & -0.15 & 0.03 & 0.27 & 0.54 & 3.64 & 2.74 \\
YPR055W & 0.15 & 0.15 & 0.17 & 0.09 & 0.07 & 0.09 & 0.07 \\
\hline
\end{tabular}

1997: Joseph deRisi measured expression of 6,400 yeast genes at 7 checkpoints before and after the diauxic shift.

\section*{6,400 x 7 gene expression matrix}

Goal: partition all yeast genes into clusters so that:
- genes in the same cluster have similar behavior
- genes in different clusters have different behavior

\section*{Genes as Points in Multidimensional Space}
```

YLR361C 0.14
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00
YNR065C -0.10
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64
YLR258W
YPL012W 0.09 -0.28 -0.15 -1.18
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13
YJL028W -0.28
YKL026C
YPR055W

```

\section*{\(n \times m\) \\ gene expression matrix}

\(n\) points in m-dimensional space

\section*{Gene Expression and Cancer Diagnostics}

MammaPrint: a test that evaluates the likelihood of breast cancer recurrence based on the expression of just 70 genes.


\section*{But how did scientists discover these \(\mathbf{7 0}\) human genes?}

\section*{Toward a Computational Problem}

Good Clustering Principle: Elements within the same cluster are closer to each other than elements in different clusters.

\section*{Toward a Computational Problem}
- distance between elements in the same cluster \(<\Delta\)
- distance between elements in different clusters \(>\Delta\)


\section*{Clustering Problem}

Clustering Problem: Partition a set of expression vectors into clusters.
- Input: A collection of \(n\) vectors and an integer \(k\).
- Output: Partition of \(n\) vectors into \(k\) disjoint clusters satisfying the Good Clustering Principle.


> Any partition into two clusters does not satisfy the Good Clustering Principle!

\section*{What is the "best" partition into three clusters?}


\section*{Clustering as Finding Centers}

Goal: partition a set Data into \(k\) clusters.

Equivalent goal: find a set of \(k\) points Centers that will serve as the "centers" of the \(k\) clusters in Data.

\section*{Clustering as Finding Centers}

\section*{Goal: partition a set Data into \(k\) clusters.}

Equivalent goal: find a set of \(k\) points Centers that will serve as the "centers" of the \(k\) clusters in Data and will minimize some notion of distance from Centers to Data .

What is the "distance" from Centers to Data?

\section*{Distance from a Single DataPoint to Centers}

The distance from DataPoint in Data to Centers is the distance from DataPoint to the closest center:
\(d(\) DataPoint, Centers \()=\min _{\text {all points } x \text { from Centers }} d(\) DataPoint, \(x)\)

\section*{Distance from Data to Centers}

\author{
MaxDistance(Data, Centers) \(=\) max all points DataPoint from Data \(d\) (DataPoint, Centers)
}

\section*{\(k\)-Center Clustering Problem}
\(k\)-Center Clustering Problem. Given a set of points Data, find \(k\) centers minimizing MaxDistance(Data, Centers).
- Input: A set of points Data and an integer \(k\).
- Output: A set of \(k\) points Centers that minimizes MaxDistance(DataPoints, Centers) over all possible choices of Centers.

\section*{\(k\)-Center Clustering Problem}
k-Center Clustering Problem. Given a set of points Data, find \(k\) centers minimizing MaxDistance(Data, Centers).
- Input: A set of points Data and an integer \(k\).
- Output: A set of \(k\) points Centers that minimizes MaxDistance(DataPoints, Centers) over all possible choices of Centers.


\section*{k-Center Clustering Heuristic}

\section*{FarthestFirstTraversal(Data, k)}

Centers \(\leftarrow\) the set consisting of a single DataPoint from Data while Centers have fewer than \(k\) points
DataPoint \(\leftarrow\) a point in Data maximizing \(d(\) DataPoint, Centers) among all data points
add DataPoint to Centers


\section*{\(k\)-Center Clustering Heuristic}

\section*{FarthestFirstTraversal(Data, k)}

Centers \(\leftarrow\) the set consisting of a single DataPoint from Data while Centers have fewer than \(k\) points
DataPoint \(\leftarrow\) a point in Data maximizing \(d(\) DataPoint, Centers) among all data points
add DataPoint to Centers

\section*{What Is Wrong with FarthestFirstTraversal?}

FarthestFirstTraversal selects Centers that minimize MaxDistance(Data, Centers).

But biologists are interested in typical rather than maximum deviations, since maximum deviations may represent outliers (experimental errors).


\section*{Modifying the Objective Function}

The maximal distance between Data and Centers:

MaxDistance(Data, Centers)=
\(\boldsymbol{m a x}_{\text {DataPoint from Data }}\) d(DataPoint, Centers)

A single data point contributes to MaxDistance

The squared error distortion between Data and Centers:

Distortion(Data, Centers) \(=\)
\(\sum_{\text {DataPoint from Data }} d{\text { (DataPoint, Centers })^{2} / n}\)

All data points contribute to Distortion

\section*{\(k\)-Means Clustering Problem}

\section*{\(k\)-Center Clustering Problem:}

Input: A set of points Data and an integer \(k\).
Output: A set of \(k\) points Centers that minimizes
MaxDistance(DataPoints,Centers) over all choices of Centers.

\section*{k-Means Clustering Problem:} Input: A set of points Data and an integer \(k\).
Output: A set of \(k\) points Centers that minimizes

Distortion(Data,Centers) over all choices of Centers.
\(N P\)-Hard for \(k>1\)


\section*{\(k\)-Means Clustering for \(k=1\)}

Center of Gravity Theorem: The center of gravity of points Data is the only point solving the 1-Means Clustering Problem.

The center of gravity of points Data is

\section*{\(\sum_{\text {all points DataPoint in Data }}\) DataPoint / \#points in Data}

\[
\begin{aligned}
& i \text {-th coordinate of the center of } \\
& \text { gravity }=\text { the average of the } i \text {-th } \\
& \text { coordinates of datapoints: } \\
& ((2+4+6) / 3,(3+1+5) / 3)=(4,3)
\end{aligned}
\]

\section*{The Lloyd Algorithm in Action}


Select \(k\) arbitrary data points as Centers

\section*{The Lloyd Algorithm in Action}

assign each data point to its nearest center

\section*{The Lloyd Algorithm in Action}

new centers \(\leftarrow\) clusters' centers of gravity

\section*{The Lloyd Algorithm in Action}

assign each data point to its nearest center

\section*{The Lloyd Algorithm in Action}

new centers \(\leftarrow\) clusters' centers of gravity

\section*{The Lloyd Algorithm in Action}

assign each data point to its nearest center

\section*{The Lloyd Algorithm}

Select \(k\) arbitrary data points as Centers and then iteratively performs the following two steps:
- Centers to Clusters: Assign each data point to the cluster corresponding to its nearest center (ties are broken arbitrarily).
- Clusters to Centers: After the assignment of data points to \(k\) clusters, compute new centers as clusters' center of gravity.

The Lloyd algorithm terminates when the centers stop moving (convergence).

\section*{Must the Lloyd Algorithm Converge?}
- If a data point is assigned to a new center during the Centers to Clusters step:
- the squared error distortion is reduced because this center must be closer to the point than the previous center was.

- If a center is moved during the Clusters to Centers step:
- the squared error distortion is reduced since the center of gravity is the only point minimizing the distortion (the Center of Gravity Theorem).


RECAP







\section*{Clustering Yeast Genes}



\section*{Soft vs. Hard Clustering}
- The Lloyd algorithm assigns the midpoint either to the red or to the blue cluster.
- "hard" assignment of data points to clusters.

Midpoint: A point approximately halfway between two clusters.

\section*{Soft vs. Hard Clustering}
- The Lloyd algorithm assigns the midpoint either to the red or to the blue cluster.
- "hard" assignment of data points to clusters.

- Can we color the midpoint half-red and half-blue? - "soft" assignment of data points to clusters.

\section*{Soft vs. Hard Clustering}


Hard choices: points are colored red or blue depending on their cluster membership.


Soft choices: points are assigned "red" and "blue" responsibilities \(r_{\text {blue }}\) and \(r_{\text {red }}\left(r_{\text {blue }}+r_{\text {red }}=1\right)\) 446

\section*{Flipping One Biased Coin}
- We flip a loaded coin with an unknown bias日 (probability that the coin lands on heads).
- The coin lands on heads \(\boldsymbol{i}\) out of \(\boldsymbol{n}\) times.
- For each bias, we can compute the probability of the resulting sequence of flips.

Probability of generating the given sequence of flips is
\[
\operatorname{Pr}(\text { sequence } \mid \theta)=\theta^{i *}(1-\theta)^{n-i}
\]

This expression is maximized at \(\boldsymbol{\theta}=\boldsymbol{i} / \boldsymbol{n}\) (most likely bias)

\section*{Flipping Two Biased Coins}

Data
HTTTHTTHTH \(\mathbf{0 . 4}\)

нTHHHHHTHH 0.8
НТTTTTH
THHHTHHHTH \(\mathbf{0 . 7}\)

\section*{Goal: estimate the probabilities \(\theta_{A}\) and \(\theta_{B}\)}

\section*{If We Knew Which Coin Was Used in Each Sequence...}
\begin{tabular}{llc} 
& \multicolumn{1}{c}{ Data } & Hidde \\
HTTTHTTHTH & 0.4 & 1 \\
HHHHTHHHHH & 0.9 & 0 \\
HTHHHHHTHH & 0.8 & 0 \\
HTTTTTHHTT & 0.3 & 1 \\
THHHTHHHTH & 0.7 & 0
\end{tabular}

Goal: estimate Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) when HiddenVector is given

\section*{If We Knew Which Coin Was Used in Each Sequence...}

Data HiddenVector
\begin{tabular}{lll} 
HTTTHTTHTH & 0.4 & 1 \\
HHHHTHHHHH & 0.9 & 0 \\
HTHHHHHTHH & 0.8 & 0 \\
HTTTTTHHTT & 0.3 & 1 \\
THHHTHHHTH & 0.7 & 0
\end{tabular}
\(\theta_{A}=\) fraction of heads generated in all flips with coin \(A=\)
\[
(4+3) /(10+10)=(0.4+0.3) / 2=0.35
\]
\(\theta_{B}=\) fraction of heads generated in all flips with \(\operatorname{coin} B=\)
\((9+8+7) /(10+10+10)=(0.9+0.8+0.7) /(1+1+1)=0.80\)

\section*{Parameters as a Dot-Product}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Data HiddenVector} & Parameters \\
\hline HTTTHTTHTH & 0.4 & * & 1 & \\
\hline ННННТННННН & 0.9 & * & 0 & \\
\hline НТНННННТНН & 0.8 & * & 0 & (0.35, 0.80 \\
\hline HTTTTTHHTT & 0.3 & * & 1 & \\
\hline ТНнНТНННТН & 0.7 & * & 0 & \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \theta_{A}=\text { fraction of heads generated in all flips with coin } A= \\
& \qquad=(4+3) /(10+10)=(0.4+0.3) / 2=0.35
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{\(\sum_{\text {all data points } i}\) Data \(_{i}{ }^{*}\) HiddenVector \({ }_{i} / \sum_{\text {all data points } i}\) HiddenVector \({ }_{i}=0.35\)} \\
\hline \multicolumn{5}{|r|}{} \\
\hline \multicolumn{5}{|r|}{1 refers to a vector \((1,1, \ldots, 1)\) consisting of all \(1 s^{151}\)} \\
\hline
\end{tabular}

\section*{Parameters as a Dot-Product}
\begin{tabular}{lcccc} 
& \multicolumn{2}{c}{ Data } & HiddenVector & Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) \\
HTTTHTTHTH & 0.4 & \(*\) & 1 & \\
HHHHTHHHHH & \(\mathbf{0 . 9}\) & \(*\) & 0 & \\
HTHHHHHTHH & 0.8 & \(*\) & 0 & \((0.35,0.80)\) \\
HTTTTTHHTT & 0.3 & \(*\) & 1 & \\
THHHTHHHTH & 0.7 & \(*\) & 0 &
\end{tabular}
\[
\begin{gathered}
\theta_{B}=\text { fraction of heads generated in all flips with coin } B \\
=(9+8+7) /(10+10+10)=(0.9+0.8+0.7) /(1+1+1)=0.80 \\
\left(0.5^{*} 0+0.9 * 1+0.8^{*} 1+0.4^{*} 0+0.7^{*} 1\right) /(0+1+1+0+1)=0.80
\end{gathered}
\]
\(\sum_{\text {all points } i}\) Data \(_{\mathrm{i}}{ }^{*}\left(1-\right.\) HiddenVector \(\left._{\mathrm{i}}\right) / \sum_{\text {all points } i}\left(1\right.\) - HiddenVector \(\left.{ }_{\mathrm{i}}\right)=\) Data *(1-HiddenVector) / \(\mathbf{1}^{*}\) (1-HiddenVector) \({ }_{452}\)

\section*{Parameters as a Dot-Product}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & HiddenVector & Parameters=( \(\theta\) \\
\hline HTTTHTTHTH & 0.4 & * & 1 & \\
\hline ННННТННННН & 0.9 & * & 0 & \\
\hline НТНННННТНН & 0.8 & * & 0 & (0.35, 0.80) \\
\hline НTTTTTH \({ }^{\text {HTT }}\) & 0.3 & * & 1 & \\
\hline THHHTHHHTH & 0.7 & * & 0 & \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
\theta_{A} & =\text { fraction of heads generated in all flips with coin } A \\
& =(0.4+0.3) / 2=0.35 \\
& =\text { Data } * \text { HiddenVector } / 1 * \text { HiddenVector }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
\theta_{B} & =\text { fraction of heads generated in all flips with coin } B \\
& =(0.9+0.8+0.7) / 3=0.80 \\
& =\text { Data } *(1-\text { HiddenVector }) / 1 *(1-\text { HiddenVector })
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{Data, HiddenVector, Parameters}
\begin{tabular}{lcl}
\(\quad\) Data & HiddenVector & Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) \\
\(\mathbf{0 . 4}\) & \(\mathbf{1}\) & \\
\(\mathbf{0 . 9}\) & \(\mathbf{0}\) & \\
\(\mathbf{0 . 8}\) & \(\mathbf{0}\) & \(\longrightarrow\) \\
\(\mathbf{0 . 3}\) & 1 & \\
0.3 & 0 &
\end{tabular}


\section*{Data, HiddenVector, Parameters}


\section*{From Data \& Parameters to HiddenVector}

Data HiddenVector Parameters \(=\left(\theta_{A}, \theta_{B}\right)\)
0.4
0.9
0.8
0.3
0.7
?
?
?
(0.35, 0.80)
?
?

Which coin is more likely to generate the \(1{ }^{\text {st }}\) sequence (with 4 H )?
\[
\begin{aligned}
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{A}\right)=\theta_{A}{ }^{4}\left(1-\theta_{A}\right)^{6}=0.35^{4} \bullet 0.65^{6} \approx 0.00113> \\
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{B}\right)=\theta_{B}^{4}\left(1-\theta_{B}\right)^{6}=0.80^{4} \bullet 0.20^{6} \approx 0.00003
\end{aligned}
\]

\section*{From Data \& Parameters to HiddenVector}

Data HiddenVector Parameters \(=\left(\theta_{A}, \theta\right)\)
0.4
0.9
0.8
\(\boldsymbol{?} \longleftarrow(0.35,0.80)\)
\(\boldsymbol{?} \longleftarrow(0.35,0.80)\)
0.3
0.7
1
?
?
?

Which coin is more likely to generate the \(1{ }^{\text {st }}\) sequence (with 4 H )?
\[
\begin{aligned}
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{A}\right)=\theta_{A}{ }^{4}\left(1-\theta_{A}\right)^{6}=0.35^{4} \cdot 0.65^{6} \approx 0.00113> \\
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{B}\right)=\theta_{B}^{4}\left(1-\theta_{B}\right)^{6}=0.80^{4} \cdot 0.20^{6} \approx 0.00003
\end{aligned}
\]

\section*{From Data \& Parameters to HiddenVector}

Data HiddenVector Parameters \(=\left(\theta_{A}, \theta_{B}\right)\)
0.4
0.9
0.8
\(\boldsymbol{?} \longleftarrow(0.35,0.80)\)
\(\boldsymbol{?} \longleftarrow(0.35,0.80)\)
0.3
0.7
1
?
?
?

Which coin is more likely to generate the \(2^{\text {nd }}\) sequence (with 9 H )?
\[
\begin{aligned}
& \operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{A}\right)=\theta_{A}{ }^{9}\left(1-\theta_{A}\right)^{1}=0.35^{9} \bullet 0.65^{1} \approx 0.00005< \\
& \operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{B}\right)=\theta_{B}{ }^{9}\left(1-\theta_{B}\right)^{1}=0.80^{9} \bullet 0.20^{1} \approx 0.02684
\end{aligned}
\]

\section*{From Data \& Parameters to HiddenVector}

Data HiddenVector Parameters \(=\left(\theta_{A}, \theta_{B}\right)\)
0.4
0.9
0.8
?
\(\boldsymbol{?} \longleftarrow(0.35,0.80)\)
0.3
0.7
1
0
?
?

Which coin is more likely to generate the \(2^{\text {nd }}\) sequence (with 9 H )?
\[
\operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{A}\right)=\theta_{A}{ }^{9}\left(1-\theta_{A}\right)^{1}=0.35^{9} \bullet 0.65^{1} \approx 0.00005<
\]
\[
\operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{B}\right)=\theta_{B}{ }^{9}\left(1-\theta_{B}\right)^{1}=0.80^{9} \bullet 0.20^{1} \approx 0.02684
\]

\section*{HiddenVector Reconstructed!}

\section*{Data HiddenVector Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) \\ 0.4 \\ 0.9 \\ 0.8 \\ 0.3 \\ 0.7 \\ 1 \\ 0 \\ \(0 \longleftarrow(0.35,0.80)\) \\ 1 \\ 0}

\section*{Reconstructing HiddenVector and Parameters}


\section*{Reconstructing HiddenVector and Parameters}


\section*{Reconstructing HiddenVector and Parameters}


\section*{Reconstructing HiddenVector and Parameters}


\section*{From Coin Flipping to k-means Clustering:}

Where Are Data, HiddenVector, and Parameters?

\section*{Data: data points Data \(=\left(\right.\) Data \(_{1}, \ldots\), Data \(\left._{n}\right)\)}

Parameters: Centers \(=\left(\right.\) Center \(_{1}, \ldots\), Center \(\left._{k}\right)\)
HiddenVector: assignments of data points to \(k\) centers ( \(n\)-dimensional vector with coordinates varying from 1 to \(k\) ).

\section*{Coin Flipping and Soft Clustering}
- Coin flipping: how would you select between coins \(A\) and \(B\) if \(\operatorname{Pr}\left(\right.\) sequence \(\left.\mid \theta_{A}\right)=\operatorname{Pr}\left(\right.\) sequence \(\left.\mid \theta_{B}\right)\) ?
- \(\boldsymbol{k}\)-means clustering: what cluster would you assign a data point it to if it is a midpoint of centers \(C_{1}\) and \(C_{2}\) ?


Soft assignments: assigning \(C_{1}\) and \(C_{2}\) "responsibility" \(\approx 0.5\) for a midpoint.

\section*{From Data \& Parameters to HiddenVector}
\begin{tabular}{ccc} 
Data & HiddenVector & Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) \\
\(\mathbf{0 . 4}\) & \(\boldsymbol{?}\) & \\
0.9 & \(?\) & \\
0.8 & \(?\) & \(\leftarrow(0.60,0.82)\) \\
0.3 & \(?\) & \\
0.7 & \(?\) &
\end{tabular}

Which coin is more likely to have generated the first sequence (with 4 H )?
```

Pr(1 1st sequence }|\mp@subsup{0}{A}{})=\mp@subsup{0}{A}{5}(1-\mp@subsup{0}{A}{}\mp@subsup{)}{}{5}=0.6\mp@subsup{0}{}{4}\bullet0.4\mp@subsup{0}{}{6}\approx0.000531
Pr(1 st sequence }|\mp@subsup{0}{B}{})=\mp@subsup{0}{B}{5}(1-\mp@subsup{0}{B}{}\mp@subsup{)}{}{5}=0.8\mp@subsup{2}{}{4}\bullet0.1\mp@subsup{8}{}{6}\approx0.00001

```

\section*{Memory Flash:}

From Data \& Parameters to HiddenVector
\begin{tabular}{ccc} 
Data & HiddenVector & Parameters \(=\left(\theta_{A}, \theta_{B}\right)\) \\
\(\mathbf{0 . 4}\) & \(\mathbf{1}\) & \\
\(\mathbf{0 . 9}\) & \(\boldsymbol{?}\) & \\
\(\mathbf{0 . 8}\) & \(\boldsymbol{?}\) & \(\leftarrow(0.60,0.82)\) \\
\(\mathbf{0 . 3}\) & \(\boldsymbol{?}\) & \\
\(\mathbf{0 . 7}\) & \(\boldsymbol{?}\) &
\end{tabular}

Which coin is more likely to have generated the first sequence (with 4 H )?
```

Pr}(\mp@subsup{1}{}{\mathrm{ st }}\mathrm{ sequence }|\mp@subsup{0}{\textrm{A}}{})=\mp@subsup{0}{\textrm{A}}{}\mp@subsup{}{}{5}(1-\mp@subsup{0}{\textrm{A}}{}\mp@subsup{)}{}{5}=0.604\bullet0.4\mp@subsup{0}{}{6}\approx0.000531
Pr(}\mp@subsup{1}{}{\mathrm{ st }}\mathrm{ sequence }|\mp@subsup{0}{B}{})=\mp@subsup{0}{B}{5}(1-\mp@subsup{0}{B}{}\mp@subsup{)}{}{5}=0.8\mp@subsup{2}{}{4}\bullet0.186\approx0.00001

```

\section*{From Data \& Parameters to HiddenMatrix}
\[
\begin{array}{ccc}
\text { Data } & \text { HiddenMatrix } & \text { Parameters }=\left(\theta_{A}, \theta_{B}\right) \\
\mathbf{0 . 4} & 0.97 & 0.03 \\
\mathbf{0 . 9} & \mathbf{?} & \\
\mathbf{0 . 8} & \boldsymbol{?} & \leftarrow \\
\mathbf{0 . 3} & \mathbf{?} & \\
\mathbf{0 . 3} & \boldsymbol{?} &
\end{array}
\]

What are the responsibilities of coins for this sequence?
\[
\begin{aligned}
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{A}\right) \approx 0.000531> \\
& \operatorname{Pr}\left(1^{\text {st }} \text { sequence } \mid \theta_{B}\right) \approx 0.000015
\end{aligned}
\]
\[
\begin{aligned}
& 0.000531 /(0.000531+0.000015) \approx 0.97 \\
& 0.000015 /(0.000531+0.000015) \approx 0.03
\end{aligned}
\]

\section*{From Data \& Parameters to HiddenMatrix}

Data HiddenMatrix Parameters \(=\left(\theta_{A}, \theta_{B}{ }^{\prime}\right.\) \(0.4 \quad 0.97 \quad 0.03\)
\(0.9 \quad 0.12 \quad 0.88\)
\(0.8 \quad ? \quad \leftarrow(0.60,0.82)\)
0.3 ? 0.7 ?

What are the responsibilities of coins for the \(2^{\text {nd }}\) sequence?
\[
\begin{aligned}
& \operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{A}\right) \approx 0.0040< \\
& \operatorname{Pr}\left(2^{\text {nd }} \text { sequence } \mid \theta_{B}\right) \approx 0.0302
\end{aligned}
\]
\[
\begin{aligned}
& 0.0040 /(0.0040+0.0302)=0.12 \\
& 0.0342 /(0.0040+0.0342)=0.88
\end{aligned}
\]

\section*{HiddenMatrix Reconstructed!}
\[

\]

\section*{Expectation Maximization Algorithm}


\section*{E-step}


\section*{M-step}


\section*{Memory Flash: Dot Product}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Data} & HiddenVector & Parameters= \(\left(\theta_{A}, \theta_{B}\right)\) \\
\hline HTTTHTTHTH & 0.4 & * & 1 & \\
\hline ННННТННННН & 0.9 & * & 0 & \\
\hline НТНННННТНН & 0.8 & * & 0 & ??? \\
\hline HTTTTTHНTT & 0.3 & * & 1 & \\
\hline THHHTHHHTH & 0.7 & * & 0 & \\
\hline \(\theta_{\text {A }}=\) Data & Hidden & ector & / 1 & HiddenVector \\
\hline \(\theta_{B}=\) Data \(\quad *(1\) & -Hidden & ector) & ) / 1 * & (1-HiddenVector) \\
\hline
\end{tabular}

\section*{From Data \& HiddenMatrix to Parameters}


\section*{From Data \& HiddenMatrix to Parameters}

Data HiddenVector Parameters \(=\left(\theta_{A}, \theta_{B}\right)\)


ННННТННННН
НТНННННТНН
НТТТТТННТТ ТНННТНННТН
\(\theta_{A}=\) Data \(\quad *\)
0.4
0.9
0.8
0.3
0.7

HiddenVector

1
0
0
1
0
\[
\theta_{\text {A }}=\text { Data } * 1^{\text {st }} \text { row of HiddenMatrix / } \mathbf{1}^{*} 1 \text { st row of HiddenMatrix }
\]
\[
\theta_{B}=\text { Data } \quad *(\mathbf{1} \text {-HiddenVector }) \quad / \mathbf{1} *(\mathbf{1} \text {-HiddenVector })
\]
\[
\theta_{B}=\text { Data } * 2^{\text {nd }} \text { row of HiddenMatrix / 1*2nd row of HiddenMatrix }
\]
\[
\text { HiddenVector }=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0
\end{array}\right)
\]
\[
\text { Hidden Matrix }=\begin{array}{lllll}
1 & 0 & 0 & 1 & 0=\text { HiddenVector } \\
0 & 1 & 1 & 0 & 1=1-\text { HiddenVector }
\end{array}
\]

\section*{From Data \& HiddenMatrix to Parameters}

Data HiddenMatrix Parameters \(=\left(\theta_{A}, \theta_{B}\right)\)


\section*{From HiddenVector to HiddenMatrix}

Data: data points Data \(=\left\{\right.\) Data \(_{1}, \ldots\), Data \(\left._{n}\right\}\)
Parameters: Centers \(=\left\{\right.\) Center \(_{1}, \ldots\), Center \(\left._{k}\right\}\)
HiddenVector: assignments of data points to centers

HiddenVector
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ C } & \multicolumn{1}{c}{ D } & \multicolumn{2}{c}{ F } \\
\hline H & \multicolumn{1}{c}{} \\
\hline
\end{tabular}

HiddenMatrix


\section*{From HiddenVector to HiddenMatrix}

Data: data points Data \(=\left\{\right.\) Data \(_{1}, \ldots\), Data \(\left._{n}\right\}\)
Parameters: Centers \(=\left\{\right.\) Center \(_{1,}, \ldots\), Center \(\left._{k}\right\}\)
HiddenMatrix inj \(^{\text {: }}\) responsibility of center \(i\) for data point \(j\)

HiddenMatrix


\section*{From HiddenVector to HiddenMatrix}

Data: data points Data \(=\left\{\right.\) Data \(_{1}, \ldots\), Data \(\left._{n}\right\}\)
Parameters: Centers \(=\left\{\right.\) Center \(_{1}, \ldots\), Center \(\left._{k}\right\}\) HiddenMatrix i,j \(^{\text {: }}\) responsibility of center \(i\) for data point \(j\)


\section*{Responsibilities and the Law of Gravitation}

planets
stars
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 0.70 & 0.15 & 0.73 & 0.40 & 0.15 & 0.80 & 0.05 & 0.05 \\
\hline 0.20 & 0.80 & 0.17 & 0.20 & 0.80 & 0.10 & 0.05 & 0.20 \\
\hline 0.10 & 0.05 & 0.10 & 0.40 & 0.05 & 0.10 & 0.90 & 0.75 \\
\hline
\end{tabular}
responsibility of star \(i\) for a planet \(j\) is proportional to the pull (Newtonian law of gravitation):
\[
\text { Force }_{i, j}=1 / \text { distance }^{\left(\text {Data }_{j}, \text { Center }_{\mathrm{i}}\right)^{2} \text {. }{ }^{2} \text {. }}
\]

> HiddenMatrix \(_{i j}:=\)
> Force \(_{i, j} / \sum_{\text {all centers } j}\) Force \(_{i, j}\)

\section*{Responsibilities and Statistical Mechanics}
data points
centers \begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 0.70 & 0.15 & 0.73 & 0.40 & 0.15 & 0.80 & 0.05 & 0.05 \\
\cline { 2 - 9 } & 0.20 & 0.80 & 0.17 & 0.20 & 0.80 & 0.10 & 0.05 \\
0.10 & 0.20 \\
\cline { 2 - 9 } & 0.10 & 0.05 & 0.10 & 0.40 & 0.05 & 0.10 & 0.90 \\
0.75 \\
\hline
\end{tabular}
responsibility of center \(i\) for a data point \(j\) is proportional to
\[
\text { Force }_{i, j}=e^{-\beta \cdot d i s t a n c e(D a t a j, ~ C e n t e r i) ~}
\]
where \(\beta\) is a stiffness parameter.

> HiddenMatrix \(_{i j}:=\)
> Force \(_{i, j} / \sum_{\text {all centers } j}\) Force \(_{i, j}\)

\section*{How Does Stiffness Affect Clustering?}


Hard \(k\)-means clustering


Soft \(k\)-means clustering (stiffness \(\beta=1\) )


Soft \(k\)-means clustering (stiffness \(\beta=0.3\) )

\section*{Stratification of Clusters}

Clusters often have subclusters, which have subsubclusters, and so on.


\section*{Stratification of Clusters}

Clusters often have subclusters, which have subsubclusters, and so on.


\section*{From Data to a Tree}

To capture stratification, the hierarchical clustering algorithm organizes \(n\) data points into a tree.


\section*{From a Tree to a Partition into 4 Clusters}

To capture stratification, the hierarchical clustering algorithm organizes \(n\) data points into a tree.


\section*{From a Tree to a Partition into 6 Clusters}

To capture stratification, the hierarchical clustering algorithm first organizes \(n\) data points into a tree.


\section*{Constructing the Tree}

Hierarchical clustering starts from a transformation of \(n x\) expression matrix into \(n \times n\) similarity matrix or distance matrix.


Distance Matrix
\begin{tabular}{lcccccccccc} 
& \(\boldsymbol{g}_{\mathbf{1}}\) & \(\boldsymbol{g}_{\mathbf{2}}\) & \(\boldsymbol{g}_{\mathbf{3}}\) & \(\boldsymbol{g}_{4}\) & \(\boldsymbol{g}_{\mathbf{5}}\) & \(\boldsymbol{g}_{6}\) & \(\boldsymbol{g}_{7}\) & \(\boldsymbol{g}_{\mathbf{8}}\) & \(\boldsymbol{g}_{9}\) & \(\boldsymbol{g}_{\mathbf{1 0}}\) \\
\(\boldsymbol{g}_{\mathbf{1}}\) & 0.0 & 8.1 & 9.2 & 7.7 & 9.3 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\(\boldsymbol{g}_{\mathbf{2}}\) & 8.1 & 0.0 & 12.0 & 0.9 & 12.0 & 9.5 & 10.1 & 12.8 & 2.0 & 1.0 \\
\(\boldsymbol{g}_{\mathbf{3}}\) & 9.2 & 12.0 & 0.0 & 11.2 & 0.7 & 11.1 & 8.1 & 1.1 & 10.5 & 11.5 \\
\(\boldsymbol{g}_{\mathbf{4}}\) & 7.7 & 0.9 & 11.2 & 0.0 & 11.2 & 9.2 & 9.5 & 12.0 & 1.6 & 1.1 \\
\(\boldsymbol{g}_{\mathbf{5}}\) & 9.3 & 12.0 & 0.7 & 11.2 & 0.0 & 11.2 & 8.5 & 1.0 & 10.6 & 11.6 \\
\(\boldsymbol{g}_{\mathbf{6}}\) & 2.3 & 9.5 & 11.1 & 9.2 & 11.2 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\(\boldsymbol{g}_{\mathbf{7}}\) & 5.1 & 10.1 & 8.1 & 9.5 & 8.5 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\(\boldsymbol{g}_{\mathbf{8}}\) & 10.2 & 12.8 & 1.1 & 12.0 & 1.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\(\boldsymbol{g}_{\mathbf{9}}\) & 6.1 & 2.0 & 10.5 & 1.6 & 10.6 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\(\boldsymbol{g}_{\mathbf{1 0}}\) & 7.0 & 1.0 & 11.5 & 1.1 & 11.6 & 8.5 & 9.3 & 12.4 & 1.1 & 0.0
\end{tabular}

\section*{Constructing the Tree}

Identify the two closest clusters and merge them.

\begin{tabular}{ccccccccccc} 
& \(\boldsymbol{g}_{\mathbf{1}}\) & \(\boldsymbol{g}_{\mathbf{2}}\) & \(\boldsymbol{g}_{\mathbf{3}}\) & \(\boldsymbol{g}_{\mathbf{4}}\) & \(\boldsymbol{g}_{5}\) & \(\boldsymbol{g}_{\mathbf{6}}\) & \(\boldsymbol{g}_{7}\) & \(\boldsymbol{g}_{\mathbf{8}}\) & \(\boldsymbol{g}_{\mathbf{9}}\) & \(\boldsymbol{g}_{\mathbf{1 0}}\) \\
\(\boldsymbol{g}_{\mathbf{1}}\) & 0.0 & 8.1 & 9.2 & 7.7 & 9.3 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\(\boldsymbol{g}_{\mathbf{2}}\) & 8.1 & 0.0 & 12.0 & 0.9 & 12.0 & 9.5 & 10.1 & 12.8 & 2.0 & 1.0 \\
\(\boldsymbol{g}_{3}\) & 9.2 & 12.0 & 0.0 & 11.2 & 0.7 & 11.1 & 8.1 & 1.1 & 10.5 & 11.5 \\
\(\boldsymbol{g}_{\mathbf{4}}\) & 7.7 & 0.9 & 11.2 & 0.0 & 11.2 & 9.2 & 9.5 & 12.0 & 1.6 & 1.1 \\
\(\boldsymbol{g}_{\mathbf{5}}\) & 9.3 & 12.0 & 0.7 & 11.2 & 0.0 & 11.2 & 8.5 & 1.0 & 10.6 & 11.6 \\
\(\boldsymbol{g}_{\mathbf{6}}\) & 2.3 & 9.5 & 11.1 & 9.2 & 11.2 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\(\boldsymbol{g}_{\mathbf{7}}\) & 5.1 & 10.1 & 8.1 & 9.5 & 8.5 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\(\boldsymbol{g}_{\mathbf{8}}\) & 10.2 & 12.8 & 1.1 & 12.0 & 1.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\(\boldsymbol{g}_{\mathbf{9}}\) & 6.1 & 2.0 & 10.5 & 1.6 & 10.6 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\(\boldsymbol{g}_{\mathbf{1 0}}\) & 7.0 & 1.0 & 11.5 & 1.1 & 11.6 & 8.5 & 9.3 & 12.4 & 1.1 & 0.0
\end{tabular}

\section*{Constructing the Tree}

Recompute the distance between two clusters as average distance between elements in the cluster.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \(g_{1}\) & \(g_{2}\) & \(g_{3} g_{5}\) & \(g_{4}\) & \(\mathrm{g}_{6}\) & \(g_{7}\) & \(g_{8}\) & \(g\) & \(\mathrm{g}_{10}\) \\
\hline & \(g_{1}\) & 0.0 & 8.1 & 9.2 & 7.7 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\hline & \(g_{2}\) & 8.1 & 0.0 & 12.0 & 0.9 & 9.5 & 10.1 & 12.8 & 2.0 & 1.0 \\
\hline & \(g_{3} g_{5}\) & 9.2 & 12.0 & 0.0 & 11.2 & 11.1 & 8.1 & 1.0 & 10.5 & 11.5 \\
\hline & \(g_{4}\) & 7.7 & 0.9 & 11.2 & 0.0 & 9.2 & 9.5 & 12.0 & 1.6 & 1.1 \\
\hline & \(\mathrm{g}_{6}\) & 2.3 & 9.5 & 11.1 & 9.2 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\hline \(\left\{g_{3}, g_{5}\right\}\) & \(g_{7}\) & 5.1 & 10.1 & 8.1 & 9.5 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\hline \(\left.{ }^{+}\right]\) & \(\mathrm{g}_{8}\) & 10.2 & 12.8 & 1.0 & 12.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\hline  & \(g_{9}\) & 6.1 & 2.0 & 10.5 & 1.6 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\hline \(\begin{array}{llllllllllll}g_{3} & g_{5} & g_{8} & g_{7} & g_{1} & g_{6} & g_{10} & g_{2} & g_{4} & g_{9}\end{array}\) & \(g_{10}\) & 7.0 & 1.0 & 11.5 & 1.1 & 8.5 & 9.3 & 12.4 & 1.1 & 0.0 \\
\hline
\end{tabular}

\section*{Constructing the Tree}

Identify the two closest clusters and merge them.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \(\mathrm{g}_{1}\) & \(g_{2}\) & \(g_{3} g_{5}\) & \(g_{4}\) & \(\mathrm{g}_{6}\) & \({ }_{7}\) & \(\mathrm{g}_{8}\) & \(g\) & \(g_{10}\) \\
\hline & \(g_{1}\) & 0.0 & 8.1 & 9.2 & 7.7 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\hline & \(g_{2}\) & 8.1 & 0.0 & 12.0 & 0.9 & 9.5 & 10.1 & 12.8 & 2.0 & 1.0 \\
\hline & \(g_{3} g_{5}\) & 9.2 & 12.0 & 0.0 & 11.2 & 11.1 & 8.1 & 1.0 & 10.5 & 11.5 \\
\hline \(\left\{g_{2}, g_{4}\right\}\) & \(g_{4}\) & 7.7 & 0.9 & 11.2 & 0.0 & 9.2 & 9.5 & 12.0 & 1.6 & 1.1 \\
\hline \({ }^{+}\) & \(\mathrm{g}_{6}\) & 2.3 & 9.5 & 11.1 & 9.2 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\hline \(\left\{g_{3}, g_{5}\right\}\) & \(g_{7}\) & 5.1 & 10.1 & 8.1 & 9.5 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\hline \(\left.{ }^{\bullet}\right]\) & \(\mathrm{g}_{8}\) & 10.2 & 12.8 & 1.0 & 12.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\hline - \(0 \bullet \bullet \bullet \bullet 00\) & \({ }_{9}\) & 6.1 & 2.0 & 10.5 & 1.6 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\hline \(\begin{array}{llllllllll}g_{3} & g_{5} & g_{8} & g_{7} & g_{1} & g_{6} & g_{10} & g_{2} & g_{4} & g_{9}\end{array}\) & \(g_{10}\) & 7.0 & 1.0 & 11.5 & 1.1 & 8.5 & 9.3 & 12.4 & 1.1 & 0.0 \\
\hline
\end{tabular}

\section*{Constructing the Tree}

Recompute the distance between two clusters (as average distance between elements in the cluster).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \(g_{1}\) & \(g_{2}{ }_{2} g_{4}\) & \(g_{3}, g_{5}\) & \(g_{6}\) & \(g_{7}\) & \(g_{8}\) & \(g_{9}\) & \(g_{10}\) \\
\hline & & \(g_{1}\) & 0.0 & 7.7 & 9.2 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\hline & & \(g_{2} g_{4}\) & 7.7 & 0.0 & 11.2 & 9.2 & 9.5 & 12.0 & 1.6 & 1.0 \\
\hline & & \(g_{3}, g_{5}\) & 9.2 & 11.2 & 0.0 & 11.1 & 8.1 & 1.0 & 10.5 & 1.5 \\
\hline & \(\left\{g_{2}, g_{4}\right\}\) & \(\mathrm{g}_{6}\) & 2.3 & 9.2 & 11.1 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\hline & \({ }^{\circ}\) & \(g_{7}\) & 5.1 & 9.5 & 8.1 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\hline \(\left\{g_{3}, g_{5}\right\}\) & & \(g_{8}\) & 10.2 & 12.0 & 1.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\hline \(\cdots\) & & \(g_{9}\) & 6.1 & 1.6 & 10.5 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\hline &  & \(g_{10}\) & 7.0 & 1.0 & 11.5 & 8.5 & 9.3 & 12.4 & 1.1 & \\
\hline \(g_{3} \quad g_{5}\) & \(g_{2} g_{4}\) & & & & & & & & & \\
\hline
\end{tabular}

\section*{Constructing the Tree}

Identify the two closest clusters and merge them.

\begin{tabular}{rcccccccc} 
& \(\boldsymbol{g}_{\mathbf{1}}\) & \(\boldsymbol{g}_{\mathbf{2},} \boldsymbol{g}_{\mathbf{4}}\) & \(\boldsymbol{g}_{3}, \boldsymbol{g}_{\mathbf{5}}\) & \(\boldsymbol{g}_{\mathbf{6}}\) & \(\boldsymbol{g}_{\mathbf{7}}\) & \(\boldsymbol{g}_{8}\) & \(\boldsymbol{g}_{\mathbf{9}}\) & \(\boldsymbol{g}_{\mathbf{1 0}}\) \\
\(\boldsymbol{g}_{\mathbf{1}}\) & 0.0 & 7.7 & 9.2 & 2.3 & 5.1 & 10.2 & 6.1 & 7.0 \\
\(\boldsymbol{g}_{\mathbf{2},} \boldsymbol{g}_{\mathbf{4}}\) & 7.7 & 0.0 & 11.2 & 9.2 & 9.5 & 12.0 & 1.6 & 1.0 \\
\(\boldsymbol{g}_{3,} \boldsymbol{g}_{5}\) & 9.2 & 11.2 & 0.0 & 11.1 & 8.1 & \(\mathbf{1 . 0}\) & 10.5 & 11.5 \\
\(\boldsymbol{g}_{\mathbf{6}}\) & 2.3 & 9.2 & 11.1 & 0.0 & 5.6 & 12.1 & 7.7 & 8.5 \\
\(\boldsymbol{g}_{7}\) & 5.1 & 9.5 & 8.1 & 5.6 & 0.0 & 9.1 & 8.3 & 9.3 \\
\(\boldsymbol{g}_{\mathbf{8}}\) & 10.2 & 12.0 & 1.0 & 12.1 & 9.1 & 0.0 & 11.4 & 12.4 \\
\(\boldsymbol{g}_{\mathbf{9}}\) & 6.1 & 1.6 & 10.5 & 7.7 & 8.3 & 11.4 & 0.0 & 1.1 \\
\(\boldsymbol{g}_{\mathbf{1 0}}\) & 7.0 & 1.0 & 11.5 & 8.5 & 9.3 & 12.4 & 1.1 & 0.0
\end{tabular}

\section*{Constructing the Tree}

Iterate until all elements form a single cluster (root).


\section*{Constructing a Tree from a Distance Matrix \(D\)}

HierarchicalClustering ( \(D, n\) )
Clusters \(\leftarrow n\) single-element clusters labeled 1 to \(n\) \(T \leftarrow\) a graph with the \(n\) isolated nodes labeled 1 to \(n\)
while there is more than one cluster
find the two closest clusters \(C_{i}\) and \(C_{j}\)
merge \(C_{i}\) and \(C_{j}\) into a new cluster \(C_{\text {new }}\) with \(\left|C_{i}\right|+\left|C_{j}\right|\) elements
add a new node labeled by cluster \(C_{\text {new }}\) to \(T\)
connect node \(C_{\text {new }}\) to \(C_{i}\) and \(C_{j}\) by directed edges
remove the rows and columns of \(D\) corresponding to \(C_{i}\) and \(C_{j}\)
remove \(C_{i}\) and \(C_{j}\) from Clusters
add a row and column to \(D\) for the cluster \(C_{\text {new }}\) by computing
\(D\left(C_{\text {new }}, C\right)\) for each cluster \(C\) in Clusters
add \(C_{\text {new }}\) to Clusters
assign root in \(T\) as a node with no incoming edges
return \(T\)

\section*{Different Distance Functions Result in Different Trees}

Average distance between elements of two clusters:
\(D_{\text {avg }}\left(C_{1}, C_{2}\right)=\left(\sum_{\text {all points } i \text { and } j \text { in clusters } C 1 \text { and } C 2, \text { respectively }} D_{i, j}\right) /\left(\left|C_{1}\right|^{*}\left|C_{2}\right|\right)\)

Minimum distance between elements of two clusters:
\(D_{\min }\left(C_{1}, C_{2}\right)=\min\) all points \(i\) and \(j\) in clusters \(C 1\) and \(C 2\), respectively \(D_{i, j}\)

\section*{Clusters Constructed by HierarchicalClustering}





\section*{Markov Clustering Algorithm}

Unlike most clustering algorithms, the MCL (micans.org/ mcl ) does not require the number of expected clusters to be specified beforehand. The basic idea underlying the algorithm is that dense clusters correspond to regions with a larger number of paths.

You can find the code at micans.org/mcl

Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002 30:1575-84.

\section*{Markov Clustering Algorithm}

We take a random walk on the graph described by the similarity matrix, but after each step we weaken the links between distant nodes and strengthen the links between nearby nodes.
A random walk has a higher probability to stay inside the cluster than to leave it soon. The crucial point lies in boosting this effect by an iterative alternation of expansion and inflation steps. An inflation parameter is responsible for both strengthening and weakening of current, i.e. Strengthens strong currents, and weakens already weak currents. An expansion parameter, \(r\), controls the extent of this strengthening / weakening. In the end, this influences the granularity of clusters.

\section*{Markov Clustering Algorithm}

\section*{Matrix representation}

\begin{tabular}{llllllllllllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular} 0

\section*{Markov Clustering Algorithm}
(1) Input is an un-directed graph, with power parameter e (usually \(=2\) ), and inflation parameter r (usually =2).
(2) Create the associated adjacency matrix
(3) Normalize the matrix; \(M_{p q}^{\prime}=\frac{M_{p q}}{\sum_{i} M_{i q}}\)
(4) Expand by taking the e-th power of the matrix; for example, if \(e=2\) just multiply the matrix by itself.
(3) Inflate by taking inflation of the resulting matrix with parameter \(r\) : \(M_{p q}=\frac{\left(M_{p q}\right)^{r}}{\sum_{i}\left(M_{i q}\right)^{r}}\)
(6) Repeat steps 4 and 5 until a steady state is reached (convergence).

\section*{Markov Clustering Algorithm}


\section*{Markov Clustering Algorithm}

The number of steps to converge is not proven, but experimentally shown to be 10 to 100 steps, and mostly consist of sparse matrices after the first few steps.

The expansion step of MCL has time complexity \(\mathbf{O}\left(\mathbf{n}^{3}\right)\). The inflation has complexity \(\mathbf{O}\left(n^{2}\right)\). However, the matrices are generally very sparse, or at least the vast majority of the entries are near zero. Pruning in MCL involves setting near-zero matrix entries to zero, and can allow sparse matrix operations to improve the speed of the algorithm vastly.

\section*{Markov Clustering Algorithm}
```

Input : A weighted undirected graph $G=(V, E)$, expansion parameter e, inflation
parameter r
Output : A partitioning of V into disjoint components
$M \leftarrow M(G)$
while M is not fixpoint do
$M \leftarrow M^{e}$
forall $i \in V$ do
forall $j \in V$ do
$\left\llcorner M[i][j] \leftarrow M[i][j]^{r}\right.$
forall $j \in V$ do
$M[i][j] \leftarrow \frac{M[i][j]}{\sum_{k \in V} M[i][k]}$
$H \leftarrow$ graph induced by non-zero entries of M
$C \leftarrow$ clustering induced by connected components of H

```

\section*{Stochastic Neighbor Embedding : key points}

A popular method for exploring high-dimensional data is something called t-SNE, introduced by van der Maaten and Hinton in 2008. The technique has become widespread in the field of machine learning, since it has an almost magical ability to create compelling two-dimensonal "maps" from data with hundreds or even thousands of dimensions.

The goal is to take a set of points in a high-dimensional space and find a faithful representation of those points in a lower-dimensional space, typically the 2D plane. The algorithm is non-linear and adapts to the underlying data, performing different transformations on different regions. Those differences can be a major source of confusion.

\section*{Stochastic Neighbor Embedding : key points}

A second feature of \(t-S N E\) is a tuneable parameter, "perplexity," which says (loosely) how to balance attention between local and global aspects of your data. The parameter is, in a sense, a guess about the number of close neighbors each point has. The original paper says, "The performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5 and 50 ." But the story is more nuanced than that. Getting the most from t-SNE may mean analyzing multiple plots with different perplexities.

\section*{Stochastic Neighbor Embedding : key points}

\section*{learn}

scikit-learn v0.20.0 Other versions
Please cite us if you use the software.
t-SNE: The effect of various perplexity values on the shape

\section*{Home Installation Documentation Examples}

Google Custom Search \(\square\)
\(\square\)

Note: Click here to download the full example code

\section*{t-SNE: The effect of various perplexity values on the shape}

An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values.
We observe a tendency towards clearer shapes as the preplexity value increases.
The size, the distance and the shape of clusters may vary upon initialization, perplexity values and does not always convey a meaning.

As shown below, t-SNE for higher perplexities finds meaningful topology of two concentric circles, however the size and the distance of the circles varies slightly from the original. Contrary to the two circles dataset, the shapes visually diverge from S-curve topology on the S-curve dataset even for larger perplexity values.

For further details, "How to Use t-SNE Effectively" http://distill.pub/2016/misread-tsne/ provides a good discussion of the effects of various parameters, as well as interactive plots to explore those effects.


\section*{Stochastic Neighbor Embedding : key points}

First convert each high-dimensional similarity into the probability that one data point will pick the other data point as its neighbor. To evaluate a map:
- Use the pairwise distances in the low-dimensional map to define the probability that a map point will pick another map point as its neighbor.
- Compute the Kullback-Leibler divergence between the probabilities in the high-dimensional and lowdimensional spaces.
- Each point in high-Dimension has a conditional probability of picking each other point as its neighbor.
- The distribution over neighbors is based on the highDimension pairwise distances.

\section*{Stochastic Neighbor Embedding}


Evaluate this representation by seeing how well the low-Dimension probabilities model the high-Dimension ones.

\section*{Stochastic Neighbor Embedding}

Stochastic Neighbor Embedding (SNE) is the process of constructing conditional probabilities representing the similarity between high dimensional data points using their Euclidean distances. The conditional probability \(\mathrm{p}_{\mathrm{j} \mid \mathrm{i}}\) for points \(\mathrm{x}_{\mathrm{j}}\) and \(\mathrm{x}_{\mathrm{i}}\) is defined by the equation
\[
p_{j \mid i}=\frac{\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma_{i}^{2}}\right)}{\sum_{k \neq i} \exp \left(\frac{-\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma_{i}^{2}}\right)}
\]

\section*{Stochastic Neighbor Embedding}

Similarity is ultimately the probability that \(\mathrm{x}_{\mathrm{i}}\) would define \(\mathrm{x}_{\mathrm{j}}\) as a neighbor, in which a neighborhood is defined by a Gaussian probability density centered at \(\mathrm{x}_{\mathrm{i}}\). where \(\sigma_{\mathrm{i}}\) is the variance of the \(x_{i}\)-centered distribution.

A large \(p_{\mathrm{j} \mid \mathrm{i}}\) is indicative of close, or similar, data points, and a very small \(p_{j \mid i}\) means that \(x_{j}\) is not likely a neighbor of \(x_{i}\).

Instead of using a Gaussian distribution, t-SNE assumes the closely-related Student-t distribution to compute the pairwise conditional probabilities in a low-dimensional space more efficiently.

\section*{Stochastic Neighbor Embedding}

The t-SNE algorithm improves upon the original SNE algorithm by implementing a cost function with a simpler gradient that uses the Kullback-Leibler divergence (DKL) between the high-dimensional joint probability distribution P and a low-dimensional Student-t based joint probability distribution Q (Equation 2) . The gradient is explicitly defined in Equation 3.
equation 2
\[
q_{i j}=\frac{\left(1+\left\|x_{i}-x_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
\]
equation 3
\[
\frac{\delta C}{\delta \mathscr{Y}}=4 \sum_{j}\left(p_{i j}-q_{i j}\right)\left(y_{i}-y_{j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}
\]

\section*{Stochastic Neighbor Embedding}

With higher-dimensional data, one runs the risk of overcrowding the projection such that dissimilarities between points cannot be faithfully plotted due to a lack of space in the two-dimensional map to reduce the high-dimensional data.

The use of the heavy-tailed Student-t distribution mitigates this issue because it converts the moderate distances that, when mapped to a two-dimensional plane tend to be too close to \(x_{i}\), to probabilities that map the points an appropriately greater distance away.

\section*{Stochastic Neighbor Embedding}
```

Algorithm 1: Standard t-distributed Stochastic Neighbor Embedding Algorithm.
Data: : data set $\mathrm{X}=x_{1}, x_{2}, \ldots, x_{n}$,
cost function parameters: perplexity Perp;
optimization parameters: number of iterations T, learning rate η, momentum $\alpha(t)$;
Result: low-dimensional data representation $\mathscr{Y}^{(T)}=y_{1}, y_{2}, y_{n}$.
begin
compute pairwise affinities $p_{j \mid i}$ with perplexity Perp (Equation 1)
set $p_{i} j=\frac{p_{j i j}+p_{i j}}{2 n}$;
sample initial solution $\mathscr{Y}^{(0)}=y_{1}, y_{2}, y_{n}$ from $\mathscr{N}\left(0,10{ }_{-4} I\right)$;
for $t=1$ to T do
compute low-dimensional affinities $q_{i j}$ (Equation 2)
compute gradient $\frac{\delta C}{\delta \mathscr{y}}$ (Equation. 3)
set $\left.\mathscr{Y}{ }^{(t)}=\mathscr{Y}^{(t-1)}+\eta \frac{\delta C}{\delta \mathscr{Y}}+\alpha(t)\left(\mathscr{Y}^{t-1)}-\mathscr{Y}^{t-2}\right)\right)$;
end
end

```

\section*{References on t-SNE}
- t-SNE main paper: , L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008
- useful video: https://lvdmaaten.github.io/tsne/)https://voutu.be/ RJVL80Gg3IA?list=UUtXKDgv1AVoG88PLI8nGXmw)
- how to use: https://distill.pub/2016/misread-tsne/

How to Use t-SNE Effectively
Although extremely useful for visualizing high-dimensional data, t-SNE plots can
sometimes be mysterious or misleading. By exploring how it behaves in simple
cases, we can learn to use it more effectively.


\section*{Burrows - Wheeler Transform}


Burrows-Wheeler Aligner
\begin{tabular}{lll} 
Home \\
\hline Introduction & BWA: \\
\hline \begin{tabular}{ll} 
BWA is a software package for mapping low-divergent sequences against a large \\
reference genome, such as the human genome. It consists of three algorithms: \\
BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for
\end{tabular} & SF project page \\
Illumina sequence reads up to 100bp, while the rest two for longer sequences \\
ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as \\
long-read support and split alignment, but BWA-MEM, which is the latest, is \\
generally recommended for high-quality queries as it is faster and more accurate. \\
BWA-MEM also has better performance than BWA-backtrack for 70-100bp Illumina \\
reads.
\end{tabular}

\section*{Burrows Wheeler Transform}

Three steps: 1) Form a \(N * N\) matrix by cyclically rotating (left) the given text to form the rows of the matrix. Here we use '\$' as a sentinel (lexicographically greatest character in the alphabet and occurs exactly once in the text but it is not a must). 2) Sort the matrix according to the alphabetic order. Note that the cycle and the sort procedures of the Burrows-Wheeler induces a partial clustering of similar characters providing the means for compression. 3) The last column of the matrix is \(\operatorname{BWT}(\mathrm{T}\) ) (we need also the row number where the original string ends up).


\section*{BWT}

Property that makes BWT(T) reversible is LF Mapping: the ith occurrence of a character in Last column is same text occurrence as the ith occurrence in the First column (i.e. the sorting strategy preserves the relative order in both last column and first column).


\section*{BWT}

To recreate T from \(\mathrm{BWT}(\mathrm{T})\), repeatedly apply the rule:| \(\mathrm{T}=\mathrm{BWT}[\mathrm{LF}(\mathrm{i})\) ] + T; i = LF(i) where \(L F(i)\) maps row \(i\) to row whose first character corresponds to i"s last per LF Mapping. First step: \(S=2 ; T=\$\). Second step: \(s=L F[2]=6 ; T=g \$\). Third step: \(s=\) \(\mathrm{LF}[6]=5 ; T=c g \$\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline g & c g & acg & a acg & caacg &  \\
\hline \$acaacg & \$ acaact & \$ acaacg & \$ a caacg & \$acaacg & \$acaacg \\
\hline a acg \$ac & \(\mathbf{a}\) acg\$/c & a ac ¢ \$ c & \(\mathbf{a}\) acg \$ ac & \(a ¢-y \rightarrow c\) &  \\
\hline acaacg \$ & acaadg \$ & acaacg \$ & acaacg \$ & acascg \$ & acas \$ \\
\hline \(\mathbf{a} c \mathrm{~g} \$ \mathrm{ac} \mathbf{a}\) & \(\mathbf{a c g}\) aca & \(\mathbf{a c g \$ a c a}\) & \(a\) arcta & \(\mathbf{a c g \$ a c} \mathbf{a}\) & \(\mathbf{a}\) ¢ \({ }^{\text {acea }}\) \\
\hline calacg\$a & cofog\$a & calag an & c & calog\$a & categta \\
\hline c g \$ a ca \(\mathrm{a}^{\text {a }}\) & /\$aca & cुヶema & c g \$ ac ela & c \({ }^{\text {S }}\) aca \(\mathbf{a}\) & c g \$acala \\
\hline \(\mathbf{g}\) \$ a ca a c & \(g\) (a-a-alic & \(\mathbf{g}\) \$ ล 6 a \({ }^{\text {a }} \mathbf{c}\) & \(\mathbf{g}\) ® ล ¢ ล ล \(\mathbf{c}\) & g\$acaac & g\$ ล ¢ ล \({ }^{\text {c }}\) \\
\hline
\end{tabular}

\section*{Burrows-Wheeler Transform (BWT)}


Burrows-Wheeler Matrix (BWM)

\section*{Burrows-Wheeler Matrix}
\(\$ a c a a c g\)
aacg\$ac
acaacg
acg\$aca
caacg
cg
g\$acaa

\section*{Burrows-Wheeler Matrix}
\[
\begin{array}{lll} 
& \text { \$acaacg } \\
3 & \text { aacg\$ac } \\
1 & \text { acaacg\$ } & \\
4 & \text { acg\$aca } & \text { See the suffix array? } \\
2 & \text { caacg\$a } & \\
5 & \text { cg\$acaa } & \\
6 & \text { g\$acaac } &
\end{array}
\]

\section*{Key observation}

\section*{\(a^{1} c^{1} a^{2} a^{3} c^{2} g^{1} \$^{1}\)}

\section*{"last first (LF) mapping"}

The \(i\)-th occurrence of character X in the last column corresponds to the same text character as the \(i\)-th occurrence of \(X\) in the first column.
\({ }^{1}\) \$acaacg \({ }^{1}\)
\({ }^{2}\) aacg \({ }^{2}{ }^{1}\)
\({ }^{1}\) acaacg\$1
\({ }^{1}\) caacg\$a1
\({ }^{2}\) cy \(\$\) acaa \({ }^{3}\)
\({ }^{1}\) g\$acaac \({ }^{2}\)

\section*{Burrow Wheeler Transform}

(b)
\begin{tabular}{|c|c|c|c|c|c|}
\hline g & c 9 & acg & a acg & caacg & acaacg \\
\hline \$ a c a a c g & \$ a caac \(\mathbf{g}\) & \$ a caacg & \$ a caacg & \$ a caacg & \$ acaacg \\
\hline a acg \$ ac & a acg \$ 1 c & a acg \$ ac & a acg \$ ac & \(a=c \mid c\) & a a c g \$ ac \\
\hline \(\mathbf{a}\) caacg \$ & \(\mathbf{a c a a g}\) g \$ & a caacg \$ & acaacg \$ & acascg \$ & acaatg \$ \\
\hline \(\mathbf{a} c \mathrm{~g}\) \$ aca & \(\mathbf{a c g \% a c a}\) & \(\mathbf{a} c \mathrm{~g}\) \$ aca & a<g\$ate & \(\mathbf{a} c \mathrm{~g}\) \$ a ca & a cg \$ a ca \\
\hline caacg\$a &  & caacg \$a & c a acs \$ \(\mathbf{a}\) & caacg \$a & caccoma \\
\hline c g \$ acaa & \$ a c a \(\mathbf{a}\) & cymacta & c g \$ a c a \(\mathbf{a}\) & c g \$ a c a \(\mathbf{a}\) & c g \$ a c a \(\mathbf{a}\) \\
\hline g \$ a c a a c & g\$acarc & g \$ a c a ac & g \$ a c a a c & g \$ a caac & g \$ a c a ac \\
\hline
\end{tabular}

\section*{Genome Assembly}
- Why do we map reads?
- Using the Trie
- From a Trie to a Suffix Tree
- String Compression and the Burrows-Wheeler Transform
- Inverting Burrows-Wheeler
- Using Burrows-Wheeler for Pattern Matching
- Finding the Matched Patterns
- Setting Up Checkpoints
- Inexact Matching

\section*{Toward a Computational Problem}
- Reference genome: database genome used for comparison.
- Question: How can we assemble individual genomes efficiently using the reference?

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT

Individual

Reference

\section*{Why Not Use Assembly?}

Multiple copies of a genome

Shatter the genome into reads

Sequence the reads


AGAATATCA
Assemble the
genome with
overlapping reads

GAGAATATC
TGAGAATAT
. . .TGAGAATATCA. . .

\section*{Why Not Use Assembly?}
- Constructing a de Bruijn graph takes a lot of memory.
- Hope: a machine in a clinic that would collect and map reads in 10 minutes.

- Idea: use existing structure of reference genome to help us sequence a patient's genome.

\section*{Read Mapping}
- Read mapping: determine where each read has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT GAGGA CCACG TGA-A

Reference Reads

\section*{Why Not Use Alignment?}
- Fitting alignment: align each read Pattern to the best substring of Genome.
- Has runtime O(|Pattern| * |Genome|) for each Pattern.
- Has runtime O(|Patterns| * |Genome|) for a collection of Patterns.

\section*{Exact Pattern Matching}
- Focus on a simple question: where do the reads match the reference genome exactly?
- Single Pattern Matching Problem:
- Input: A string Pattern and a string Genome.
- Output: All positions in Genome where Pattern appears as a substring.

\section*{Exact Pattern Matching}
- Focus on a simple question: where do the reads match the reference genome exactly?
- Multiple Pattern Matching Problem:
- Input: A collection of strings Patterns and a string Genome.
- Output: All positions in Genome where a string from Patterns appears as a substring.

\section*{A Brute Force Approach}
- We can simply iterate a brute force approach method, sliding each Pattern down Genome.

\author{
panamabananas \\ Genome \\ nana \\ Pattern
}
- Note: we use words instead of DNA strings for convenience.

\section*{Brute Force Is Too Slow}
- The runtime of the brute force approach is too high!
- Single Pattern: O(|Genome | * |Pattern|)
- Multiple Patterns: O(|Genome| * |Patterns|)
- |Patterns| = combined length of Patterns

\section*{Processing Patterns into a Trie}
- Idea: combine reads into a graph. Each substring of the genome can match at most one read. So each read will correspond to a unique path through this graph.
- The resulting graph is called a trie.


\section*{Patterns}

\author{
banana \\ pan \\ and \\ nab \\ antenna \\ bandana \\ ananas \\ nana
}

\section*{Using the Trie for Pattern Matching}
- TrieMatching: Slide the trie down the genome.
- At each position, walk down the trie and see if we can reach a leaf by matching symbols.
- Analogy: bus stops

\section*{panamabananas}


\section*{Success!}
- Runtime of Brute Force:
- Total: O(|Genome|*|Patterns|)
- Runtime of Trie Matching:
- Trie Construction: O(|Patterns|)
- Pattern Matching: O(|Genome| * |

LongestPattern|)

\section*{Memory Analysis of TrieMatching}
- Son completely forgot about memory!
- Our trie: 30 edges, |Patterns| = 39
- Worst case: \# edges
= O(|Patterns|)


\section*{Preprocessing the Genome}
- What if instead we create a data structure from the genome itself?
- Split Genome into all its suffixes. (Show matching "banana" by finding the suffix "bananas".)
- How can we combine these suffixes into a data structure?
- Let's use a trie!


\section*{The Suffix Trie and Pattern Matching}
- For each Pattern, see if Pattern can be spelled out from the root downward in the suffix trie.

\section*{Memory Trouble Once Again}
- Worst case: the suffix trie holds O(|Suffixes|) nodes.
- For a Genome of length \(n\), |Suffixes \(\mid=n(n-1) / 2=O\left(n^{2}\right)\)

Suffixes
panamabananas\$ anamabananas\$ namabananas\$ amabananas\$ mabananas\$ abananas\$ bananas\$ ananas\$ nanas\$ anas\$ nas\$ as\$

\section*{Compressing the Trie}
- This doesn't mean that our idea was bad!
- To reduce memory, we can compress each "nonbranching path" of the tree into an edge.


- This data structure is called a suffix tree.
- For any Genome, \# nodes < \(2 \mid\) Genome \(\mid\).
- \# leaves = |Genome \(\mid\);
- \# internal nodes < |Genome | - 1

\section*{Runtime and Memory Analysis}
- Runtime:
\(-\mathrm{O}\left(\mid\right.\) Genome \(\left.\left.\right|^{2}\right)\) to construct the suffix tree.
- O(|Genome| + |Patterns|) to find pattern matches.
- Memory:
\(-\mathrm{O}\left(\mid\right.\) Genome \(\left.\left.\right|^{2}\right)\) to construct the suffix tree.
\(-\mathrm{O}(\mid\) Genome |) to store the suffix tree.

\section*{Runtime and Memory Analysis}
- Runtime:
- O(|Genome|) to construct the suffix tree directly.
- O(|Genome| + |Patterns|) to find pattern matches.
- Total: O(|Genome| + |Patterns|)
- Memory:
- O(|Genome|) to construct the suffix tree directly.
- O(|Genome|) to store the suffix tree.
- Total: O(|Genome| + |Patterns|)

\section*{We are Not Finished Yet}
- I am happy with the suffix tree, but I am not completely satisfied.
- Runtime: O(|Genome| + |Patterns|)
- Memory: O(|Genome|)
- However, big-O notation ignores constants!
- The best known suffix tree implementations require \(\sim 20\) times the length of |Genome|.
- Can we reduce this constant factor?

\section*{Genome Compression}
- Idea: decrease the amount of memory required to hold Genome.
- This indicates that we need methods of compressing a large genome, which is seemingly a separate problem.

\section*{Idea \#1: Run-Length Encoding}
- Run-length encoding: compresses a run of \(n\) identical symbols.

- Problem: Genomes don't have lots of runs...

\section*{Converting Repeats to Runs}
- ...but they do have lots of repeats!

\section*{Genome}

How do we do this step?
Convert repeats to runs

Genome*
Run-length encoding
CompressedGenome*

\section*{The Burrows-Wheeler Transform}
```

panamabananas\$
$panamabananas
s$panamabanana

```

n
a
m

Form all cyclic rotations of "panamabananas\$"

Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation
Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler \({ }_{57}\) transform. Bioinformatics 25:1754-60.

\section*{The Burrows-Wheeler Transform}
panamabananas
\$panamabananas s\$panamabanana as\$panamabanan nas\$panamabana anas\$panamaban nanas\$panamaba ananas\$panamab bananas\$panama abananas\$panam mabananas\$pana amabananas\$pan namabananas\$pa anamabananas\$p
\$ P a
S
a

a
n a
b
a
a
m
a

Form all cyclic rotations of "panamabananas\$"

\section*{The Burrows-Wheeler Transform}
panamabananas\$
\$panamabananas s \$panamabanana as \$panamabanan nas\$panamabana anas \$panamaban nanas\$panamaba ananas \$panamab bananas \$panama abananas\$panam mabananas\$pana amabananas\$pan namabananas\$pa anamabananas\$p
\$panamabananas abananas\$panam amabananas\$pan anamabananas\$p ananas\$panamab anas\$panamaban as\$panamabanan bananas\$panama mabananas\$pana namabananas\$pa nanas\$panamaba nas\$panamabana panamabananas \$ s\$panamabanana

Form all cyclic rotations of "panamabananas\$"

Sort the strings lexicographically
(\$ comes first)

\section*{The Burrows-Wheeler Transform}
```

panamabananas\$
\$panamaban a nas
s \$ p a n amab a n a n a
as$panamabanan
nas$panamabana
an a s \$ p a n ama b a n
nanas\$panamaba
anan a s \$pan amab
bananas \$panama
abananas \$panam
mabananas \$pana
amabananas \$pan
namabananas \$pa
anamabananassp

```
\(\$ p\) a.n a.ma.ban a.n a.s
a. b a. n a.n a.s \$ p a.n a.m
amabananas \$pan
a.n a.ma.banan a.s \$ p
an an a.s \$panamab
an a.s \$panamaban
a.s \$ panamabanan
b a.n an a.s \$ p an ama
ma.ban an as s p an a
n ama.ban an as spad
n a.n a.s \$ p a.n a.ma.ba
n a.s \$ panamabana
p a.n a maban an a s \$
s \$ p a.n a.ma. b an a.n a

Form all cyclic rotations of "panamabananas\$"

Burrows-Wheeler Transform:
Last column =
smnpbnnaaaaa\$a

\section*{BWT: Converting Repeats to Runs}

\section*{Genome}

Burrows-Wheeler Transform! Convert repeats to runs

\section*{BWT(Genome)}

Run-length encoding
Compression(BWT(Genome))

\section*{How Can We Decompress?}

\section*{Genome \\ IS IT POSSIBLE? \\ Burrows-Wheeler Transform \\ BWT(Genome) \\ EASY \(\uparrow \downarrow\) Run-length encoding \\ Compression(BWT(Genome))}

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|}
\hline \$ b a n a n a & & a \$ & \\
\hline \(\mathbf{a}\) \$ b a n a n & & na & \\
\hline an n \$ b a \(\mathbf{n}\) & & na & \\
\hline \(\mathbf{a n a n a \$ b}\) & & b a & \\
\hline banana \$ & 2-mers & \$ b & Sort \\
\hline \(\mathbf{n a \$} \mathrm{b}\) a \(\mathrm{n} \mathbf{a}\) & & \(a \mathrm{n}\) & \\
\hline \(\mathbf{n a n a s ~ b a ~}\) & & \(a \mathrm{n}\) & \\
\hline
\end{tabular}
- We now know 2-mer composition of the circular string banana\$
- Sorting gives us the first 2 columns of the matrix.

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|c|}
\hline \$ banana & & a \$ b & & \$ b a \\
\hline a \$ b a n an & & n a \$ & & a \$ b \\
\hline ana\$ l a n & & nan & & ana \\
\hline \(\mathbf{a n a n a \$ b}\) & & b a n & & ana \\
\hline ban ana \$ & 3-mers & \$ b a & Sort & ban \\
\hline \(\mathbf{n a \$ \$} \mathrm{b} a \mathrm{n} \mathbf{a}\) & & ana & & n a \$ \\
\hline nan a \$ ba & & ana & & nan \\
\hline
\end{tabular}
- We now know 3-mer composition of the circular string banana\$
- Sorting gives us the first 3 columns of the matrix.

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|c|}
\hline \$ banana & & \(a \$ \mathrm{~b} a\) & & \$ ban \\
\hline \(\mathrm{a} \$ \mathrm{~b} \boldsymbol{a} \cap \mathrm{n}\), & & \(\mathrm{n} a \mathrm{\$} \mathrm{~b}\) & & a \$ b b \\
\hline ana\$ ban & & nana & & anaa \\
\hline anana\$b & & bana & & anaa \\
\hline banana\$ & 4-mers & \$ b a \(n\) & Sort & \(b a n n\) \\
\hline \(\mathrm{n} \mathbf{a}\) \$ b a n a & & ana\$ & & \(\mathrm{n} \mathbf{a} \mathbf{\$} \mathrm{b}\) \\
\hline nana\$ ba & & anan & & nana \\
\hline
\end{tabular}
- We now know 4-mer composition of the circular string banana\$
- Sorting gives us the first 4 columns of the matrix.

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|c|}
\hline \$ banana & & \(a \$ \mathrm{~b} a \mathrm{n}\) & & \$ bana \\
\hline \(a \$ b a n a n\) & & n a \$ b a & & a \$ b b n \\
\hline ana\$ b an & & nana\$ & & ana ab \\
\hline ananas b & & \(b a n a n\) & & anaa \\
\hline banana\$ & 5-mers & \$ bana & Sort & \(b a n n n\) \\
\hline \(\mathrm{n} a \$ \mathrm{~b} a \mathrm{n}\) a & & \(a n a \$ b\) & & n a \$ b a \\
\hline n anas ba & & anana & & nana\$ \\
\hline
\end{tabular}
- We now know 5-mer composition of the circular string banana\$
- Sorting gives us the first 5 columns of the matrix.

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|c|}
\hline \$ banana & & \(a \$ b a n a\) & & \$ banan \\
\hline \(a \$ b a n a n\) & & \(\mathrm{na} \mathrm{\$ ban}\) & & \(a \$ b b n a\) \\
\hline \(a n a \$ b a n\) & & nana\$b & & \(a n a b a b\) \\
\hline anana\$b & & banana & \(\rightarrow\) & anaaa\$ \\
\hline banana\$ & 6-mers & \$banan & Sort & bannna \\
\hline \(\mathbf{a} \boldsymbol{\$} \mathbf{b a}\) a & & \(a n a \$ b a\) & & \(n \mathrm{a}\) \$ ban \\
\hline nana\$ \({ }^{\text {a }}\) & & anana\$ & & n ana\$b \\
\hline
\end{tabular}
- We now know 6-mer composition of the circular string banana\$
- Sorting gives us the first 6 columns of the matrix.

\section*{Reconstructing banana}
\begin{tabular}{|c|c|c|c|c|}
\hline \$banana & & \(a \$ \mathrm{bana}\) & & \$banan \\
\hline \(a \$ b a n a n\) & & na ¢ ban & & a \$bbna \\
\hline ana\$ban & & nana\$b & & anaaba \\
\hline anana\$b & & banana & \(\longrightarrow\) & anaaa\$ \\
\hline banana\$ & 6-mers & \$banan & Sort & bannna \\
\hline na\$bana & & \(a n a \$ b a\) & & nasban \\
\hline nana\$ba & & ananas & & nana\$b \\
\hline
\end{tabular}
- We now know 6-mer composition of the circular string banana\$
- Sorting gives us the first 6 columns of the matrix.

\section*{Reconstructing banana}
```

\$banana
a \$ banan
ana\$ban
anana\$b
banana\$
na\$bana
nana\$ba

```
- We now know the entire matrix!
- Taking all elements in the first row (after \$) produces banana.

\section*{More Memory Issues}
- Reconstructing Genome from BWT(Genome) required us to store |Genome| copies of |Genome|.
\[
\begin{aligned}
& \$ b a n a n a \\
& a \$ b a n a n \\
& a n a \$ b a n \\
& a n a n a \$ b \\
& b a n a n a \$ \\
& n a \$ b a n a \\
& n a n a \$ b a
\end{aligned}
\]
- Can we invert BWT with less space?

\section*{A Strange Observation}

\(\$ \quad \mathrm{P} \quad \mathrm{a}\)

a

\section*{A Strange Observation}
\(\$ \mathrm{panamabananas}\)
abananas \$panam
amabananas p pan
anamabananas \$p
ananas \$panamab
anas n panamaban
as spanamabanan
bananas \$panama
mabananas \$pana
n amabananas p pa
nanas \$panamaba
\(\mathbf{n} a \mathrm{~s} \$ \mathrm{p} a \mathrm{n}\) amabana
panamabananas \$
s. p panamabanana
\(\$ \quad \mathrm{P} \quad \mathrm{a}\)

n
a
b

\section*{Is It True in General?}

\section*{\$panamabananas}

1 abananas\$panam
2 amabananas\$pan
3 anamabananas\$p
4 ananas\$panamab
5 anas\$panamaban
6 as\$panamabanan bananas\$panama mabananas\$pana namabananas\$pa nanas\$panamaba nas\$panamabana panamabananas \$ s\$panamabanana
bananas\$panam mabananas\$pan namabananas\$p nanas\$panamab nas \$panamaban s\$panamabanan

These strings are sorted

\section*{Is It True in General?}
\begin{tabular}{|c|c|c|c|c|}
\hline & \$panamabananas & & bananas\$panam mabananas\$pan & \\
\hline 1 & abananas\$panam & & namabananas\$p & Still \\
\hline 2 & amabananas\$pan & & nanas\$panamab & sorted \\
\hline 3 & anamabananas\$p
ananas &  & nas s\$panamabanan & \\
\hline 5 & \(a n a s \$ p a n a m a b a n\) & p & & \\
\hline 6 & \(a s \$ p a n a m a b a n a n\) & & & \\
\hline & bananas\$panama & & & \\
\hline & mabananas\$pana & & & \\
\hline & n amabananas\$pa & & & \\
\hline & nanas\$panamaba & & & \\
\hline & nas\$panamabana & & & \\
\hline & panamabananas \$ & & & \\
\hline & \(\mathbf{s}\) \$panamabanana & & & \\
\hline
\end{tabular}

These strings are sorted

\section*{Is It True in General?}
\$ panamabananas 1 abananas \$panam
2 amabananas \$pan
3 anamabananas \$p
4 ananas\$panamab
5 anas \$panamaban
6 as \(\$ \mathrm{panamabanan}\) bananas\$panama mabananas\$pana 1 namabananas\$pa 2 nanas\$panamaba 3 nas \$panamabana 4 panamabananas \$ s\$panamabanana

6

These strings are sorted
bananas\$panam mabananas\$pan namabananas\$p nanas \$panamab nas\$panamaban s\$panamabanan

\section*{Add a} to end
bananas\$panama mabananas\$pana namabananas\$pa nanas\$panamaba nas\$panamabana

Still sorted

Still sorted

Ordering doesn't change!

Chop off a


\section*{Is It True in General?}
- First-Last Property: The \(k\)-th occurrence of symbol in FirstColumn and the \(k\)-th occurrence of symbol in LastColumn correspond to the same position of symbol in Genome.


\section*{More Efficient BWT Decompression}
\[
\begin{aligned}
& \mathbf{\$ 1}_{1} \mathrm{panamabanana} \mathbf{s}_{1} \\
& a_{1} \text { bananas } \\
& \mathrm{a}_{2} \mathrm{mabananas} \mathrm{~m} \mathrm{pa} \mathrm{n}_{1} \\
& \mathrm{a}_{3} \mathrm{n} \text { amabananas } \$ \mathrm{p}_{1} \\
& \mathrm{a}_{4} \mathrm{n} \text { anas } \mathrm{n} \text { panamab } \mathrm{m}_{1} \\
& a_{5} n a s \$ p a n a m a b a n_{2} \\
& \mathrm{a}_{6} \mathrm{~s} \$ \mathrm{panamabanan} 3 \\
& \mathrm{~b}_{1} \text { ananas } \mathrm{n} \text { panama }{ }_{1} \\
& m_{1} \text { abananas\$pana } \\
& \mathrm{n}_{1} \text { amabananas } \mathrm{p}_{\mathrm{p}} \mathrm{a}_{3} \\
& \mathrm{n}_{2} \text { anas } \mathrm{n} \text { panamaba } \mathrm{a}_{4} \\
& \mathrm{n}_{3} \mathrm{a}, \mathrm{~s} \$ \mathrm{panamaban} \mathrm{a}_{5} \\
& \mathrm{p}_{1} \text { anamabananas } \mathbf{\$ 1}_{1} \\
& \mathbf{s}_{1} \$ \mathrm{pan} \text { amabanana } \mathrm{a}_{6}
\end{aligned}
\]

\section*{More Efficient BWT Decompression}


\section*{More Efficient BWT Decompression}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\$ \({ }_{1} \mathrm{pan}\) amabananas \({ }_{1}\)} \\
\hline \multicolumn{2}{|r|}{b an anas \$ pan am} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{2} \mathrm{maban}\) anas m pan \(\mathrm{m}^{\text {a }}\)} \\
\hline \multicolumn{2}{|r|}{\(3^{n} \mathrm{namaban}\)} \\
\hline \multicolumn{2}{|r|}{anas \$panama} \\
\hline \multicolumn{2}{|r|}{\(5_{5} \mathrm{n}\) as \$panamab} \\
\hline \multicolumn{2}{|r|}{panama} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{b}_{1} \mathrm{an}\) anas \(\mathrm{S}^{\text {d }} \mathrm{panam} \mathrm{a}_{1}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{m}_{1}\) aboananas} \\
\hline \multicolumn{2}{|r|}{1 amabananas \$pa} \\
\hline \multicolumn{2}{|r|}{anas} \\
\hline \multicolumn{2}{|r|}{3} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{p}_{1}\) an amabananas \(\mathbf{\$ 1}_{1}\)} \\
\hline \multicolumn{2}{|r|}{\(\mathrm{l}_{1}\) \$panamabanana} \\
\hline
\end{tabular}

- Memory: \(2 \mid\) Genome \(\mid=\mathrm{O}(\mid\) Genome \(\mid)\).

\section*{Recalling Our Goal}
- Suffix Tree Pattern Matching:
- Runtime: O(|Genome| + |Patterns|)
- Memory: O(|Genome|)
- Problem: suffix tree takes \(20 \times\) |Genome space
- Can we use BWT(Genome) as our data structure instead?

\section*{Finding Pattern Matches Using BWT}
- Searching for ana in panamabananas
\[
\begin{aligned}
& \${ }_{1} \text { panamabananas } \\
& a_{1} b a n a n a s \$ p a n a m_{1} \\
& \mathrm{a}_{2} \mathrm{mabananas} \mathrm{p} \mathrm{pan}_{1} \\
& \mathbf{a}_{3} \text { namabananas } \mathbf{p}_{1} \\
& \mathbf{a}_{4} \text { nanas\$panamab }{ }_{1} \\
& \mathrm{a}_{5} \mathrm{n} \text { as } \$ \mathrm{panamaban} 2 \\
& a_{6} \text { s \$panamabanann } \\
& \mathrm{b}_{1} \text { ananas\$panama } \\
& m_{1} \text { abananas\$pana } \\
& \mathrm{n}_{1} \text { amabananas\$pan } \\
& \mathrm{n}_{2} \text { anas \$panamaba }{ }_{4} \\
& n_{3} \text { as } \$ \mathrm{panamaban} \mathrm{a}_{5} \\
& \mathrm{p}_{1} \text { anamabananas } \mathbf{S}_{1} \\
& \mathbf{s}_{1} \$ \mathrm{panamabanan} \mathbf{a}_{6}
\end{aligned}
\]

\section*{Finding Pattern Matches Using BWT}
- Searching for ana in panamabananas
\[
\begin{aligned}
& \${ }_{1} \text { panamabananas } \\
& a_{1} b a n a n a s \$ p a n a m_{1} \\
& \mathbf{a}_{2} \mathrm{mabananas} \mathrm{~m} \mathrm{man}_{1} \\
& \mathrm{a}_{3} \text { namabananas } \mathrm{p}_{1} \\
& \mathrm{a}_{4} \text { nanas } \mathrm{n} \text { panamab }{ }_{1} \\
& \mathrm{a}_{5} \mathrm{n} \text { as } \$ \mathrm{panamaban} 2 \\
& \mathrm{a}_{6} \mathrm{~s} \$ \mathrm{panamabanan} \mathrm{n}^{2} \\
& \mathrm{~b}_{1} \text { ananas\$panama } \\
& m_{1} \text { abananas\$pana } \\
& \mathrm{n}_{1} \text { amabananas\$pan } \\
& \mathrm{n}_{2} \text { anas\$panamaba }{ }_{4} \\
& \mathrm{n}_{3} \text { as } \$ \mathrm{panamaban} \mathrm{a}_{5} \\
& \mathrm{p}_{1} \text { anamabananas } \$_{1} \\
& \mathbf{s}_{1} \$ \mathrm{panamabanan} \mathbf{a}_{6}
\end{aligned}
\]

\section*{Finding Pattern Matches Using BWT}
- Searching for ana in panamabananas
\(\${ }_{1}\) panamabananas
\(a_{1} b a n a n a s \$ p a n a m_{1}\)
\(\mathbf{a}_{\mathbf{2}} \mathrm{mabananas} \mathrm{p} \mathrm{p} \mathbf{n}_{1}\)
\(\mathbf{a}_{\mathbf{3}}\) namabananas\$ \(\mathbf{p}_{1}\)
\(\mathbf{a}_{4}\) nanas\$panamab \({ }_{1}\)
\(\mathbf{a}_{\mathbf{5}} \mathrm{n}\) as \(\$ \mathrm{panamaba} \mathbf{n}_{\mathbf{2}}\)
\(\mathbf{a}_{6}\) s \$panamabanann
\(\mathrm{b}_{1}\) ananas\$panama
\(m_{1}\) abananas\$pana
\(\mathrm{n}_{1}\) amabananas\$pan
\(\mathrm{n}_{2}\) anas\$panamaba \({ }_{4}\)
\(\mathrm{n}_{3}\) as \(\$ \mathrm{panamabana} 5\)
\(\mathrm{p}_{1}\) anamabananas \$1
\(\mathbf{s}_{1} \$ \mathrm{panamabanan} \mathbf{a}_{6}\)

\section*{Finding Pattern Matches Using BWT}
- Searching for ana in panamabananas
\[
\begin{aligned}
& \${ }_{1} \text { panamabananas } \\
& a_{1} b a n a n a s \$ p a n a m_{1} \\
& \mathrm{a}_{2} \mathrm{mabananas} \mathrm{p} \mathrm{pan}_{1} \\
& \mathbf{a}_{3} \text { namabananas } \mathrm{p}_{1} \\
& \mathbf{a}_{4} \text { nanas\$panamab }{ }_{1} \\
& \mathrm{a}_{5} \mathrm{n} \text { as } \$ \mathrm{panamaban} 2 \\
& a_{6} \text { s \$panamabanann } \\
& \mathrm{b}_{1} \text { ananas\$panama } \\
& m_{1} \text { abananas\$pana } \\
& \mathrm{n}_{1} \text { amabananas\$pan } \\
& \mathrm{n}_{2} \text { anas \$panamaba }{ }_{4} \\
& n_{3} \text { as } \$ \mathrm{panamaban} \mathrm{a}_{5} \\
& \mathrm{p}_{1} \text { anamabananas } \mathbf{S}_{1} \\
& \mathbf{s}_{1} \$ \mathrm{panamabanan} \mathbf{a}_{6}
\end{aligned}
\]

\section*{Where Are the Matches?}
- Multiple Pattern Matching Problem:
- Input: A collection of strings Patterns and a string Genome.
- Output: All positions in Genome where one of Patterns appears as a substring.
- Where are the positions? BWT has not revealed them.

\section*{Where Are the Matches?}
- Example: We know that ana occurs 3 times, but where?
\[
\begin{aligned}
& \$_{1} \text { panamabananas } \mathbf{s}_{1} \\
& a_{1} b a n a n a s \$ p a n a m_{1} \\
& a_{2} \text { mabananas } \$ \mathrm{pan} \mathrm{n}_{1} \\
& \mathbf{a}_{3} \text { namabananas } \mathbf{p}_{1} \\
& \mathbf{a}_{4} \text { nanas\$panamab } \mathbf{m}_{1} \\
& \mathrm{a}_{5} \text { nas } \mathrm{n} \text { panamaban }{ }_{2} \\
& \mathrm{a}_{6} \mathrm{~S} \$ \mathrm{panamabanan} \mathrm{n}^{2} \\
& \mathrm{~b}_{1} \text { ananas\$panama }{ }_{1} \\
& m_{1} \text { abananas\$pana } \\
& \mathrm{n}_{1} \text { amabananas\$pa3 } \\
& \mathrm{n}_{2} \text { anas\$panamaba } \mathbf{a}_{4} \\
& n_{3} \text { as } \$ \mathrm{panamabana}{ }_{5} \\
& \mathrm{p}_{1} \text { anamabananas } \mathbf{1}_{1} \\
& \mathbf{s}_{1} \$ \mathrm{panamabanan} \mathbf{a}_{6}
\end{aligned}
\]

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
\(\$_{1} p a n a m a b a n a n a s_{1}\) \(a_{1} b a n a n a s \$ p a n a m_{1}\) \(a_{2} m a b a n a n a s \$ p a n_{1}\) \(\mathrm{a}_{3} \mathrm{n}\) amabananas \(\mathrm{p}_{1}\) \(\mathrm{a}_{4} \mathrm{n}\) anas n panamab1 \(a_{5} n a s \$ p a n a m a b a n_{2}\) \(a_{6} s \$ p a n a m a b a n a n_{3}\) \(\mathrm{b}_{1}\) ananas n panama \(\mathrm{a}_{1}\) \(m_{1}\) abananas\$pana \(\mathrm{n}_{1}\) amabananas\$pan \(\mathrm{n}_{2}\) anas n panamaba \(\mathrm{a}_{4}\) \(n_{3}\) as \(\$ \mathrm{panamaban} \mathrm{a}_{5}\) \(\mathrm{p}_{1}\) anamabananas \(\mathbf{S}_{1}\) \(\mathbf{s}_{1}\) \$panamabanana

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
```

13
5

 \mp@subsup{a}{1}{}}\mathbf{b}\mathbf{ananas$$panam
 a}\mp@subsup{\mp@code{m}}{\mathrm{ mabananas$pan_}}{1
a}\mp@subsup{3}{3}{}\mathrm{ namabananas$ pl
a}\mp@subsup{a}{4}{}\mathrm{ nanas$panamabl
a
a
b}\mp@subsup{|}{1}{}\mathrm{ ananas$panama_
m}\mp@subsup{m}{1}{}\mathrm{ abananas$pana_
n_amabananas$pa3
n}\mp@subsup{n}{2}{\mathrm{ anas\$panamaba4}
n}\mp@subsup{n}{3}{
p
s

```

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
```

13 \$ $1 panamabananass
\mp@subsup{a}{1}{}}\mathbf{b}\mathbf{ananass$panam
\mp@subsup{a}{2}{}mabananas$pan
a
a
a
a
b}\mp@subsup{|}{1}{}\mathrm{ ananas$ panamal
m
n_1 amabananas$pa_3
n}2\mathrm{ anas$panamabaa
n}3\mathrm{ as \$panamabana
\mp@subsup{p}{1}{}}\mathrm{ anamabananas \$1

```


\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\(13 \quad \mathbf{\$ 1}_{1}\) panamabananas \({ }_{1}\) \(\mathbf{a}_{\mathbf{1}} \mathbf{b} \mathbf{a n a n a s \$ p a n a m}\) \(\mathbf{a}_{2}\) mabananas\$pan \(\mathbf{a}_{3} \mathbf{n a m a b a n a n a s \$} \mathrm{P}_{1}\) \(\mathrm{a}_{4} \mathrm{n}\) anas n panamab \({ }_{1}\) \(\mathrm{a}_{5} \mathrm{n}\) as s panamaban 2 \(a_{6} s \$ p a n a m a b a n a n_{3}\) \(\mathrm{b}_{1}\) ananas \$panama \(m_{1}\) abananas \$pana \(\mathrm{n}_{1}\) amabananas \(\$ \mathrm{pa} \mathrm{a}_{3}\) \(\mathrm{n}_{2}\) anas n panamaba \(\mathrm{a}_{4}\) \(\mathrm{n}_{3}\) as \$panamabana \(\mathrm{p}_{1}\) anamabananas n \(_{1}\) \(\mathbf{s}_{1}\) \$panamabanana

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\(13 \quad \mathbf{\$ 1}_{1}\) panamabananas \({ }_{1}\) \(\mathbf{a}_{\mathbf{1}} \mathbf{b} \mathbf{a n a n a s \$ p a n a m}\) \(\mathbf{a}_{2}\) mabananas\$pan \(\mathbf{a}_{3} \mathbf{n a m a b a n a n a s \$ 1} \mathrm{P}_{1}\) \(\mathbf{a}_{4} \mathbf{n} \mathbf{a n a s} \boldsymbol{n} \mathrm{panamab} \mathrm{m}_{1}\) \(\mathrm{a}_{5} \mathrm{n}\) as \(\$ \mathrm{panamaba} \mathrm{n}_{2}\) \(a_{6} s \$ p a n a m a b a n a n_{3}\) \(\mathrm{b}_{1}\) ananas \$panama \(m_{1}\) abananas \$pana \(\mathrm{n}_{1}\) amabananas \(\$ \mathrm{pa} \mathrm{a}_{3}\) \(\mathrm{n}_{2}\) anas n panamaba \(\mathrm{a}_{4}\) \(\mathrm{n}_{3}\) as \$panamabana \(\mathrm{p}_{1}\) anamabananas n \(_{1}\) \(\mathbf{s}_{1}\) \$panamabanana

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{发} \\
\hline \multicolumn{2}{|l|}{namabanana} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{4} \mathrm{nanas}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a s} \$ \mathrm{p}\) anamaban} \\
\hline \multicolumn{2}{|l|}{\(a_{6}\) s\$panamabanan} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{b}_{1}\) ananas\$panama} \\
\hline \multicolumn{2}{|l|}{\(m_{1}\) abananas\$pana} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{n}_{1}\) amabananas \(\mathrm{p}_{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{n}_{2}\) anas\$panam} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{n}_{3} \mathrm{as} \$ \mathrm{panamab}\)} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\(\mathbf{\$ 1}_{\mathbf{1}} \mathrm{panamabanana} \mathrm{s}_{1}\) \(\mathbf{a}_{\mathbf{1}} \mathbf{b} \mathbf{a n a n a s \$ p a n a m}\) \(\mathbf{a}_{\mathbf{2}}\) mabananas\$pan \(\mathbf{a}_{3} \mathbf{n}\) amabananas\$ \(\mathrm{P}_{1}\)
 \(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a} \mathbf{s} \boldsymbol{\$} \mathrm{panamaba} \mathrm{n}_{2}\) \(\mathbf{a}_{\mathbf{6}} \mathbf{s} \boldsymbol{\$} \mathrm{panamabanan} 3\) \(\mathrm{b}_{1}\) ananas \$panamal \(m_{1}\) abananas ppana 2 \(\mathrm{n}_{1}\) amabananas \(\mathrm{m} \mathrm{pa}_{3}\) \(\mathrm{n}_{2}\) anas n panamaba \(\mathrm{a}_{4}\) \(\mathrm{n}_{3}\) as S panamabana 5 \(\mathrm{p}_{1}\) anamabananas n \(_{1}\) \(\mathbf{s}_{1}\) \$panamabanana \({ }_{6}\)

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\(\boldsymbol{\$}_{\mathbf{1}} \mathrm{panamabanana} \mathrm{s}_{1}\)
\(\mathbf{a}_{\mathbf{1}} \mathbf{b} \mathbf{a n a n a s \$ p a n a m}\)
\(\mathbf{a}_{\mathbf{2}}\) mabananas\$pan
\(\mathbf{a}_{3}\) namabananas\$ \(\mathrm{P}_{1}\)

\(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a} \mathbf{s} \boldsymbol{\$} \mathrm{p} a \mathrm{n}\) amaban \(\mathrm{m}_{2}\)
\(\mathbf{a}_{\mathbf{6}} \mathbf{S} \boldsymbol{\$} \mathrm{p} a \mathrm{n}\) amabanan \({ }_{3}\)
\(\mathbf{b}_{\mathbf{1}} \mathbf{a n a n a s} \boldsymbol{\mathbf { n }} \mathrm{panama}\)
\(m_{1}\) abananas ppana 2
\(\mathrm{n}_{1}\) amabananas \(\mathrm{m}_{\mathrm{p}} \mathrm{p} \mathrm{a}_{3}\)
\(\mathrm{n}_{2}\) anas n panamaba \({ }_{4}\)
\(\mathrm{n}_{3}\) as \$panamabana
\(\mathrm{p}_{1}\) anamabananas \(\$_{1}\)
\(\mathbf{s}_{1}\) \$panamabanana

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\begin{tabular}{|c|c|}
\hline 13 & \(\mathbf{\$ 1}_{\mathbf{1}} \mathrm{pan}\) amabananas \({ }_{1}\) \\
\hline 5 & \(\mathbf{a}_{1} \mathbf{b} \mathbf{a n a n a s i \$ p a n a m}\) \\
\hline 3 & \(\mathbf{a}_{\mathbf{2}} \mathrm{mabananas} \boldsymbol{\$} \mathrm{pa} \mathrm{n}_{1}\) \\
\hline 1 & \(\mathbf{a}_{3} \mathbf{n a m a b a n a n a s \$ ~} \mathrm{P}_{1}\) \\
\hline 7 &  \\
\hline 9 & \(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a s} \mathbf{S} \mathrm{p}\) anamaba \(\mathrm{n}_{2}\) \\
\hline 11 & \(\mathbf{a}_{6} \mathbf{s} \boldsymbol{\$} \mathrm{pa}\) namaban an \\
\hline 6 & \(\mathbf{b}_{1} \mathbf{a n a n a s} \boldsymbol{\$} \mathrm{panama}\) \\
\hline 4 &  \\
\hline 2 & \(\mathbf{n}_{1} \mathbf{a m a b a n a n a s} \boldsymbol{\text { a }}\) ¢ \(a_{3}\) \\
\hline 8 & \(\mathbf{n}_{\mathbf{2}} \mathbf{a n a s} \mathbf{s} \mathrm{panamaba} \mathrm{m}_{4}\) \\
\hline 10 & \(\mathbf{n}_{\mathbf{3}} \mathbf{a} \mathbf{s} \boldsymbol{\$} \mathrm{p}\) a n amaba l a \(\mathrm{a}_{5}\) \\
\hline & \(\mathrm{p}_{1}\) anamabananas \$ \\
\hline & \(\mathrm{s}_{1}\) \$ panamabanana \\
\hline
\end{tabular}

13
\(\mathbf{a}_{\mathbf{1}} \mathbf{b} \mathbf{a n a n a s \$ p a n a m}\) \(\mathbf{a}_{2}\) mabananas\$pan \(\mathbf{a}_{3}\) namabananas\$ \({ }_{1}\) \(\mathbf{a}_{4}\) nanas\$ panamab \({ }_{1}\) \(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a} \mathbf{s} \boldsymbol{\$} \mathrm{p} a \mathrm{n}\) amaba. \(\mathrm{n}_{2}\) \(\mathbf{a}_{\mathbf{6}} \mathbf{s} \boldsymbol{\$} \mathrm{p} a \mathrm{n}\) amabanan \(\mathbf{b}_{\mathbf{1}} \mathbf{a n a n a s} \boldsymbol{\$} \mathrm{p} a n \mathrm{n} \mathrm{ma}_{1}\) \(m_{1} \mathbf{a b a n a n a s \$ p a n a} 2\) \(\mathbf{n}_{1}\) amabananas\$pan \(\mathbf{n}_{\mathbf{2}} \mathbf{a n a s} \boldsymbol{n} \mathrm{p} \mathrm{a}\) n amaba \(\mathrm{a}_{4}\) \(\mathbf{n}_{\mathbf{3}} \mathbf{a} \mathbf{s} \$ \mathrm{p}\) an amabana \(\mathrm{m}_{5}\) \(\mathrm{p}_{1}\) anamabananas \(\$_{1}\) \(\mathbf{s}_{1}\) \$panamabanana \({ }_{6}\)

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$

10
0
\begin{tabular}{|c|c|}
\hline 13 & \(\mathbf{\$ 1}_{\mathbf{1}} \mathrm{pan}\) amabananas \({ }_{1}\) \\
\hline 5 &  \\
\hline 3 &  \\
\hline 1 & \(\mathbf{a}_{3} \mathbf{n}\) amabananas \$ \(\mathrm{P}_{1}\) \\
\hline 7 &  \\
\hline 9 & \(\mathbf{a}_{\mathbf{5}} \mathbf{n} \mathbf{a s} \mathbf{\$} \mathrm{panamaba} \mathrm{n}_{2}\) \\
\hline 11 & \(\mathbf{a}_{6} \mathbf{S} \mathbf{\$} \mathrm{panamabanan} 3\) \\
\hline 6 & \(\mathbf{b}_{\mathbf{1}} \mathbf{a n a n a s \$ p a n a m a l}\) \\
\hline 4 &  \\
\hline 2 &  \\
\hline 8 & \(\mathbf{n}_{\mathbf{2}} \mathbf{a n a s} \mathbf{n}^{\text {d }} \mathrm{panamaba} 4\) \\
\hline 10 & \(\mathbf{n}_{\mathbf{3}} \mathbf{a} \mathbf{s} \boldsymbol{\$} \mathrm{p}\) a n amaman \(\mathrm{a}_{5}\) \\
\hline 0 & \(\mathrm{p}_{1} \mathbf{a n a m a b a n a n a s ~ \$ ~}{ }_{1}\) \\
\hline & \(\mathbf{S}_{1}\) \$ panamaban an a 6 \\
\hline
\end{tabular}

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas \$
```

```
13 $ _ panamabonanas m
```

```
13 $ _ panamabonanas m
    5
    5
    3
    3
    1
    1
    7
    7
    9
    9
    11
    11
    6
    6
    4
    4
    2
    2
    8
    8
10
10
    0
    0
12
```

12

```
```

 \mp@subsup{a}{1}{}}\mathbf{b}\mathbf{ananass$panam
    ```
    \mp@subsup{a}{1}{}}\mathbf{b}\mathbf{ananass$panam
    \mp@subsup{a}{2}{}mabananas$pan m
    \mp@subsup{a}{2}{}mabananas$pan m
    a_namabananas$$ P1
```

 a_namabananas$$ P1
    ```




```

 \mp@subsup{a}{6}{}}\mathbf{S}$\textrm{S
    ```
    \mp@subsup{a}{6}{}}\mathbf{S}$\textrm{S
    \mp@subsup{b}{1}{}}\mathbf{annanas$$ panamal
    \mp@subsup{b}{1}{}}\mathbf{annanas$$ panamal
    m}\mp@subsup{\mathbf{1}}{\mathbf{abbanamas$}}{\mathbf{n}
    m}\mp@subsup{\mathbf{1}}{\mathbf{abbanamas$}}{\mathbf{n}
    \mp@subsup{n}{1}{}}\mathbf{amabananas$$ pa 3
    \mp@subsup{n}{1}{}}\mathbf{amabananas$$ pa 3
    \mp@subsup{n}{2}{}}\mathbf{anas$$ panamaba m
    \mp@subsup{n}{2}{}}\mathbf{anas$$ panamaba m
\mp@subsup{n}{3}{}\mathbf{ass$ panamabona m}
\mp@subsup{n}{3}{}\mathbf{ass$ panamabona m}
p_1 anamabananass$1
p_1 anamabananass$1
\mp@subsup{s}{1}{}}\mathbf{$ panamaboanana 6
```

\mp@subsup{s}{1}{}}\mathbf{\$ panamaboanana 6

```

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
panamabananas\$
\begin{tabular}{|c|c|}
\hline 13 & \(\$_{1} \mathrm{panamabanana} \mathbf{s}_{1}\) \\
\hline 5 & \(\mathrm{a}_{1} \mathrm{~b}\) ananas n ( pan am \(\mathrm{m}_{1}\) \\
\hline 3 & \(\mathrm{a}_{2} \mathrm{mabananas} \mathrm{mpan}_{1}\) \\
\hline 1 & \(\mathrm{a}_{3} \mathrm{n}\) amabananas \$ \(\mathrm{p}_{1}\) \\
\hline 7 & \(\mathrm{a}_{4} \mathrm{n}\) anas \(\mathrm{S}^{\text {d }} \mathrm{panamab}{ }_{1}\) \\
\hline 9 & \(\mathrm{a}_{5} \mathrm{n}\) as \(\mathrm{S}^{\text {panamaban }}\) a \\
\hline 11 & \(\mathrm{a}_{6} \mathrm{~s}\) \$panamabanan \({ }^{\text {a }}\) \\
\hline 6 & \(\mathrm{b}_{1}\) ananas \$panama \({ }_{1}\) \\
\hline 4 & \(\mathrm{m}_{1} \mathrm{ab}\) ananas\$pana \\
\hline 2 & \(\mathrm{n}_{1} \mathrm{amabananas} \mathrm{mpa}_{3}\) \\
\hline 8 & \(\mathrm{n}_{2}\) anas\$panamaba \(\mathrm{a}_{4}\) \\
\hline 10 & \(\mathrm{n}_{3} \mathrm{as}\) S panamabana \(\mathrm{a}_{5}\) \\
\hline 0 & \(\mathrm{p}_{1}\) anamabananas \(\mathbf{\$ 1}_{1}\) \\
\hline 12 & \(\mathbf{s}_{1}\) \$panamabanana \\
\hline
\end{tabular}

\section*{Using the Suffix Array to Find Matches}
- Suffix array: holds starting position of each suffix beginning a row.
- Thus, ana occurs at positions 1, 7, 9 of panamabananas\$.


\(\$_{1} p a n a m a b a n a n a s_{1}\) \(\mathrm{a}_{1} \mathrm{~b}\) ananas n panam \(\mathrm{a}_{2} \mathrm{mabananas} \mathrm{b} \mathrm{p} \mathrm{an}_{1}\) \(\mathbf{a}_{3} \mathbf{n} \mathbf{a m a b a n a n a s} \$ \mathbf{p}_{1}\) \(\mathbf{a}_{4} \mathbf{n} \mathbf{a n a s} \$ \mathrm{panamab} \mathrm{a}_{1}\) \(\mathbf{a}_{5} \mathbf{n} \mathbf{a} s \$ \mathrm{panamaba} \mathrm{n}_{2}\) \(a_{6} s \$ p a n a m a b a n a n_{3}\) \(\mathrm{b}_{1}\) ananas n panama \(\mathrm{a}_{1}\) \(m_{1}\) abananas m pan \(\mathrm{a}_{2}\) \(\mathrm{n}_{1}\) amabananas \(\mathrm{m} \mathrm{pa}_{3}\) \(\mathrm{n}_{2}\) anas m panamaba 4 \(n_{3}\) as \(\$ \mathrm{panamaban} \mathrm{a}_{5}\) \(\mathrm{p}_{1}\) anamabananas \(\mathbf{\$ 1}_{1}\) \(\mathbf{s}_{1} \$\) panamabanana \({ }_{6}\)

\section*{The Suffix Array: Memory Once Again}
- Memory: ~ \(4 \mathrm{x} \mid\) Genome|.

\(\left[\begin{array}{llllllllllllll}{[13} & 5 & 3 & 1 & 7 & 9 & 11 & 6 & 4 & 2 & 8 & 10 & 0 & 1\end{array}\right.\)

\section*{The Suffix Array: Memory Once Again}
- Memory: ~ \(4 \mathrm{x} \mid\) Genome|.

\(\left[\begin{array}{llllllllllllll}13 & 5 & 3 & 1 & 7 & 9 & 11 & 6 & 4 & 2 & 8 & 10 & 0 & 1\end{array}\right.\)

\section*{The Suffix Array: Memory Once Again}
- Memory: ~ \(4 \mathrm{x} \mid\) Genome|.

\(\left[\begin{array}{llllllllllllll}{[13} & 5 & 3 & 1 & 7 & 9 & 11 & 6 & 4 & 2 & 8 & 10 & 0 & 1\end{array}\right.\)

\section*{Reducing Suffix Array Size}
- We don't want to have to store all of the suffix array; can we store only part of it? Show how checkpointing can be used to store \(1 / 100\) the suffix array.

\section*{A Return to Constants}
- Explain that using a checkpointed array increases runtime by a constant factor, but in practice it is a worthwhile trade-off.


\section*{Returning to Our Original Problem}
- We need to look at INEXACT matching in order to find variants.
- Approx. Pattern Matching Problem:
- Input: A string Pattern, a string Genome, and an integer \(d\).
- Output: All positions in Genome where Pattern appears as a substring with at most \(d\) mismatches.

\section*{Returning to Our Original Problem}
- We need to look at INEXACT matching in order to find variants.
- Multiple Approx. Pattern Matching Problem:
- Input: A collection of strings Patterns, a string Genome, and an integer \(d\).
- Output: All positions in Genome where a string from Patterns appears as a substring with at most \(d\) mismatches.

\section*{Method 1: Seeding}
- Say that Pattern appears in Genome with 1 mismatch:

\author{
Pattern \\ Genome
}

\section*{Method 1: Seeding}
- Say that Pattern appears in Genome with 1 mismatch:

\author{
Pattern \\ Genome
}
- One of the substrings must match!

\section*{Method 1: Seeding}
- Theorem: If Pattern occurs in Genome with d mismatches, then we can divide Pattern into \(d+1\) "equal" pieces and find at least one exact match.


\section*{Method 1: Seeding}
- Say we are looking for at most \(d\) mismatches.
- Divide each of our strings into \(d+1\) smaller pieces, called seeds.
- Check if each Pattern has a seed that matches Genome exactly.
- If so, check the entire Pattern against Genome,

\section*{Method 2: BWT Saves the Day Again}
- Recall: searching for ana in panamabananas
\# Mismatches

Now we extend all strings with at most 1 mismatch.
\begin{tabular}{|c|}
\hline \multirow{13}{*}{\(a_{1} b a n a n a s \$ p a n a m_{1}\)
\(a_{2}\) mabananas poan \(\mathrm{a}_{3}\) namabananas \(\$ \mathbf{p}_{1}\) \(\mathrm{a}_{4} \mathrm{nanas} \mathrm{m}\) anamabl \(a_{5}\) nas \$panamabann \(\mathrm{a}_{6} \mathrm{~s} \$ \mathrm{panamabanan}\) \(\mathbf{b}_{1} \mathbf{a n a n a s \$ p a n a m a _ { 1 }}\) \(m_{1}\) abananas\$pana \(\mathbf{n}_{1}\) amabananas\$pan \(\mathbf{n}_{2}\) anas\$panamaba \(\mathbf{a}_{4}\) \(n_{3}\) as \$panamabana \(p_{1}\) anamabananas \(\mathbf{S}_{1}\)} \\
\hline \\
\hline
\end{tabular}

\section*{Method 2: BWT Saves the Day Again}
- Recall: searching for ana in panamabananas
\# Mismatches

One string produces a second mismatch (the \$), so we discard it.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\$_{1} \mathrm{panamabananas}{ }_{1}\)} \\
\hline \multicolumn{2}{|l|}{\(a_{1} \mathrm{bananas}\) ¢ panam \({ }_{1}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{2} \mathrm{mabananas}\) ¢ pan \(\mathrm{n}_{1}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{3} \mathrm{n}\) amabananas \(\mathrm{p}_{1}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{4} \mathrm{n}\) anas \(\mathrm{m}_{\text {danamab }}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{5} \mathrm{n}\) as \(\mathrm{S}^{\text {panamaban }}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{a}_{6} \mathrm{~s}\) \$panamabanan \({ }^{\text {a }}\)} \\
\hline \(\mathbf{b}_{1} \mathbf{a n a n a s}\) ¢ panama \({ }_{1}\) & 1 \\
\hline \(\mathrm{m}_{1} \mathbf{a b a n a n a s}\) ¢ pan \(\mathbf{a}_{2}\) & 1 \\
\hline \(\mathbf{n}_{1} \mathbf{a m a b a n a n a s \$ p} \mathbf{a}_{3}\) & 0 \\
\hline \(\mathbf{n}_{2} \mathbf{a n a s}\) ¢panamaba \(\mathbf{a}_{4}\) & 0 \\
\hline \(\mathbf{n}_{3} \mathbf{a s}\) \$panamabana \(\mathbf{a}_{5}\) & 0 \\
\hline \(\mathbf{p}_{1} \mathbf{a}\) namabananas \(\mathbf{\$ 1}_{1}\) & 2 \\
\hline 1\$panamabanana \({ }_{6}\) & \\
\hline
\end{tabular}

\section*{Method 2: BWT Saves the Day Again}
- Recall: searching for ana in panamabananas
\# Mismatches

In the end, we have five 3 -mers with at most 1 mismatch.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{14}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\section*{Method 2: BWT Saves the Day Again}
- Recall: searching for ana in panamabananas

Suffix Array

In the end, we have five 3-mers with at most 1 mismatch.
\begin{tabular}{|c|}
\hline \multirow[b]{14}{*}{\(a_{3}\) namabananas\$p \(\mathbf{a}_{4} \mathbf{n a n a s \$ p a n a m a b}\) \(\mathrm{a}_{5}\) nas\$panamabann \(\mathrm{a}_{6} \mathrm{~s} \$ \mathrm{panamabanan}\) \(\mathrm{b}_{1}\) ananas\$panama \(m_{1}\) abananas\$pana \(n_{1}\) amabananas\$pa \(n_{2}\) anas\$panamaba \(n_{3}\) as \$panamabana \(p_{1}\) anamabananas \$ \(\mathbf{s}_{1} \$ \mathrm{panamabanana}\)} \\
\hline \\
\hline
\end{tabular}

\section*{Method 2: BWT Saves the Day Again}
- Recall: searching for ana in panamabananas

Suffix Array

In the end, we have five 3 -mers with at most 1 mismatch.


\section*{http://www.allisons.org/II/AlgDS/Strings/BWT/}


\section*{Hidden Markov models}

\section*{How to identify Genes and gene parts?}

The gene information starts with the promoter, which is followed by a transcribed (i.e. RNA) but non-coding (i.e. not translated) region called 5' untranslated region ( 5 ' UTR). The initial exon contains the start codon which is usually ATG. There is an alternating series of introns and exons, followed by the terminating exon, which contains the stop codon. It is followed by another non-coding region called the 3' UTR; at the end there is a polyadenylation (polyA) signal, i.e. a repetition of the amino acid adenine. The intron/exon and exon/intron boundaries are conserved short sequences and called the acceptor and donor sites. For all these different parts we need to
 know their probability of occurrence in a large database.


\section*{The dishonest casino model}


\section*{HMM}

Definition: A hidden Markov model (HMM)
- Alphabet \(\Sigma=\left\{b_{1}, b_{2}, \ldots, b_{M}\right\}\)
- Set of states \(Q=\{1, \ldots, K\}\)
- Transition probabilities between any two states
\[
\begin{aligned}
& a_{i j}=\text { transition prob from state } i \text { to state } j \\
& a_{i 1}+\ldots+a_{i K}=1 \text {, for all states } i=1 \ldots K
\end{aligned}
\]
- Start probabilities \(\mathrm{a}_{0 \mathrm{i}}\)
\[
a_{01}+\ldots+a_{0 k}=1
\]
- Emission probabilities within each state
\[
\begin{aligned}
& e_{i}(b)=P\left(x_{i}=b \mid \pi_{i}=k\right) \\
& e_{i}\left(b_{1}\right)+\ldots+e_{i}\left(b_{M}\right)=1, \text { for all states } i=1 \ldots K
\end{aligned}
\]

\section*{A Hidden Markov Model is memory-less}

At each time step t , the only thing that affects future states is the current state \(\pi_{t}\)

\(P\left(\pi_{t+1}=k \mid\right.\) "whatever happened so far") =
\(P\left(\pi_{t+1}=\quad k \mid \pi_{1}, \pi_{2}, \ldots, \pi_{t}, x_{1}, x_{2}, \ldots, x_{t}\right)\)
\(\mathrm{P}\left(\pi_{\mathrm{t}+1}=\mathrm{k} \mid \pi_{\mathrm{t}}\right)\)

\section*{A parse of a sequence}

Given a sequence \(x=x_{1} \ldots . . . x_{N}\),
A parse of \(x\) is a sequence of states \(\pi=\pi_{1}, \ldots \ldots, \pi_{N}\)


\section*{Likelihood of a parse}

Given a sequence \(x=x_{1} \ldots . . . x_{N}\) and a parse \(\pi=\pi_{1}, \ldots \ldots, \pi_{N}\),

To find how likely is the parse: (given our HMM)

\[
\begin{aligned}
& P(x, \pi)=P\left(x_{1}, \ldots, x_{N}, \pi_{1}, \ldots \ldots, \pi_{N}\right)= \\
& P\left(x_{N}, \pi_{N} \mid \pi_{N-1}\right) P\left(x_{N-1}, \pi_{N-1} \mid \pi_{N-2}\right) \ldots . . \mathrm{P}\left(x_{2}, \pi_{2} \mid \pi_{1}\right) \\
& P\left(x_{1}, \pi_{1}\right)= \\
& P\left(x_{N} \mid \pi_{N}\right) P\left(\pi_{N} \mid \pi_{N-1}\right) \ldots \ldots P\left(x_{2} \mid \pi_{2}\right) P\left(\pi_{2} \mid \pi_{1}\right) P\left(x_{1} \mid\right. \\
& \left.\pi_{1}\right) P\left(\pi_{1}\right)= \\
& a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots \ldots a_{\pi N-1 \pi N} e_{\pi 1}\left(x_{1}\right) \ldots . . e_{\pi N}\left(x_{N}\right)
\end{aligned}
\]

\section*{Example: the dishonest casino}

Let the sequence of rolls be:
\(x=1,2,1,5,6,2,1,6,2,4\)

Then, what is the likelihood of
\(\pi=\) Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs \(\mathrm{a}_{\text {OFair }}=1 / 2, \mathrm{a}_{\text {oLoaded }}=1 / 2\) )
\(1 / 2 \times P(1 \mid\) Fair \() P(\) Fair | Fair \() P(2 \mid\) Fair \() P(\) Fair | Fair \() .. . P(4 \mid\) Fair \()=\)
\(1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211=0.5 \times 10^{-9}\)

\section*{Example: the dishonest casino}

So, the likelihood the die is fair in all this run
is just \(0.521 \times 10^{-9}\)

OK, but what is the likelihood of
= Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?
\(1 / 2 \times P(1 \mid\) Loaded \() P(\) Loaded, Loaded \() .. . P(4 \mid\) Loaded \()=\)
\(1 / 2 \times(1 / 10)^{8} \times(1 / 2)^{2}(0.95)^{9}=.00000000078781176215=7.9\) \(\times 10^{-10}\)
Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way.

\section*{Example: the dishonest casino}

Let the sequence of rolls be:
\(x=1,6,6,5,6,2,6,6,3,6\)

Now, what is the likelihood \(\pi=F, F, \ldots, F\) ?
\(1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=0.5 \times 10^{-9}\), same as before

What is the likelihood
\(\pi=L, L, \ldots, L\) ?
\(1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735=0.5 \times 10^{-7}\)

So, it is 100 times more likely the die is loaded

\section*{The three main questions on HMMs}

\section*{1. Evaluation}
\begin{tabular}{ll} 
GIVEN & a HMM M, \\
FIND & \(\operatorname{Prob}[x \mid M]\)
\end{tabular} and a sequence \(x\),
2. Decoding

GIVEN a HMM M, and a sequence \(x\), FIND \(\quad\) the sequence \(\pi\) of states that maximizes \(P[x, \pi\) | M ]

\section*{3. Learning}

GIVEN a HMM M, with unspecified transition/emission probs., and a sequence \(x\),
FIND parameters \(\theta=\left(e_{i}(),. a_{i j}\right)\) that maximize \(P[x \mid \theta]\)

\section*{Let's not be confused by notation}
\(P[x \mid M]: \quad\) The probability that sequence \(x\) was generated by the model

The model is: architecture (\#states, etc)
+ parameters \(\theta=\mathrm{a}_{\mathrm{ij}}, \mathrm{e}_{\mathrm{i}}(\).
So, \(P[x \mid \theta]\), and \(P[x]\) are the same, when the architecture, and the entire model, respectively, are implied

Similarly, \(P[x, \pi \mid M]\) and \(P[x, \pi]\) are the same
In the LEARNING problem we always write \(\mathrm{P}[\mathrm{x} \mid \theta]\) to emphasize that we are seeking the \(\theta\) that maximizes \(P[x \mid\) \(\theta]\)

\section*{Decoding}

GIVEN \(x=x_{1} x_{2} \ldots . . . x_{N}\)

We want to find \(\pi=\pi_{1}, \ldots \ldots, \pi_{N}\), such that \(P[x, \pi]\) is maximized
\(\pi^{*}=\operatorname{argmax}_{\pi} \mathrm{P}[\mathrm{x}, \pi]\)


We can use dynamic programming!
\[
\text { Let } V_{k}(i)=\max _{\{\pi 1, \ldots, i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]
\]
\(=\) Probability of most likely sequence of states ending at state \(\pi_{i}=k\)

\section*{Decoding - main idea}

Given that for all states k , and for a fixed position i ,
\[
V_{k}(i)=\max _{\{\pi 1, \ldots, i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]
\]

What is \(V_{k}(i+1)\) ?
From definition,
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{l}}(\mathrm{i}+1)=\max _{\{\pi 1, \ldots, i\}} \mathrm{P}\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{1}, \ldots, \pi_{i}, \mathrm{x}_{\mathrm{i}+1}, \pi_{i+1}=1\right] \\
& =\max _{\{\pi 1, \ldots, i\}} P\left(x_{i+1}, \pi_{i+1}=l \mid x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right) P\left[x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right] \\
& =\max _{\{\pi 1, \ldots, i j} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \pi_{\mathrm{i}+1}=1 \mid \pi_{\mathrm{i}}\right) \mathrm{P}\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}\right] \\
& =\max _{k} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \pi_{i+1}=1 \mid \pi_{i}=k\right) \max _{\{\pi 1, \ldots, i-1\}} \mathrm{P}\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{i-1},\right. \\
& \left.x_{i}, \pi_{i}=k\right]=e_{1}\left(x_{i+1}\right) \max _{k} a_{k l} V_{k}(i)
\end{aligned}
\]

\section*{The Viterbi Algorithm}

Input: \(x=x_{1} \ldots . . . x_{N}\) Initialization:
\[
\begin{aligned}
& V_{0}(0)=1 \\
& V_{k}(0)=0, \text { for all } k>0
\end{aligned}
\]
(0 is the imaginary first position)

\section*{Iteration:}
\[
\begin{array}{ll}
\mathrm{V}_{\mathrm{j}}(\mathrm{i}) & =\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right) \times \max _{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{~V}_{\mathrm{k}}(\mathrm{i}-1) \\
\operatorname{Ptr}_{\mathrm{j}}(\mathrm{i}) & =\operatorname{argmax}_{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{~V}_{\mathrm{k}}(\mathrm{i}-1)
\end{array}
\]

\section*{Termination:}
\[
P\left(x, \pi^{*}\right)=\max _{k} V_{k}(N)
\]

Traceback:
\[
\begin{aligned}
& \pi_{\mathrm{N}}{ }^{*}=\operatorname{argmax}_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N}) \\
& \pi_{\mathrm{i}-1} *=\operatorname{Ptr}_{\pi \mathrm{i}}(\mathrm{i})
\end{aligned}
\]

\section*{The Viterbi Algorithm}

left: Similar to "aligning" a set of states to a sequence,
Time: \(\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)\); Space: \(\mathrm{O}(\mathrm{KN})\); right : comparison of valid directions in the alignment and decoding problem.

\section*{Viterbi Algorithm - a practical detail}

Underflows are a significant problem
\[
P\left[x_{1}, \ldots ., x_{i}, \pi_{1}, \ldots, \pi_{i}\right]=a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots \ldots . a_{\pi i} e_{\pi 1}\left(x_{1}\right) \ldots . . . e_{\pi i}\left(x_{i}\right)
\]

These numbers become extremely small - underflow

Solution: Take the logs of all values
\[
V_{l}(i)=\log e_{k}\left(x_{i}\right)+\max _{k}\left[V_{k}(i-1)+\log a_{k l}\right]
\]

\section*{Example}

Let \(x\) be a sequence with a portion of \(\sim 1 / 66\) 's, followed by a portion of ~ \(1 / 2\) 6's...
\(x=123456123456 \ldots 123456626364656 \ldots 1626364656\)
Then, it is not hard to show that optimal parse is (exercise):

> FFF. F LLL L

6 nucleotides " 123456 " parsed as F, contribute \(.95^{6} \times(1 / 6)^{6}\) \(=\) \(1.6 \times 10^{-5}\)
parsed as \(L\), contribute \(.95^{6} \times(1 / 2)^{1} \times(1 / 10)^{5}=0.4 \times 10^{-5}\)
" 162636 " parsed as F, contribute \(.95^{6} \times(1 / 6)^{6}\)
\(=\)
\(1.6 \times 10^{-5}\)
parsed as \(L\), contribute \(.95^{6} \times(1 / 2)^{3} \times(1 / 10)^{3}=\) \(9.0 \times 10^{-5}\)

\section*{Generating a sequence by the model}

Given a HMM, we can generate a sequence of length n as follows:

Start at state \(\pi_{1}\) according to prob \(a_{0 \pi 1}\)
1. Emit letter \(x_{1}\) according to prob \(e_{\pi 1}\left(x_{1}\right)\)
2. Go to state \(\pi_{2}\) according to prob \(a_{\pi 1 \pi 2}\)
3. ... until emitting \(x_{n}\)


\section*{A couple of questions}

\section*{Given a sequence x ,}
- What is the probability that \(x\) was generated by the model?
- Given a position i , what is the most likely state that emitted \(x_{i}\) ?

Example: the dishonest casino

Say \(\mathrm{x}=12341623162616364616234161221341\)

Most likely path: \(\pi=\) FF......F
However: marked letters more likely to be L than unmarked letters

\section*{Evaluation}

We will develop algorithms that allow us to compute:
\(P(x) \quad\) Probability of \(x\) given the model
\(P\left(x_{i} \ldots x_{j}\right) \quad\) Probability of a substring of \(x\) given the model
\(P\left(\pi_{1}=k \mid x\right) \quad\) Probability that the \(i^{\text {th }}\) state is \(k\), given \(x\)

A more refined measure of which states \(x\) may be in

\section*{The Forward Algorithm}

We want to calculate
\(P(x)=\) probability of \(x\), given the HMM
Sum over all possible ways of generating x :
\[
\mathrm{P}(\mathrm{x})=\sum_{\pi} \mathrm{P}(\mathrm{x}, \pi)=\sum_{\pi} \mathrm{P}(\mathrm{x} \mid \pi) \mathrm{P}(\pi)
\]

To avoid summing over an exponential number of paths \(\pi\), define
\[
f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \quad \text { (the forward probability) }
\]

\section*{The Forward Algorithm - derivation}

Define the forward probability:
\[
\mathrm{f}_{\mathrm{I}}(\mathrm{i})=\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{I}\right)
\]
\[
\begin{aligned}
& =\sum_{\pi 1 \ldots \pi i-1} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-1}, \pi_{\mathrm{i}}=\mathrm{l}\right) \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& =\Sigma_{\mathrm{k}} \sum_{\pi 1 \ldots \pi \mathrm{i}-2} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-2}, \pi_{\mathrm{i}-1}=\mathrm{k}\right) \mathrm{a}_{\mathrm{k} \mid} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& =\mathrm{e}_{\mid}\left(\mathrm{x}_{\mathrm{i}}\right) \sum_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k} \mid}
\end{aligned}
\]

\section*{The Forward Algorithm}

We can compute \(f_{k}(i)\) for all \(k\), \(i\), using dynamic programming! Initialization:
\(\mathrm{f}_{0}(0)=1\)
\(f_{k}(0)=0\), for all \(k>0\)
Iteration:
\(\mathrm{f}_{\mathrm{I}}(\mathrm{i})=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \sum_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{k} \mid}\)

\section*{Termination:}
\[
P(x)=\sum_{k} f_{k}(N) a_{k 0}
\]

Where, \(a_{k 0}\) is the probability that the terminating state is \(k\) (usually \(=a_{o k}\) )

\section*{Relation between Forward and Viterbi}

\section*{VITERBI}

Initialization:
\[
\begin{aligned}
& V_{0}(0)=1 \\
& V_{k}(0)=0, \text { for all } k>0
\end{aligned}
\]

Iteration:
\[
V_{j}(i)=e_{j}\left(x_{i}\right) \quad \max _{k} V_{k}(i-1) a_{k j}
\]

Termination:
\[
\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N})
\]

\section*{FORWARD}

\section*{Initialization:}
\[
\begin{aligned}
& f_{0}(0)=1 \\
& f_{k}(0)=0, \text { for all } k>0
\end{aligned}
\]

Iteration:
\[
f_{l}(i)=e_{\mid}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}
\]

Termination:
\[
P(x)=\sum_{k} f_{k}(N) a_{k 0}
\]

\section*{Motivation for the Backward Algorithm}

We want to compute
\[
P\left(\pi_{i}=k \mid x\right),
\]
the probability distribution on the \(\mathrm{i}^{\text {th }}\) position, given x

We start by computing
\[
\begin{aligned}
P\left(\pi_{i}=k\right. & , x)
\end{aligned} \quad=P\left(x_{1} \ldots x_{i}, \pi_{i}=k, x_{i+1} \ldots x_{N}\right) \quad .
\]

\section*{The Backward Algorithm - derivation}

Define the backward probability:
\[
\begin{aligned}
& b_{k}(i)=P\left(x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right) \\
& =\sum_{\pi i+1 \ldots \pi N} P\left(x_{i+1}, x_{i+2}, \ldots, x_{N}, \pi_{i+1}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\Sigma_{\mid} \sum_{\pi i+1 \ldots \pi N} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{i+1}=\mathrm{I}, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i}=\right. \\
& \text { k) } \\
& =\sum_{\mid} \mathrm{e}_{\mid}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{k} \mid} \Sigma_{\pi \mathrm{i}+1 \ldots \pi \mathrm{~N}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{\mathrm{i}+2}, \ldots, \pi_{\mathrm{N}} \mid \pi_{\mathrm{i}+1}=\mathrm{I}\right) \\
& =\sum_{\mid} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{k} \mid} \mathrm{b}_{\mathrm{l}}(\mathrm{i}+1)
\end{aligned}
\]

\section*{The Backward Algorithm}

We can compute \(b_{k}(i)\) for all \(k, i\), using dynamic programming
Initialization:
\(b_{k}(N)=a_{k 0}\), for all \(k\)

Iteration:
\[
b_{k}(i)=\sum_{l} e_{l}\left(x_{i+1}\right) a_{k \mid} b_{l}(i+1)
\]

Termination:
\[
\mathrm{P}(\mathrm{x})=\sum_{\mid} \mathrm{a}_{01} \mathrm{e}_{\mid}\left(\mathrm{x}_{1}\right) \mathrm{b}_{\mid}(1)
\]

\section*{Computational Complexity}

What is the running time, and space required, for Forward, and Backward?

\section*{Time: \(\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)\) \\ Space: O(KN)}

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a constant

\section*{Genscan}

\title{
The GENSCAN Web Server at MIT
}

\section*{Identification of complete gene structures in genomic DNA}

\section*{For information about Genscan, click here}

Server update, November, 2009: We've been recently upgrading the GENSCAN webserver hardware, which resulted in some problems in the output of GENSCAN. We apologize for the inconvenience. These output errors were resolved.

This server provides access to the program Genscan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.
This server can accept sequences up to 1 million base pairs ( 1 Mbp ) in length. If you have trouble with the web server or if you have a large number of sequences to process, request a local copy of the program (see instructions at the bottom of this page).

Organism:
Suboptimal exon cutoff (optional):
Sequence name (optional)
Print options: Predicted peptides only
Upload your DNA sequence file (upper or lower case, spaces/numbers ignored): Sfoglia... Nessun file selezionato.
Or paste your DNA sequence here (upper or lower case, spaces/numbers ignored):

\section*{GenomeScan}
webserver at MIT


This server provides access to the program GenomeScan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.
GenomeScan incorporates protein homology information when predicting genes. This server allows you to input proteins suspected to be similar to regions of your DNA sequence. You can find such proteins by doing a BLASTX comparison of your sequence to all known proteins, or by running GENSCAN and then comparing the results to known proteins using BLASTP. Please input the proteins in FastA format; the file may contain multiple proteins so long as each is separated by a header on its own line. Files should contain less than one million bases.

If you would like to test the program, feel free to use this DNA testfile and the corresponding protein file.

\section*{More information on GenomeScan: GenomeScan homepage}

You may also wish to use or read about the GENSCAN server, GenomeScan's predecessor.

\section*{Run GenomeScan:}

Organism: Vertebrate

Sequence name (optional):
Print options: Predicted peptides only \(\star\)

\section*{A eukaryotic gene}

- This is the human p53 tumor suppressor gene on chromosome 17.
- Genscan is one of the most popular gene prediction algorithms.

\section*{A eukaryotic gene}


This particular gene lies on the reverse strand.

\section*{An Intron}


\section*{Modeling the 5' splice site}

- Most introns begin with the letters "GT."
- We can add this signal to the model.

\section*{Modeling the 5' splice site}

- Most introns begin with the letters "GT."
- We can add this signal to the model.
- Indeed, we can model each nucleotide with its own arrow.

\section*{Modeling the 5' splice site}

- Like most biological phenomenon, the splice site signal admits exceptions.
- The resulting model of the 5 ' splice site is a length-2 PSSM.

\section*{Real splice sites}

- Real splice sites show some conservation at positions beyond the first two.
- We can add additional arrows to model these states.

\section*{Modeling the 5' splice site}


\section*{Length distributions of human introns and initial, internal and terminal exons}


\section*{GenScan}
- N - intergenic region
- P - promoter
- F-5' untranslated region
- \(\mathrm{E}_{\text {sngI }}\) - single exon (intronless) (translation start -> stop codon)
- \(\mathrm{E}_{\text {init }}\) - initial exon (translation start -> donor splice site)
- \(\mathrm{E}_{\mathrm{k}}\) - phase k internal exon (acceptor splice site -> donor splice site)
- \(\mathrm{E}_{\text {term }}\) - terminal exon (acceptor splice sptteTR) -> stop codon)
- \(I_{k}\) - phase \(k\) intron: 0 - between codons; 1 - after the first base of a codon; 2after the second base of a corwand (+) strand


GENSCAN (Burge \& Karlin)


\section*{Genscan model}
- Duration of states - length distributions of
- Exons (coding)
- Introns (non coding)
- Signals at state transitions
- ATG
- Stop Codon TAG/TGA/TAA
- Exon/Intron and Intron/Exon Splice Sites
- Emissions
- Coding potential and frame at exons
- Intron emissions


\section*{GenScan features}
- Model both strands at once
- Each state may output a string of symbols (according to some probability distribution).
- Explicit intron/exon length modeling
- Advanced splice site modeling
- Complete intron/exon annotation for sequence
- Able to predict multiple genes and partial/whole genes
- Parameters learned from annotated genes
- Separate parameter training for different CpG content groups (< 43\%, 43-51\%, 51-57\%,>57\% CG content)

\section*{Performance}
- \(>80 \%\) correct exon predictions, and \(>90 \%\) correct coding/non coding predictions by bp.
- BUT - the ability to predict the whole gene correctly is much lower

\section*{Hidden Markov models}

\section*{How to identify protein structural parts?}

Membrane proteins that are important for ce import/export. We would like to predict the position in the amino acids with respect to th membrane. The prediction of gene parts and the membrane protein topology (i.e. which parts are outside, inside and buried in the membrane) will require to train the model wi a dataset of experimentally determined genes / transmembrane helices and to valida the model with another dataset. The figure below describes a 7 helix membrane protein forming a sort of a cylinder (porus) across the cell membrane



\section*{Cystic fibrosis}

The gene affected by CF controls the movement of salt and water in and out of cells. People with cystic fibrosis experience a build-up of thick sticky mucus in the lungs, digestive system and other organs, causing a wide range of challenging symptoms affecting the entire body.


TMHMM: Prediction of transmembrane topology of protein sequence Model consists of submodels for:
- helix core and cap regions (cytoplasmic and extracellular)
- cytoplasmic and extracellular loop regions
- globular domain regions

Trained form 160 proteins with experimentally determined transmembrane


Prediction method: Posterior decoding, the program computes for each residue of the sequence the probability of being part if a transmembrane helix, an intracellular loop or globular domain region, or an extracellular loop or domain region.
```

amino acid sequence MGDVCDTEFGILVA...SVALRPRKHGRWIV...FWVDNGTEQ...PEHMTKLHMM...

```
state sequence ooooooooohhhhh...hhhhiiiiiiihhh...hhhoooo00...0000ooohhh...


\section*{Assessing performance: Sensitivity and Specificity}
- Testing of predictions is performed on sequences where the gene structure is known
- Sensitivity is the fraction of known genes (or bases or exons) correctly predicted: \(\mathbf{S n}=\mathbf{N}_{\text {True Positives }} / \mathbf{N}_{\text {All True }}\)
- "Am I finding the things that I'm supposed to find?
- Specificity is the fraction of predicted genes (or bases or exons) that correspond to true genes: \(\mathbf{S p}=\mathbf{N}_{\text {True Positives }} / \mathbf{N}_{\text {All Positives }}\)
- "What fraction of my predictions are true?
- In general, increasing one decreases the other

\section*{Validation}
(1) be predicted to occur: Predicted Positive (PP)
(2) be predicted not to occur: Predicted Negative (PN)
(3) actually occur: Actual Positive (AP)
(4) actually not occur: Actual Negative (AN)
(5) True Positive \(T P=P P \bigcap A P\)
(6) True Negative \(T N=P N \cap A N\)
(7) False Negative \(F N=P N \cap A P\)
(8) False Positive \(F P=P P \bigcap A N\)
(0) Sensitivity: probability of correctly predicting a positive example \(\mathrm{Sn}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})\)
(1) Specificity: probability of correctly predicting a negative example \(\mathrm{Sp}=\mathrm{TN} /(\mathrm{TN}+\) FP) or
(1) Probability that positive prediction is correct \(\mathrm{Sp}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})\).

\section*{Assessing performance: Sensitivity and Specificity}
- Testing of predictions is performed on sequences where the gene structure is known
- Sensitivity is the fraction of known genes (or bases or exons) correctly predicted: \(\mathbf{S n}=\mathbf{N}_{\text {True Positives }} / \mathbf{N}_{\text {All True }}\)
- "Am I finding the things that I'm supposed to find?
- Specificity is the fraction of predicted genes (or bases or exons) that correspond to true genes: \(\mathbf{S p}=\mathbf{N}_{\boldsymbol{T}}\)
- In general, increas
\[
\begin{aligned}
& C C=\frac{[(T P)(T N)-(F P)(F N)]}{\sqrt{(A N)(P P)(A P)(P N)}} \\
& A N=T N+F P ; A P=T P+F N ; \\
& P P=T P+F P ; P N=T N+F N
\end{aligned}
\]

\section*{Graphic View of Specificity and Sensitivity}


Correlation Coefficient
\[
\begin{gathered}
\text { Sn }^{\text {TruePositive }}=
\end{gathered} \begin{gathered}
\text { TruePositive } \\
\text { AllTrue }
\end{gathered}=\begin{gathered}
\text { TruePositive }+ \text { FalseNegative }
\end{gathered}
\]
\[
\begin{aligned}
& C C=\frac{[(T P)(T N)-(F P)(F N)]}{\sqrt{(A N)(P P)(A P)(P N)}} \\
& A N=T N+F P ; A P=T P+F N \\
& P P=T P+F P ; P N=T N+F N
\end{aligned}
\]

\section*{Specificity/Sensitivity Tradeoffs}
- Ideal Distribution of Scores

- More Realistically...


\section*{DTU Bioinformatics}

\section*{Department of Bio and Health Informatics}

Home

\section*{TMHMM Server v. 2.0}

Prediction of transmembrane helices in proteins


\section*{SUBMISSION}

Submission of a local file in FASTA format (HTML 3.0 or higher)
Sfoglia... Nessun file selezionato.
OR by pasting sequence(s) in FASTA format: >AAA39861.1 opsin [Mus musculus]
MNGTEGPNFYVPFSNVTGVGRSPFEQPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRT PLNYILLNLAVADLFMVFGGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVC KPMSNFRFGENHAIMGVVFTWIMALACAAPPLVGWSRYIPEGMQCSCGIDYYTLKPEVNNESFVIYMFVV HFTIPMIVIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIFFLICWLPYASVAFYIFTHQG SNFGPIFMTLPAFFAKSSSIYNPVIYIMLNKQFRNCMLTTLCCGKNPLGDDDASATASKTETSQVAPA

\section*{Output format:}
- Extensive, with graphics

Extensive, no graphics
One line per protein

\section*{Other options:}
\(\checkmark\) Use old model (version 1)

\section*{Submit Clear}

Restrictions:
At most 10,000 sequences and 4,000,000 amino acids per submission; each sequence not more than 8,000 amino acids.
Confidentiality:
The sequences are kept confidential and will be deleted after processing.

\section*{Model architecture of TMHMM}
(a)

(b)
(c)


TMHMM: uses cyclic model with 7 states for
- TM helix core
- TM helix caps on the N - and C -terminal side
- non-membrane region on the cytoplasmic side
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops to account for different membrane insertion mechanism)
- a globular domain state in the middle of each non-membrane region

\section*{Example for TMHMM www.cbs.dtu.dk/services/TMHMM/}
>gi|218694017|ref|YP_002401684.1| membrane protein; channel [Escherichia coli 55989]
MQDLISQVEDLAGIEIDHTTSMVMIFGIIFLTAVVVHIILHWVVLRTFEKRAIASS RLWLQIITQNKLFH
RLAFTLQGIIVNIQAVFWLQKGTEAADILTTCAQLWIMMYALLSVFSLLDVILNL AQKFPAASQLPLKGI
FQGIKLIGAILVGILMISLLIGQSPAILISGLGAMAAVLMLVFKDPILGLVAGIQLS ANDMLKLGDWLEM
PKYGADGAVIDIGLTTVKVRNWDNTITTIPTWSLVSDSFKNWSGMSASGGRR IKRSISIDVTSIRFLDED
EMQRLNKAHLLKPYLTSRHQEINEWNRQQGSTESILNLRRMTNIGTFRAYLN EYLRNHPRIRKDMTLMVR
QLAPGDNGLPLEIYAFTNTVVWLEYESIQADIFDHIFAIVEEFGLRLHQSPTGN DIRSLAGAFKQ

\section*{TMHMM-Output}
\# Sequence Length: 274
\# Sequence Number of predicted TMHs: 7
\# Sequence Exp number of A.As in TMHs: 153.74681
\# Sequence Exp number, first 60 Ads: 22.08833
\# Sequence Total prob of N-in: 0.04171
\# Sequence POSSIBLE N-term signal sequence
Sequence TMHMM2.0 outside 1
\begin{tabular}{lllll} 
Sequence & TMHMM2.0 & TMhelix & 27 & 49
\end{tabular}
sequence Sequence
\begin{tabular}{llrr} 
TMHMM2.0 & TMhelix & 27 & 49 \\
TMHMM2.0 & inside & 50 & 61 \\
TMHMM2.0 & TMhelix & 62 & 84 \\
TMHMM2.0 & outside & 85 & 103 \\
TMHMM2.0 & TMhelix & 104 & 126 \\
TMHMM2.0 & inside & 127 & 130 \\
TMHMM2.0 & TMhelix & 131 & 153 \\
TMHMM2.0 & outside & 154 & 157 \\
TMHMM2.0 & TMhelix & 158 & 180 \\
TMHMM2.0 & inside & 181 & 200 \\
TMHMM2.0 & TMhelix & 201 & 223 \\
TMHMM2.0 & outside & 224 & 227 \\
TMHMM2.0 & TMhelix & 228 & 250 \\
TMHMM2.0 & inside & 251 & 274
\end{tabular}

TMHMM posterior probabilities for Sequence


\section*{DNA for computing:}

Adleman, L. M. (1994). "Molecular computation of solutions to combinatorial problems". Science 266 (5187): 1021-1024. doi:10.1126/ science. 7973651.


Adleman's first DNA computation solved a traveling salesman problem of seven cities. He used DNA techniques to assemble itineraries at random; Select itineraries from initial city to final city. The correct number of cities must be visited. No city can be left out.

Each city is represented by a unique sequence of bases. Connections between two cities are created from a combination of the complement of the first half of the sequence of one city, and the complement of the second half of the sequence of a connected city. In this way DNA representing the trip will be created with one strand representing a sequence of cities and the complementing strand representing a series of connections.

The next step is filtering out trips that start and end in the correct cities, then filtering trips with the correct number of cities, and finally filtering out trips that contain each city only once. Pros: 1 gram of DNA can hold about \(1 \times 10^{14} \mathrm{MB}\) of data. A test tube of DNA can contain trillions of strands. Each operation on a test tube of DNA is carried out on all strands in the tube in parallel; Adleman figured his computer was running \(2 \times 10^{19}\) operations per joule. Adleman's process to solve the traveling salesman problem for 200 cities would require an amount of DNA that weighed more than the Earth.

\section*{DNA for computing:}

Represent Each City By A DNA Strand of 20 Bases City1 ATGCTCAGctActatagcga

\({ }^{20-m e r ~ o l i g o n u c l e o t i d e ~ r e p r e s e n t i n g ~ c i t i e s ~}\)
(2) 5'TATCCMATCCGTATATCCCAA \(3^{\circ}\)
(3) 5'GCTATTGGAGGTTAAAGCTA \(3^{\prime}\)
(4) 5'GGCTAGGTACCAGCATGCTIT \(3^{\prime}\)


City2 TGCGATGTACTAGCATATAT

City3 GCATATGGTACACTGTACAA
City 4 TTATTAGCGTGCGGCCTATG
City5 CCGCGATAGTCTAGATTTCC Represent Each Air Route By Mixed Complementary Strands
```

City 1->2 TGATATCGCTACGCTACATG
City 2->3 ATCGTATATACGTATACCAT
City 3->4 GTGACATGTTAATAATCGCA
City 4->5 CGCCGGATACGGCGCTATCA
City 5->6 GATCTAAAGGTATGCATACG

```
L. Adelman, Scientific American, pp. 54-61 (Aug 1998);

Etc.

\section*{DNA for computing}


\section*{'travelling salesman' problem}

The challenge is finding a route between various cities, passing through each only once.
Adleman first generated all the possible itineraries and then selected the correct itinerary.
Since the enzymes (enzymes are proteins catalyzing a reaction) work on many DNA molecules at once, the selection process is massively parallel. Specifically, the method based on Adleman's experiment would be as follows:
- Generate all possible routes.
- Select itineraries that start with the proper city and end with the final city.
- Select itineraries with the correct number of cities.
- Select itineraries that contain each city only once.
- All of the above steps can be accomplished with standard molecular biology techniques.


Discover magazine published an article in comic strip format about Leonard Adleman's DNA computation.


\section*{Sort the DNA by length and select the DNA whose length corresponds to 7 cities}

A test tube is now filled with DNA encoded itineraries that start with LA and end with NY, where the number of cities in between LA and NY varies.
We now want to select those itineraries that are seven cities long. To accomplish this we can use a technique called Gel Electrophoresis, which is a common procedure used to resolve the size of DNA. The basic principle behind Gel Electrophoresis is to force DNA through a gel matrix by using an electric field.
DNA is a negatively charged molecule under most conditions, so if placed in an electric field it will be attracted to the positive potential.

The gel is made up of a polymer that forms a meshwork of linked strands. The DNA now is forced to thread its way through the tiny spaces between these strands, which slows down the DNA at different rates depending on its length.

What we typically end up with after running a gel is a series of DNA bands, with each band corresponding to a certain length.

We can then simply cut out the band of interest to isolate DNA of a specific length. Since we know that each city is encoded with a certain number of base pairs of DNA, knowing the length of the itinerary gives us the number of cities.


\section*{Technique for Generating Routes Strategy:}

Encode city names in short DNA sequences. Encode itineraries by connecting the city sequences for which routes exist.
Synthesizing short single stranded DNA is now a routine process, so encoding the city strings is straightforward. Itineraries can then be produced from the city encodings by linking them together in proper order.
To accomplish this you can take advantage of the fact that DNA hybridizes (=binds) with its complimentary sequence (complementary strands of DNA bind each other).
For example, you can encode the routes between cities by encoding the compliment of the second half (last n letters) of the departure city and the first half (first n letters) of the arrival city.
For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG). This gives CGGATG.
By taking the complement of this you get, GCCTAC, which not only uniquely represents the route from Miami to NY, but will connect the DNA representing Miami and NY by hybridizing itself to the second half of the code representing Miami (...CGG) and the first half of the code representing NY (ATG...).
Random itineraries can be made by mixing city encodings with the route encodings. Finally, the DNA strands can be connected together by an enzyme called ligase (ligases are enzymes, i.e. proteins connecting strings). What we are left with are strands of DNA representing itineraries with a random number of cities and random set of routes.

\section*{Itineraries Selection: Start and End with Correct Cities}

Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends with NY by using the Polymerase Chain Reaction (PCR). See next slide.

After generating the routes, we now have a test tube full of various lengths of DNA that encode possible routes between cities.
What we want are routes that start with LA and end with NY. To accomplish this we can use a technique called Polymerase Chain Reaction (PCR), which allows you to produce many copies of a specific sequence of DNA.

After many iterations of PCR, the DNA you're working on is amplified exponentially.

So to selectively amplify the itineraries that start and stop with our cities of interest, we use primers that are complimentary to LA and NY.

What we end up with after PCR is a test tube full of double stranded DNA of various lengths, encoding itineraries that start with LA and end with NY.

Polymerase chain reaction - PCR

(1) Denaturation at \(94-96^{\circ} \mathrm{C}\)
(2) Annealing at \(\sim 68^{\circ} \mathrm{C}\)
(3) Elongrtion at ca. \(72^{\circ} \mathrm{C}\)

PCR is an iterative process that cycle through a series of copying events using an enzyme called polymerase. Polymerase will copy a section of single stranded DNA starting at the position of a primer, a short piece of DNA complimentary to one end of a section of the DNA that you're interested in.
By selecting primers that flank the section of DNA you want to amplify, the polymerase preferentially amplifies the DNA between these primers, doubling the amount of DNA containing this sequence.

\section*{Itineraries Selection: Have a Complete Set of Cities}

DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called affinity purification, as shown below. This is accomplished by attaching the compliment of the sequence in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which contains the sequence you're after then hybridizes with the complement sequence on the beads. These beads can then be retrieved and the DNA isolated.


Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a different city complement for each run. We are left with itineraries that start in LA, visit each city once, and end in NY.
- Adleman's experiment solved a seven city problem, but there are two major shortcomings preventing a large scaling up of his computation.
- The complexity of the traveling salesman problem simply doesn't disappear when applying a different method of solution - it still increases exponentially.
- For Adleman's method, what scales exponentially is not the computing time, but rather the amount of DNA. Unfortunately this places some hard restrictions on the number of cities that can be solved; after the Adleman article was published, more than a few people have pointed out that using his method to solve a 200 city problem would take an amount of DNA that weighed more than the earth.

\section*{Adleman's pros \& cons}

Pros: 1 gram of DNA can hold about \(1 \times 10^{14} \mathrm{MB}\) of data. A test tube of DNA can contain trillions of strands.
5 grams of DNA contain \(10^{21}\) bases (Zetta Bytes)
Each operation on a test tube of DNA is carried out on all strands in the tube in parallel; Adleman figured his computer was running \(2 \times 10^{19}\) operations per joule. Adleman's process to solve the traveling salesman problem for 200 cities would require an amount of DNA that weighed more than the Earth.
Speed: 500-5000 base pairs a second.
i. Design workflow


ii. Validation


Design of random access primers and coding algorithm. (a, i) They designed a primer library. The primer sequence set is then filtered that has low similarity between the sequences. (a, ii) The resulting set of candidate primers is then validated experimentally by synthesizing a pool of about 100,000 strands containing sets of size 1 to 200 DNA sequences each, surrounded by one of the candidate primer pairs, and then randomly selecting 48 of those pairs for amplification. The product is sequenced, and sequences with each of the 48 primer pairs appear among sequencing reads, albeit at different relative proportions when normalized to the number of sequences in each set.

\section*{References}
- Adleman, L. M. (1994). "Molecular computation of solutions to combinatorial problems". Science 266 (5187): 1021-1024. doi:10.1126/science. 7973651. PMID 7973651.
- Boneh, D.; Dunworth, C.; Lipton, R. J.; Sgall, J. Í. (1996). "On the computational power of \(D N A\) ". Discrete Applied Mathematics 71: 79-94
- Shapiro, Ehud (1999-12-07)., "A Mechanical Turing Machine: Blueprint for a Biomolecular Computer," Weizmann Institute of Science. Retrieved 2009-08-13.

\section*{DNA as information storage}


\section*{STORAGE LIMITS}

Estimates based on bacterial genetics suggest that digital DNA could one day rival or exceed today's storage technology.


The work, carried out by George Church and Sri Kosuri, basically treats DNA as just another digital storage \(\begin{aligned} & \\ & \text { d device. Instead of binary data being encoded as magnetic regions on a }\end{aligned}\) hard drive platter, strands of DNA that store 96 bits are synthesized, with each of the bases (TGAC) representing a binary value ( \(T\) and \(G=1, A\) and \(C=0\) ).

To read the data stored in DNA, you simply sequence it - just as if you were sequencing the human genome - and convert each of the TGAC bases back into binary. To aid with sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the image below) - so a whole vat of DNA can be sequenced out of order, and then sorted into usable data using the addresses.

Decoding self-referential DNA that encodes these notes.


1000110111000110100 [barcode/address] 01100110 [f] 01100101 [e] 01110010 [r] \(01100110[\mathrm{f}] 01100101\) [e] \(01110010[\mathrm{r}]\)
01100101 [e] 01101110 [ n\(] 01110100[\mathrm{t}]\) 01101001 [i] 01100001 [a] 01101100 [t] 00100000 [] 01000100 [D] 01001110 [N]


TaacGTcTTGcccGGaGaa
 aTGaaTTc aTTcaTaT aTGTcaGa aTTcaTaG
cGGaTGTa aTGTcTac cGTcTcaT aGGcccaT cGGaTGTa aTGTcTac cGTcTca aGGcccaT
aGTcTGcc acTacacc aTacaTaa cTccGTTa


\section*{https://www.nature.com/articles/nbt. 4079}

\section*{ARTICLES}

\section*{Random access in large-scale DNA data storage}

Lee Organick \({ }^{1}\), Siena Dumas Ang \({ }^{2}\), Yuan-Jyue Chen \({ }^{2}\), Randolph Lopez \({ }^{3}\), Sergey Yekhanin \({ }^{2}\), Konstantin Makarychev \({ }^{2,5}\), Miklos Z Racz \({ }^{2,5}\), Govinda Kamath \({ }^{2,5}\), Parikshit Gopalan \({ }^{2,5}\), Bichlien Nguyen \({ }^{2}\), Christopher N Takahashi \({ }^{1}\), Sharon Newman \({ }^{1,5}\), Hsing-Yeh Parker \({ }^{2}\), Cyrus Rashtchian \({ }^{2}\), Kendall Stewart \({ }^{1}\), Gagan Gupta \({ }^{2}\), Robert Carlson \({ }^{2}\), John Mulligan \({ }^{2}\), Douglas Carmean \({ }^{2}\), Georg Seelig \({ }^{1,4}\), Luis Ceze \({ }^{1} \&\) Karin Strauss \({ }^{2}\)

Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted. Here, we encode and store 35 distinct files (over 200 MB of data), in more than 13 million DNA oligonucleotides, and show that we can recover each file individually and with no errors, using a random access approach. We design and validate a large library of primers that enable individual recovery of all files stored within the DNA. We also develop an algorithm that greatly reduces the sequencing read coverage required for error-free decoding by maximizing information from all sequence reads. These advances demonstrate a viable, large-scale system for DNA data storage and retrieval.

(a) Two files are stored by encoding each file in a set of different DNA sequences.

Redundant information is added to enable error recovery at retrieval, and a distinct primer is appended to each set of sequences corresponding to a file.
The resulting strings are synthesized and stored as a pool of different DNA molecules.
(b) A specific file is retrieved by amplifying the molecules corresponding to the file by ePCR, sequencing the PCR products, and algorithmically reconstructing the data from the reads.

Organick et al. stored and retrieved more than 200 megabytes of data.
Specifically, they attach distinct primers to each set of DNA molecules carrying information about a file. This allows them to retrieve a given file by selectively amplifying and sequencing only the molecules with the primer marking the desired file.
To test their scheme, they designed a primer library that allowed them to uniquely tag data stored in DNA. They encoded 35 digital files into \(13,448,372\) DNA sequences, each 150-nucleotides long. Redundant information using error detection codes is also included to increase robustness to missing sequences and errors.

To improve recovery of the information, Organick et al. develop a clustering and consensus algorithm that aligns and filters reads before error correction.

This algorithm also takes into account reads that differ from the correct length.


This work describes large-scale random access, low redundancy, and robust encoding and decoding of information stored in DNA, as well as a notable increase in the volume of data stored ( 200 MB , the largest synthetic DNA pool available to date).Overview of the DNA data storage workflow and stored data.
(a) The encoding process maps digital files into a large set of 150-nucleotide DNA sequences, including Reed-Solomon code redundancy to overcome errors in synthesis and sequencing. The resulting collection of sequences is synthesized. The random access process starts with amplifying a subset of the sequences corresponding to one of the files using PCR. The amplified pools are sequenced. Finally, sequencing reads are decoded using clustering, consensus and error correction algorithms.


Example files encoded within the 200 MB of data.
C
\begin{tabular}{l|r|r}
\hline Data & File size & Number of DNA sequences \\
\hline OK GO (HD video) & 44.2 MB & 3.2 million \\
\hline Classical music collection (Music) & 13.9 MB & 890,000
\end{tabular}
a comparison to research achievements shows that our coding scheme has similar logical redundancy, but requires lower sequencing coverage to recover files
d
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Data size & Sequencing technology & Subsampled to low coverage & Coverage & Bits per base including primers & Bits per base excluding primers & Random access \\
\hline Church et al. \({ }^{3}\) & 0.65 MB & Illumina & No & 3,000x & 0.60 & 0.83 & No \\
\hline Goldman et al. \({ }^{4}\) & 0.63 MB & Illumina & Yes & 51x & 0.19 & 0.29 & No \\
\hline Grass et al. \({ }^{5}\) & 0.08 MB & Illumina & No & 372x & 0.86 & 1.16 & No \\
\hline Bornholt et al. \({ }^{9}\) & 0.15 MB & Illumina & Yes & 40x & 0.57 & 0.85 & Yes \\
\hline Erlich and Zielinski \({ }^{7}\) & 2.11 MB & Illumina & Yes & 10.5x & 1.18 & 1.55 & No \\
\hline Blawat et al. \({ }^{6}\) & 22 MB & Illumina & No & 160x & 0.89 & 1.08 & No \\
\hline This work & 200.2 MB & Illumina & Yes & 5 x & 0.81 & 1.10 & Yes \\
\hline Yadzi et al. \({ }^{10}\) & 0.003 MB & Nanopore & No & 200x & 1.71 & 1.74 & Yes \\
\hline This work & 0.033 MB & Nanopore & Yes & 36x/80x & 0.81 & 1.10 & Yes \\
\hline
\end{tabular}


The encoding process starts by randomizing data to reduce chances of secondary structures, primer-payload non-specific binding, and improved properties during decoding. It then breaks the data into fixed-size payloads, adds addressing information (Addr), and applies outer coding, which adds redundant sequences using a Reed-Solomon code to increase robustness to missing sequences and errors. The level of redundancy is determined by expected errors in sequencing and synthesis, as well as DNA degradation. Next, it applies inner coding, which ultimately converts the bits to DNA sequences. The resulting set of sequences is surrounded by a primer pair chosen from the library based on (low) level of overlap with payloads.
C
Decoding


The decoding process starts by clustering reads based on similarity, and finding a consensus between the sequences in each cluster to reconstruct the original sequences, which are then decoded back to digital data.

The data longevity and information density of current DNA data storage systems already surpass those of traditional storage systems, but the cost and the read and write speeds do not.

Storing one megabyte of data in DNA with existing technology costs hundreds of dollars, compared with less than \$0.0001 per year using tape, the standard for archival data storage.
The price of DNA storage will undoubtedly drop substantially as the costs of DNA synthesis and sequencing fall.

The more pressing challenge is that DNA synthesis and sequencing are inherently slow.

DNA synthesis and sequencing DNA can be extensively parallelized, their slow speeds limit the amount of data that can be written and read in a given time interval. The bottleneck for both cost and speed is synthesis.

A fully automated DNA drive would include synthesis and sequencing technology, components to store and handle the DNA, as well as a supply of chemicals.

\section*{Exam questions}

\section*{1 Bioinformatics (PL)}
(a) What are the usage and the limitations of the Bootstrap technique in phylogeny?
[6 marks]

\begin{abstract}
Answer: This is a procedure of reampling of the sites in an alignment and tree reconstructions of all the pecudo alignments; it depends on the size of the alignment (length of the sequences and their number). The percentage of times each interior branch is given a value of 1 is noted. This is known as the bootstrap value. As a general rule, if the bootstrap value for a given interior branch is \(95 \%\) or higher, then the topology at that branch is considered correct. The presence of several repeated columns decreases the amount of information in each peeudoalignment.
\end{abstract}
(c) How can you evaluate the results obtained (number of clusters and their relative position) using the K means algorithm for clustering?
[5 marks]

Answer: The quality of cluster could be assessed by ratio of distance to nearest cluster and cluster diameter. A cluster can be formed even when there is no similarity between clustered patterns. This occurs because the algorithm forces k clusters to be created. Linear relationship with the number of data points; Complexity is \(\mathrm{O}(\mathrm{nKI})\) where \(\mathrm{n}=\) number of points, \(\mathrm{K}=\) number of clusters, \(I=\) number of iterations.

\section*{Exam questions}

\section*{Bioinformatics}
(a) Discuss the space-time complexity of dynamic programming algorithms in sequence alignment.
[7 marks]
(b) Discuss with one example how to score a multiple sequence alignment.
[5 marks]

\section*{Exam questions}
1. Give the alignment matrix of the sequences 'AATCGCGCGGT' and 'ATGCGCCGT' assuming the following costs: \(\operatorname{Cost}(a, a)=0 ; \operatorname{Cost}(a, b)=3\) when \(a \neq b, \operatorname{Cost}(a,-)=\operatorname{Cost}(-, a)=2\).
2. How would you set the function Cost in order to compute the longest subsequence common to x and y ?
3. Describe the differences between the algorithms for global and local alignments
4. Which of the following reasons would lead you to use the Smith-Waterman local alignment algorithm instead of the Needleman-Wunsch global alignment algorithm?
Select all appropriate answers.
(a) Computer memory is too limited to compute the optimal global alignment.
(b) One wants to identify common protein domains in the two sequences.
(c) The sequences have very different lengths.
(d) Smith-Waterman is faster than Needleman-Wunsch on long sequences.
5. Describe the notion of a parsimonious phylogeny for a finite set of sequences and the hypothesis assumed on them

\section*{COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 7}

\section*{\(\beta\) Bioinformatics (PL)}

Given the two DNA sequences: GCACTT and CCCAAT
(a) Compute the alignment (using the edit graph) and the final score with the following rules: match score \(=+1\), mismatch \(=-1\), gap penalty \(=-1\).
[4 marks]
(b) Discuss how the alignment score and the quality of the result depend on the match score, mismatch, and gap penalty.
[6 marks]
(c) Generate four, short DNA sequences ( \(a, b, c, d\) ) such that their relations as a tree are approximately the following: \(((\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}))\).
[5 marks]
(d) How is the score matrix used in phylogenetic tree building techniques?

\section*{COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 9}

\section*{\(\|\) Bioinformatics (PL)}
(a) What are the usage and the limitations of the Bootstrap technique in phylogeny?
[6 marks]
(b) We often use Hidden Markoy Models (HMM) to predict a pattern (for instance the exons). How can you compute the number of True Positives, True Negatives; False Positives and False Negatives and use them to evaluate your HMM?
[6 marks]
(c) How can you evaluate the results obtained (number of clusters and their relative position) using the K means algorithm for clustering?
[5 marks]
(b) We often use Hidden Markov Models (HMM) to predict a pattern (for instance the exons). How can you compute the number of True Positives, True Negatives, False Positives and False Negatives and use them to evaluate your HMM?
[6 marks]

Answer:
(i) be predicted to occur: Predicted Positive (PP)
(ii) be predicted not to occur: Predicted Negative (PN)
(iii) actually occur: Actual Positive (AP)
(iv) actually not occur: Actual Negative (AN)
(v) True Positive \(T P=P P \cap A P\)
(vi) True Negative \(T N=P N \cap A N\)
(vii) False Negative \(F N=P N \cap A P\)
(viii) False Positive \(F P=P P \bigcap A N\)
(ix) Sensitivity: probability of correctly predicting a positive example \(\mathrm{Sn}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})\)
( \(x\) ) Specificity: probability of correctly predicting a negative example \(\mathrm{Sp}=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})\) or
(xi) probability that positive prediction is correct \(\mathrm{Sp}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})\)```


[^0]:    "Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

