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At	the	core	of	life	there	is	a	sort	of	programming;	the	DNA	sequence	
contains	both	the	code	for	the	structure	of	the	3d	parts	(usually	
proteins,	programmed	self	assembly	process)	and	the	code	that	
represents	the	manual	of	instructions	-how	much,	where,	when	a	
certain	part	should	be	produced.		
Bioinformatics	is	about	algorithms	and	machine	learning	methods	to	
identify	the	coding	elements	in	the	DNA	sequences	and	characterise	the	
parts.	
Both	DNA	sequence	and	protein	structure	research	have	adopted	good	
abstractions:	‘DNA-as-string’	(a	mathematical	string	is	a	finite	
sequence	of	symbols)	and‘a	protein-as-a	three-dimensional-labelled-
graph’.		
	

BioInformatics  2019-2020 
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Models of DNA and proteins 

sources: Photograph 51’, March 1953, by Rosalind Franklin; Pencil sketch of the DNA 
double helix by Francis Crick; Replica of Crick and Watson’s 1953 DNA Double Helix Model, 
https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/ 

5-CCTGAGCCAACTATTGATGAA-3 
3-GGACTCGGTTGATAACTACTT-5 

ABSTRACTIONS:		
DNA		AS	A	STRING,	
PROTEIN	AS	A	LABELLED	GRAPH	
DNA	AND	PROTEINS	AS	NETWORKS 	



Machine	
learning	

Biology	and	
Medicine	

Algorithms	
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Great	
Data	

Powerful	
tools	

Cool				
Questions	

What is BioInformatics 



Bioinformatics: a central position in medicine  

1-5 years 5-10 years NOW 
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CRISPR 
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Epigenetics 

Deep Phenotyping: 
Standards & Devices 

Multimodal 
data analytics 

Databases & 
Data Sharing 

Cybersecurity 

Early diagnosis 

Cohorts & Biobanks 

Big Data 
Handling 

Metadata 
& Curation 

Text Mining 

Health Data 
Cooperatives 

Citizen Science 

Digital Pathology Multi-organ chips 

Nanosensors 

Synthetic biology 

Artificial 
Intelligence 

Lifestyle 
interventions 

Adaptive Therapy 

Imaging 

Big Data Analytics 

Computer simulation, 
personal avatars 

Bioinformatics 

Bioinformatics 

Bioinformatics 

Artificial 
Intelligence 

NGS= next generation sequenging 



DNA for genomic diagnostics 

Impact on Personalised Medicine 

  Cancer: Disease stratification 
based on driver mutations 

  Rare diseases: Most patients now 
receive a genetic diagnosis 

  Drugs: Patient-specific prediction 
of efficacy and side effects 

https://www.genome.gov/sequencingcosts 



1979 today 

High-performance computing Genome sequencing 

2006 today 

Who has a computer? 

  1960s: Major research institutes 

  1970s: University departments 

  1980s: Companies and schools 

  2019: Almost everybody & always 

Whose genome has been sequenced? 

  1996: First bacterium (E. coli) 

  2001: Human reference genome 

  2007: First personal genomes 

  2019: Millions personal genomes 
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Garage genomics 

 
Oxford 
nanopore 
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Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nlm.nih.gov/ ;  
http://genome.ucsc.edu/ www.ensembl.org  

DNA is big data 
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Each base pair take a couple of bits to encode (because you have to choose 
between G, A, T and C. 
 
You have 46 chromosomes in each (autosomal) cell (3 billion base pairs,  2 meters 
long, 2nm thick, folded into a 6µm ball). If you teased out those 46 strands and 
placed them end to end they'd be about 2 metres long - but that's just one cell.  
Every time a cell replicates it has to copy 2 meters of DNA reliably.  
 
As there are about 3.7×1013 cells in the human body (and hence 1.7×1015 
chromosomes or strands), your entire DNA would stretch about 7.4×1010 km or fifty 
thousand million miles (133 Astronomical Units long) — DNA in human population  
20 million light years long (the Andromeda Galaxy is 2.5 Million light years). 
 
 
Lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 × 
1031) megabases (Mb) of DNA.  Taking the rate of DNA transcription as an analogy 
for processing speed, they further estimated Earth's computational power: 1015 
yottaNOPS (1024 Nucleotide Operations Per Seconds). 
 

How	much	DNA	in	the	body	and	in	the	biosphere 



Protein 

mRNA 

DNA 

transcription 

translation 

CCTGAGCCAACTATTGATGAA 
GCACTCGGTTGATAACTACTT 

PEPTIDE 

CCUGAGCCAACUAUUGAUGAA 

11 

Genetic Code 
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>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA 
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA 

GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC 
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG 
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC 
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT 
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA 
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA 
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT 
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC  
 
 
 
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens] 

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG 
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN  
ALAHKYH  

 

sequences  
in Fasta format 

Healthy	Individual 
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>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA 
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA 

GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC 
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG 
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC 
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT 
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA 
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA 
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT 
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC  
 
 
 
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens] 

MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG 
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN  
ALAHKYH  

 

Individual	with	Sickle	Cell	Anemia 
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Genes are activated or repressed by regulatory proteins which bind to gene flanking 
sequences (promoter) and are coded by the same or other genes.  

•  Gene and protein interactions as graphs 

A 

B 

C 

D 



Logic	gates	

	Toggle	switch	(cro	and	cl	are	genes;	
Pr	and	Prm	are	binding	sites	for	the	
proteins	of	genes	cro	and	cl)	

Logic gates: The Cell as an 
information processing device 

 

proteins	binding		
regulatory	elements		



16 

ABOVE: Idealized promoter for a gene involved 
in making hair. Proteins that bind to specific 
DNA sequences in the  promoter region together 
turn a gene on or off.  These proteins are 
themselves regulated by their own promoters 
leading to a gene regulatory network with many 
of the same properties as a neural network. We 
use chips (right) to monitor the  
activity of all the genes in different  
conditions (gene expression). 

The Cell is a Computer in 
Soup 



The transcriptional regulatory network (1,378 nodes) 
follows a conventional hierarchical picture, with a few 
top regulators and many workhorse proteins. The 
Linux call graph (12,391 nodes), on the other hand, 
possesses many regulators; the number of workhorse 
routines is much lower in proportion. The regulatory 
network has a broad out-degree distribution but a 
narrow in-degree distribution. The situation is reversed 
in the call graph, where we can find in-degree hubs, 
but the out-degree distribution is rather narrow. Yan et 
al. PNAS  2010,  107, 20. 

Cells versus Computers  
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Bacterium 

1 micron 
 

λ = 0.25  micron 
in Pentium II  

 
Human 
chromos
ome.  

1 micron 
 

Scales	of	electronic	and	bio	devices 

proteins inside 
a bacterium 
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The network level: can you spot the difference? 



•  DNA,		RNA	and	proteins	can:	
•  	Organize	themselves	to	self	assemble	different	types	of	devices	

(mechanisms	such	rotors,	motors)	or	structures	with	different	
shapes	across	time	and	space	scales.	

•  Organise	other	types	of	molecules	such	as	lipids,	sugars	and	
artificial	ones.	

•  Organise	large	set	of	reactions	(such	as	metabolic	networks)	and	
Execute	different	kinetics		

•  	Self-Assemble	control	devices	

Nature	is	programmed	for	self-assemble;		
Bioinformatics	is	needed	to	identify	the	key	elements  
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Macroscale	
IKEA:	not	

self	
assembly 
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24 to 200 nanometers they’re 
10 to 100 times smaller than the 
average bacterium, much too 
small to see with an ordinary 
light microscope. 
 
5. We absorb about 30 billion 
phages into our bodies every 
day. They form an integral part 
of our microbial ecosystem.  

microscale	IKEA:	Nature	is	
programmed	for	self	assembly 
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The	genome	contains	both	the	instructions	for	assembly	and	for	the	parts	and	it	is	
shipped	with	the	virus 



•  Base-4   (ACGT) 
•  DNA 
•  Bases 
•  Codons (triplets of 

bases for each amino 
acid) 

•  Genetic Code (translate 
codons into amino 
acids)  

•  Gene/Protein 
•  Chromosome 
•  Genome Size 

•  Base-2   (101010) 
•  Magnetic tape/Disk 
•  Bits/Transistors 
•  Bytes 
•  Instruction Set 

•  File, Program 
•  Hard Disk 
•  Disk Capacity 

Cells versus Computers  
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Cells versus Computers  



	A	free	book	is	this:	cell	biology	by	the	numbers	
http://book.bionumbers.org/	
	
	
	
•  Genetics	for	Computer	Scientists	
https://www.cs.helsinki.fi/group/genetics/
Genetics_for_CS_March_04.pdf	
•  Molecular	Biology	for	Computer	Scientists:	
http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf		
Biology	and	Computers:	A	lesson	in	what	is	possible	
https://ethw.org/	
https://www.wehi.edu.au/wehi-tv/	
	 26 

If	you	want	to	know	more	about	biology 
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General	references	for	course 

Partly based on book: Compeau and 
Pevzner Bioinformatics algorithms (chapter 
3,5,7-10 chapter). 
 

No biology in the exam questions (You need to know only  the 
reason of the algorithms). 

 
also Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme 
Mitchison  
Biological Sequence Analysis:  
Probabilistic Models of Proteins and Nucleic Acids  
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Alignment	1	

Phylogeny	2	

Genome	
sequencing	

3	

Genome	
Assembly	4	Clustering	5	

Hidden	
Markov	
Models	6	

DNA	
Computing/
storage	

information	

Structure	of	the	course 



•  how	to	align	two	sequences?	
•  Trees	(what	is	the	relationships	of	multiple	
sequences	and	what	has	to	do	with	species	
evolutionary	history)	

•  Genome	sequence	(how	to	analyse	a	genome)	

29 

Aligning DNA and Protein Sequences 



	

•  From	Sequence	Comparison	to	Biological	Insights		

•  The	Alignment	Game	and	the	Longest	Common	Subsequence		

•  Dynamic	Programming	and	Backtracking	Pointers			

•  From	Global	to	Local	Alignment	

•  Penalising	Insertions	and	Deletions	in	Sequence	Alignment		

•  Space-Efficient	Sequence	Alignment		

•  Nussinov	folding	algorithm	(RNA	2dimensional	folding)	

30 

How Do We Compare Biological Sequences? 
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Summary for alignment lectures 



  A T - G T T A T A        
  A T C G T - C - C 
 +1+1  +1+1        =4 
  
 
 Alignment	of	two	sequences	is	a	two-row	matrix:		

	
1st	row:		symbols	of	the	1st	sequence	(in	order)	interspersed	by	“-”		
2nd	row:	symbols	of	the	2nd	sequence	(in	order)	interspersed	by	“-”		
 

matches		insertions		deletions		mismatches	

32 

What Is the Sequence Alignment? 



  A T - G T T A T A        
  A T C G T - C - C 
  
  
 
 

Matches	in	alignment	of	two	sequences	(ATGT)	form	their		
Common	Subsequence		

Longest	Common	Subsequence	Problem:	Find	a	longest	
common	subsequence	of	two	strings.	

•  Input:	Two	strings.	
•  Output:	A	longest	common	subsequence	of	these	

strings.	
33 

Longest Common Subsequence 



Alignment	:		2	*	k	matrix	(	k	>	m,	n	)	

A	 T	 --	 G	 T	 A	 T	 --	

A	 T	 C	 G	 --	 A	 --	 C	

letters	of	v	

letters	of	w	

T	

T	

A T G T T A T
A T C G T A

v		:	
w	:	

m	=	7		
n	=	7		

4	matches	 2	insertions	 2	deletions	

Given	2	DNA	sequences	v	and	w:	

34	

C

Alignment: 2 row representation  



Longest	 Common	 Subsequence	 (LCS)	 –the	 simplest	 form	 of	
sequence	 alignment	 –	 allows	 only	 insertions	 and	 deletions	 (no	
mismatches).	 In	the	LCS	Problem,	we	scored	1	for	matches	and	0	
for	 indels;	 in	 real	 analysis	 we	 consider	 penalising	 indels	 and	
mismatches	with	negative	scores.	
	
• 		Given	two	sequences												v	=	v1	v2…vm	and	w	=	w1	w2…wn	

• 		The	LCS	of	v	and	w	is	a	sequence	of	positions	in		

	v: 1 < i1 < i2 < … < it < m 
and	a	sequence	of	positions	in		

	w: 1 < j1 < j2 < … < jt < n 
such	that	it	-th	letter	of	v	equals	to	jt-th	letter	of	w	and	t	is	
maximal.	 35	

Longest Common Subsequence 



		C	A	 T	 --	 C	 T	 G	 A	 T	

--	 T	 G	 C	 T	 --	 A	 --	 C	

elements	of	v	

elements	of	w	

--	

A	
1	

2	

0	

1	

2	

2	

3	

3	

4	

3	

5	

4	

5	

5	

6	

6	

6	

7	

7	

8	

j	coords:	

i	coords:	

Matches	shown	in	red	
positions	in	v:	
positions	in	w:		

2	<	3	<	4	<	6	<	8	

1	<	3	<	5	<	6	<	7	

Every	common	subsequence	is	a	path	in	2-D	grid	

0	

0	

(0,0)à	(1,0)à	(2,1)à	(2,2)à	(3,3)à	(3,4)à	(4,5)à	(5,5)à	(6,6)à	(7,6)à	(8,7)	

36	

Longest Common Subsequence 



The	Edit	distance	between	two	strings	is	the	minimum	number	of		operations	
(insertions,	deletions,	and	substitutions)	to	transform	one	string	into	the	other	

V  =  ATATATAT!

W =  TATATATA !

Hamming	distance:																				Edit	distance:		
						d(v,	w)=8																															d(v,	w)=2		
Computing	Hamming	distance													Computing	edit	distance		
											is	a	trivial	task																													is	a	non-trivial	task	
	
																

W =  TATATATA- !

Just one shift 
Make it all line up 

V  =   -ATATATAT!

Hamming	distance		
always	compares		
	i-th	letter	of	v		with	
	i-th	letter	of	w	

Edit	distance		
may	compare		
	i-th	letter	of	v		with	
	j-th	letter	of	w	

37	

Longest Common Subsequence 



TGCATAT	à	ATCCGAT	in	4	steps	
	

TGCATAT   à (insert	A	at	front)	
ATGCATAT à (delete	6th	T)	
ATGCATA   à (substitute	G	for	5th	A)	
ATGCGTA   à (substitute	C	for	3rd	G)	
ATCCGAT  (Done)	

									

38	

Edit Distance: Example 



Old	Alignment	
   0122345677 
v=  AT_GTTAT_    
w=  ATCGT_A_C 
   0123455667   
 
 New	Alignment	
   0122345677 
v=  AT_GTTAT_    
w=  ATCG_TA_C 
   0123445667	

39	
Two similar alignments; the score is 5 for both the alignment paths. 

Alignment as a Path in the Edit Graph 



T	

G

C

A

T	

A

C

1	

2	

3	

4	

5	

6	

7	

0	i	

A T	 C T	 G A T	 C
0	 1	 2	 3	 4	 5	 6	 7	 8	

j	

Every	path	is	a	
common	
subsequence.	

Every	diagonal	
edge	adds	an	extra	
element	to	
common	
subsequence	

LCS	Problem:	Find	
a	path	with	
maximum	number	
of	diagonal	edges	

40	

LCS Problem as - Edit Graph  



Let	vi			=			prefix	of	v	of	length	i:				v1	…	vi	
and	wj		=		prefix	of	w	of	length	j:			w1	…	wj	

The	length	of	LCS(vi,wj)	is	computed	by:	

si,j	=	MAX 
si-1,j				+	0	
si,j	-1			+	0	
si-1,j	-1	+	1,				if		vi	=	wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

41	

0 1 2 3 4 

0 

1 

2 

3 

4 

W	 A	 T	 C	 G	

A	

T	

G	

T	

V	
												

						0	1	2		2		3	4	

V	=				A	T	-		G	T	

										|		|					|	

W=				A	T	C	G	–	

							0	1	2		3	4	4	

	

Every Path in the Grid Corresponds to 
an Alignment  

Computing LCS 
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The above recursive program prints out the longest common subsequence 
using the information stored in b. The initial invocation that prints 
the solution to the problem is PRINTLCS(b, v, n,m). 

LCS Algorithm 



 
																											si-1,	j		-	σ		
																											si,	j-1		-	σ		
																											si-1,	j-1	+	1,	if	vi=wj	

																											si-1,	j-1		-	μ,	if	vi≠wj	
	

	
 

Dynamic	Programming	Recurrence	for	the		

		si,	j=	max		

43 

Alignment Graph 
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All genomes are littered with repeats so alignment of 
large sequences is difficult 

increased difficulty 
with a puzzle with 
many repetitions 
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Notice three possible cases: 
 
1.  xi aligns to yj 

 x1……xi-1   xi 
  y1……yj-1   yj 

 
2.  xi aligns to a gap 

 x1……xi-1  xi 
  y1……yj    - 

 
3.  yj aligns to a gap 

 x1……xi    - 
  y1……yj-1  yj 

        m, if xi = yj 
F(i,j) = F(i-1, j-1) +  

        -s, if not 

           
F(i,j) = F(i-1, j) - d 

   

           
F(i,j) = F(i, j-1) - d 

   

F[i-1,j-1] F[i,j-1] 
F[i-1,j] F[i,j] 

Towards an algorithm to align biological sequences 
(note I am using a DIFFERENT NOTATION!) 
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•  How	do	we	know	which	case	is	correct?	
	
Inductive assumption: 

 F(i, j-1), F(i-1, j), F(i-1, j-1)  are optimal 
 
Then, 

    F(i-1, j-1) + s(xi, yj) 
 F(i, j) = max   F(i-1,   j) – d 
    F(  i, j-1) – d 

 
Where   F(xi, yj) = m, if xi = yj;  -s, if not	

F[i-1,j-1] F[i,j-1] 

F[i-1,j] F[i,j] 

Alignment 



•  Global	Alignment	

	
•  Local	Alignment—better	alignment	to	find	highly	
conserved	segments	

      |  || |  ||  | | | |||    || | | |  | ||||   | 
    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC 

    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C 

                tccCAGTTATGTCAGgggacacgagcatgcagagac 
                     |||||||||||| 

aattgccgccgtcgttttcagCAGTTATGTCAGatc 

•  The	Global	Alignment	Problem	tries	to	
find	the	longest	path	between	vertices	
(0,0)	and	(n,m)	in	the	edit	graph.	

•  The	Local	Alignment	Problem	tries	to	
find	the	longest	path	among	paths	
between	arbitrary	vertices	(i,j)	and	(i’,	
j’)	in	the	edit	graph.	

47	

Global	
alignment	

Local	
alignment	
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local alignment to detect 
regulatory sites 



Global	Alignment	

Global	Alignment	Problem:	Find	the	highest-scoring	
alignment	between	two	strings	by	using	a	scoring	matrix.	
	

•  Input:	Strings	v	and	w	as	well	as	a	matrix	score.	
		
•  Output:	An	alignment	of	v	and	w	whose	alignment	

score	(as	defined	by	the	scoring	matrix	score)	is	
maximal	among	all	possible	alignments	of	v	and	w.	
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Global Alignment 



The Needleman-Wunsch Algorithm (Global alignment) 

Complexity:  Space: O(mn);  Time: O(mn) 
Filling the matrix O(mn) 
Backtrace O(m+n) 

d is a penalty 
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Changes: 
 
1.  Initialization 

For all i, j, 
 F(i, 0) = 0 
 F(0, j) = 0 

 
2.  Termination 

    maxi F(i, N) 
FOPT = max    maxj F(M, j) 

x1 ………………………………  xM 

y n
 …

…
…

…
…

…
…

…
…

…
…

…
  y

1 
Maybe it is OK to have an unlimited # of gaps in the beginning and end: 

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC 
GCGAGTTCATCTATCAC--GACCGC--GGTCG-------------- 

The Overlap Detection variant 
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Can we use a similar algorithm to align entire genomes? 



Global alignment 

53 

Local	Alignment=	Global	Alignment	in	a	subrectangle 

local alignment to detect 
regulatory sites 



Local	Alignment	Problem:	Find	the	highest-scoring	local	
alignment	between	two	strings.	
		
•  Input:	Strings	v	and	w	as	well	as	a	matrix	score.	
			
•  Output:	Substrings	of	v	and	w	whose	global	alignment	

(as	defined	by	the	matrix	score),	is	maximal	among	all	
global	alignments	of	all	substrings	of	v	and	w.	

	

54 

Local	Alignment	Problem 
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Idea:	Ignore	badly	aligning	regions:	Modifications	to	
Needleman-Wunsch	

e.g.		x	=	aaaacccccgggg	
	y	=	cccgggaaccaacc	

Initialization: 	F(0,0)=F(0,	j)	=	F(i,	0)	=	0 	 	 	 	
		

	 	 	 	 																						0 		
Iteration: 	F(i,	j)	=	max	 		F(i	–	1,	j)	–	d	

	 	 	 	 		F(i,	j	–	1)	–	d	
	 	 	 	 		F(i	–	1,	j	–	1)	+	s(xi,	yj)			

Termination:	
1.  If	we	want	the	best	local	alignment…	

	 	 	FOPT	=	maxi,j	F(i,	j)	
2.  If	we	want	all	local	alignments	scoring	>	t		

	 	For	all	i,	j	find	F(i,	j)	>	t,	and	trace	back	

The local alignment: Smith-Waterman algorithm 
T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol vol 147,195-197, 1981. 

David Waterman 



•  Alignment	1:	score	=	22	(matches)	-	20	(indels)=2.	

•  Alignment	2:	score	=	17	(matches)	-	30	(indels)=-13.	

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA- 
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT 
 

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA 
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T----- 
                  local	alignment	

56 

Which	Alignment	is	Better?	 

the local alignment detects a  
biological finding: two genes are regulated 
by he same protein 



•  We	previously	assigned	a	fixed	penalty	σ	to	
each	indel.	

•  However,	this	fixed	penalty	may	be	too	severe	
for	a	series	of	100	consecutive	indels.	

•  A	series	of	k	indels	often	represents	a	single	
evolutionary	event	(gap)	rather	than	k	events:	

GATCCAG      GATCCAG  
GA-C-AG      GA--CAG 

a	single	gap		
(higher	score)	

or	maybe	2	events		

two	gaps		
(lower	score)		

57 

Scoring	Gaps 



#matches	−	μ	·	#mismatches	−	σ	·	#indels	
 A T - G T T A T A 
 A T C G T - C – C                                                                                      
+1+1-2+1+1-2-3-2-3=-7 

    A  C  G  T  − 
A  +1 −µ −µ −µ -σ 
C  −µ +1 −µ −µ -σ 
G  −µ −µ +1 −µ -σ 
T  −µ −µ –µ +1 -σ 
−  -σ -σ -σ -σ   

Scoring	matrix	

    A  C  G  T  − 
A  +1 −3 −5 −1 -3 
C  −4 +1 −3 −2 -3 
G  −9 −7 +1 −1 -3 
T  −3 −5 –8 +1 -4 
−  -4 -2 -2 -1   
Even	more	general	scoring	matrix	58 

Mismatches	and	Indel	Penalties	 



7 -5 

example:	Y	(Tyr)	often	mutates	into	F	(score	+7)	but	rarely	mutates	into	P	(score	-5)			59 

Margaret Dayhoff 

How	to	compare	amino	acids:	scoring	matrices 

Y



σ		-	the	gap	opening	penalty		
ε		-	the	gap	extension	penalty	
σ	>	ε,	since	starting	a	gap	should	be	penalized	
more	than	extending	it.	

Affine	gap	penalty	for	a	gap	of	length	k:		σ+ε·(k-1)	

60 

More	Adequate	Gap	Penalties 



bottom	level	
(insertions)	

middle	level	
(matches/mismatches)	

upper	level	
(deletions)	

61 

•  Thinking	on	3	levels		



σ 

ε 

σ 

ε 

0 

0 

                                       
loweri-1,j		-	ε																																						
middlei-1,j		-	σ																																																																																																																			

		loweri,j	=	max	{																																																																																																																			

upperi,j-1		-	ε																																						
middlei,j-1		-	σ																																																																																																																			

		upperi,j	=	max	{																																																																																																																		

loweri,j																																							
middlei-1,j-1		+	score(vi,wj)			
upperi,j	
																																																																																																																			

		middlei,j	=	max	{																																																																																																																			

How	can	we	emulate	
this	path	in	the	3-level?		

62 
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•  Modelling	Affine	Gap	Penalties	by	Long	Edges	

double gap: 2 events double gap: 1 event 
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Initialization: 	same	
Iteration:	
	 	 	 	 				F(i-1,	j-1)	+	s(xi,	yj)	
	 	 	F(i,	j)	 	=	max 			maxk=0…i-1F(k,j)	–	γ(i-k)		
	 	 	 	 			maxk=0…j-1F(i,k)	–	γ(j-k)	

	
Termination:	 	same	
	
Running	Time:		O(N2M) 	 	(assume	N>M)	
Space:	 	O(NM)	

γ(n)	

Current model: a  gap of length n incurs penalty  n×d 
Gaps usually occur in bunches  so we use  a convex gap 
penalty function: 
γ(n): for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)  
 

γ(n)	

Alignment with gaps 

“discount”  



A compromise: affine gaps 
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								γ(n)	=	d	+	(n	–	1)	×	e	
	 										| 														|	
	 								gap 									gap	
	 							open 						extend	

To	compute	optimal	alignment,	at	position	i,j,	need	to	“remember”	best		
score	if	gap	is	open		and	best	score	if	gap	is	not	open	
	
F(i,	j):score	of	alignment	x1…xi	to	y1…yj		if				xi	aligns	to	yj 		
G(i,	j):score	if		xi,	or	yj,	aligns	to	a	gap	

d 
e 

γ(n)	

Initialization: 	F(i,	0)	=	d	+	(i	–	1)×e;				F(0,	j)	=	d	+	(j	–	1)×e	
	
Iteration:	

	 	 	 	 																																													F(i	–	1,	j	–	1)	+	s(xi,	yj)	
	 	 	F(i,	j)	=	max 		
	 	 	 	 																																													G(i	–	1,	j	–	1)	+	s(xi,	yj)	

	
	 	 	 	 																																															F(i	–	1,	j)	–	d		
	 	 	 	 																																															F(i,	j	–	1)	–	d	 	

		
	 	 	G(i,	j)	=	max		
	 	 	 	 																																															G(i,	j	–	1)	–	e	
	 	 	 	 																																															G(i	–	1,	j)	–	e	

Termination:	 	same	
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Assume	we	know	that	x	and	y	are	very	similar;	If	the	optimal	alignment	of	x	
and	y	has	few	gaps,	then	the	path	of	the	alignment	will	be	close	to	the	
diagonal	

Assumption:	 	#	gaps(x,	y)		<	k(N)		(	say	N>M	)	
	

	xi		
	|				implies			|	i	–	j	|	<	k(N)	
	yj	

	
	
	
Time,	Space:	O(N	×	k(N))		<<	O(N2)	

F[i+1,	i+k/2	+1]	F[i+1,	i+k/2]	
	

Out	of	range	
	

F[i,i+k/2]	

Note that for diagonals, i-j = constant. 

Banded	DP:	a	special	case 
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Initialization:	
	F(i,0),	F(0,j)	undefined	for	i,	j	>	k	

	
Iteration:	
	
For	i	=	1…M	
		For	j	=	max(1,	i	–	k)…min(N,	i+k)	
	

	 	 	F(i	–	1,	j	–	1)+	s(xi,	yj)	
	F(i,	j)	=	max 	F(i,	j	–	1)	–	d,	if	j	>	i	–	k(N)	
	 	 	F(i	–	1,	j)	–	d,	if	j	<	i	+	k(N)	

	
Termination: 	same	
	
Easy	to	extend	to	the	affine	gap	case	

x1 …………………………  xM 

y N
 …

…
…

…
…

…
…

…
…

…
  y

1 

k(N) 

Banded	Dynamic	Programming 



Example	global	alignment	
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Example	local	alignment	
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y =	TAATA	
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x 
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Local Alignment Example 
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Local Alignment Example 
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Local Alignment Example 
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y =		---TAATA	
x =	TACTAA-- 

y 
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match=1 
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Computing	Suffix(i)	
•  suffix(i) is the length of the longest path from (i,m/2) to (n,m) 
•  suffix(i) is the length of the longest path from (n,m) to (i,m/2) 

with all edges reversed 
•  Compute suffix(i) by dynamic programming in the right half 

of the “reversed” matrix 

store suffix(i) column 

0         m/2      m 



Length(i)	=	Prefix(i)	+	Suffix(i)	
•  Add prefix(i) and suffix(i) to compute length(i): 

•  length(i)=prefix(i) + suffix(i)  
•  You now have a middle vertex of the maximum 

path (i,m/2) as maximum of  length(i) 

middle point found 

0        m/2     m 

0 
 

 
i 
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A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

Middle	Column	of	the	Alignment	

middle	column	
(middle=#columns/2)	
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A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

Middle	Node	of	the	Alignment	

middle	node		
(a	node	where	an	optimal	alignment	path	crosses	the	middle	column;	note	that	different	longest	paths	
may	have	different	middle	nodes,	and	a	given	longest	path	may	have	more	than	one	middle	node.)		96 



Divide	and	Conquer	Approach	to	Sequence	Alignment	

AlignmentPath(source,	sink)	
						find	MiddleNode		
							

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	
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Divide	and	Conquer	Approach	to	Sequence	Alignment	

AlignmentPath(source,	sink)	
						find	MiddleNode		
						AlignmentPath(source,	MiddleNode)	
							

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	
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Divide	and	Conquer	Approach	to	Sequence	Alignment	

The	only	problem	left	is	how	to	find	this	middle	node	in	linear	space!	

AlignmentPath(source,	sink)	
						find	MiddleNode		
						AlignmentPath(source,	MiddleNode)	
						AlignmentPath(MiddleNode,	sink)	

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	
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Computing	Alignment	Score	in	Linear	Space	

	
Finding	the	longest	path	in	the	alignment	graph	
requires	storing	all	backtracking	pointers	–	O(nm)	
memory.		
	
Finding	the	length	of	the	longest	path	in	the	
alignment	graph	does	not	require	storing	any	
backtracking	pointers	–	O(n)	memory.		

100 



A          C          G          G          A          A 

00 00 0 0

0 1 1 1 1 1

10 11 1 1

0 1 1 1 1 1

20 21 2 2

0 1 2 2 2 3

0

1

1

1

2

3

0 1 2 2 2 3 4

A 
 
 
T 
 
 
T 
 
 
C 
 
 
A 
 
 
A 

Recycling	the	Columns	in	the	Alignment	Graph	
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A	
	
T	
	
T	
	
C	
	
A	
	
A	

A								C								G								G								A								A	

Can	We	Find	the	Middle	Node	without	
Constructing	the	Longest	Path?		

i-path	–	a	longest		path	among	paths	that	visit	the	i-th	node	in	the	middle	column	

4-path	that	visits	the	node	
(4,middle)		

In	the	middle	column		
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2

4
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T 
 
T 
 
C
 
 
A 
 
A 

Can	We	Find	The	Lengths	of	All	i-paths?		

A								C								G								G								A								A	

length(i):	
length	of	an	i-

path:	
	

length(0)=2	
length(4)=4			
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A 

Can	We	Find	The	Lengths	of	All	i-paths?		

A								C								G								G								A								A	
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C
 
 
A 
 
A 

Can	We	Find	The	Lengths	of	i-paths?		

length(i)=fromSource(i)+toSink(i)	

length(i):	
length	of	an	i-path			

A								C								G								G								A								A	
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0

fromSource(i)																	

Computing	FromSource	and	toSink			

				toSink(i)	
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Computing FROMSOURCE(i) for all i can be done in O(n) space and O(n ·m/2) time.  Computing 
TOSINK(i ) for all i can also be done in O(n) space and O(n ·m/2) time; this requires reversing the 
direction of all edges and treating the sink as the source. Instead of reversing the edges, we 
can reverse the strings v = v1 . . . vn and w = w1 . . . wm and find sn-i,m-middle in the alignment graph for 
vn . . . v1 and wm . . . w1. 
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How	Much	Time	Did	It	Take	to	Find	the	Middle	Node	?			

area/2	 area/2	area/2+area/2=area	

A								C								G								G								A								A	 A								C								G								G								A								A	

fromSource(i)																	 				toSink(i)	
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In total, we can compute all values LENGTH(i) = FROMSOURCE(i) + TOSINK(i) in linear 
space with runtime proportional to n · m/2 + n · m/2 = n · m, which is the total area of 
the alignment graph. 
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G								A								G								C								A								A								T									T	

Laughable	Progress:	O(nm)	Time	to	Find	ONE	Node!			

How	much	time	would	it	take	to	conquer	2	subproblems?		

Each	subproblem	
can	be	conquered	

in	time	
proportional	to	

its	area:		
	

area/4+area/4=	
area/2	
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G								A								G								C								A								A								T									T	

Laughable	Progress:	O(nm+nm/2)	Time	to	Find	THREE	Nodes!			

How	much	time	would	it	take	to	conquer	4	subproblems?		

Each	subproblem	
can	be	conquered	

in	time	
proportional	to	

its	area:		
	

area/8+area/8+	
area/8+area/8=	

area/4	
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G								A								G								C								A								A								T									T	

O(nm+nm/2+nm/4)	Time	to	Find	NEARLY	ALL	Nodes!			

How	much	time	would	it	take	to	conquer	ALL	subproblems?		

area+	
area/2	
+area/4	
+area/8	
+area/16	
+….+	
<	

2·area	
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The	Middle	Edge	(just	to	save	memory	a	little	bit	more)			

					Middle	Edge:	
an	edge	in	an	

optimal	
alignment	path	
starting	at	the	
middle	node	 
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The	Middle	Edge	Problem		

Middle	Edge	in	Linear	Space	Problem.	Find	a	middle	edge	
in	the	alignment	graph	in	linear	space.	
	

•  Input:	Two	strings	and	matrix	score.		
		
•  Output:	A	middle	edge	in	the	alignment	graph	of	

these	strings	(as	defined	by	the	matrix	score).	
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A middle edge (shown in bold) 
starts at the middle node (shown 
as a black circle). The optimal 
path travels inside the first 
highlighted rectangle, passes 
the middle edge, and travels 
inside the second highlighted 
rectangle afterwards.  

G        A        G        C        A        A       T      T 
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T 
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We can eliminate the remaining 
parts of the alignment graph, 
which takes up over half of 
the area formed by the graph, 
from further consideration.   
 
Finding middle edges (shown in 
bold) within previously identified 
rectangles. 

G        A        G        C        A        A       T      T 



LinearSpaceAlignment(top,bottom,left,right)	
			if	left	=	right	
						return	alignment	formed	by	bottom-top	edges	“↓”	
			middle	←	⌊(left+right)/2⌋		
			midNode	←	MiddleNode(top,bottom,left,right)	
			midEdge	←		MiddleEdge(top,bottom,left,right)				
			LinearSpaceAlignment(top,midNode,left,middle)	
			output	midEdge	
			if	midEdge	=	“→“	or	midEdge	=	“↘”		
						middle		←	middle+1	
			if		midEdge	=	“↓“	or	midEdge	=	“↘”	
						midNode		←	midNode+1	
			LinearSpaceAlignment(midNode,bottom,middle,right)	

Recursive	LinearSpaceAlignment	
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Total	Time:	area+area/2+area/4+area/8+area/16+…	



•  yes:	The	Four	Russians	Technique	
•  Arlazarov,	V.;	Dinic,	E.;	Kronrod,	M.;	Faradžev,	I.	
•  The	basic	idea	is	to	precompute	parts	of	the	
computation	involved	in	filling	out	the	dynamic	
programming	table.	

•  time		O(n^2/logn)		
•  Assume	the		block-function	b(A,	B,	C,	X[i+1	..	i+t],	
Y[j+1	..	j+t])	has	been	precomputed	for	all	possible	
inputs.	

•  Article	in	Russian,	easier	to	look	at	Aho,	Alfred	V.;	
Hopcroft,	John	E.;	Ullman,	Jeffrey	D.	(1974),	The	design	
and	analysis	of	computer	algorithms,	Addison-Wesley	
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NOT EXAMINABLE 

Can	we	compute	the	edit	distance	faster	than	O(nm)? 



118 https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020 

Self	Alignment 

Pairing rules:  
C-G 
A-U  
(in RNA T is replaced by U) 



	dot-bracket	representation	for	a	pseudoknot	free	
structure,	as	well	as	the	extended	pseudoknot	
representation	for	a	structure	containing	a	
pseudoknot.	

Link to Image Source 

RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms 
for loop matchings, SIAM J. Appl. Math 

Ruth Nussinov 



usually	the	more	the	links	the	more	the	binding	energy.	Above:	
Ensemble	of	all	possible	structures	for	a	given	RNA	sequence,	
with	the	corresponding	binding	energy.	The	potential	energy	is	
negative	because	you	need	to	give	energy	to	break	the	links	
(i.e.	the	structure),	for	example	by	heating.		

Link to Image Source 



121 bifurcation	i,j	pair	 j	unpaired	i	unpaired	

i	 j	
j-1	i+1	

i	
j	i+1	

j	
j-1	i	

i	 k	

j	k+1	
•  Secondary Structure :   

–  Set of paired positions on interval [i,j] 
–  This tells which bases are paired in the subsequence from xi to xj 

•  Every optimal structure can be built by extending optimal substructures. 
•  Suppose we know all optimal substructures of length less than j-i+1. 

 The optimal substructure for [i,j] must be formed in one of four ways: 
1.  i,j paired 
2.  i unpaired 
3.  j unpaired 
4.  combining two substructures 

 Note that each of these consists of extending or joining substructures of 
length less than  j-i+1. 

RNA Secondary Structure 
secondary	structure=topology	of	local	segments 



Example:   GGGAAAUCC

0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 

   G  G   G    A   A   A    U   C  C 
j	

i	

G
 G

 G
 A  A  A U

  C
 C

 

0i)(i, & 01)-i(i, == γγtionInitialisa
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Starting	with	all	subsequences	of	
length	2,	to	length	L: 

Where	d(i,j) = 1 if xi	and	xj 
are	a	complementary	base	pair,	
and	d(i,j) =	0,	otherwise.	

γ(i,j) is	the	maximum	number	
of	base	pairs	in	segment [i,j] 
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RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms 
for loop matchings, SIAM J. Appl. Math 

final structure 
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Nussinov Folding Algorithm: 
After scores for subsequences of length 2 
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Nussinov Folding Algorithm: 
After scores for subsequences of length 3 



    G  G   G    A   A   A    U   C  C 

G
 G

 G
 A  A  A U

  C
 C

 

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 1 
0 0 0 1 1 

0 0 1 1 1 
0 0 0 0 

0 0 0 
0 0 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Two	optimal	substructures	for	same	subsequence	
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Nussinov Folding Algorithm: 
After scores for subsequences of length 4 
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Nussinov Folding Algorithm: 
After scores for subsequences of length 5 
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Nussinov Folding Algorithm: 
After scores for subsequences of length 6 



Nussinov Folding Algorithm 
 After scores for subsequences of length 7 
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Nussinov Folding Algorithm 
 After scores for subsequences of length 8 
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Nussinov Folding Algorithm 
 After scores for subsequences of length 9 
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Nussinov Folding Algorithm 
 Traceback 

   G  G   G    A   A   A    U   C  C 

G
 G

 G
 A  A  A U

  C
 C

 

i	

j	

U	

A	 A	

C	
A	
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0 0 0 0 0 0 1 2 3 

0 0 0 0 0 0 1 2 3 
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Nussinov	algorithm	
(a	different	
example):	fill-stage	

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1	 2	 3	 4	 5	 6	 7	 8	 9	

G 1	

G 2	

C 3	

C 4	

A 5	

G 6	

U 7	

U 8	

C 9	
Pink: joining of substructures 1..4 and 5..8   

Green: addition of paired bases 1,7  

Blue: addition of unpaired base 3 or 7 

Scoring system:  
δ(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else δ(i,j) = 0.  
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Nussinov	algorithm:	
trace-back	

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1	 2	 3	 4	 5	 6	 7	 8	 9	

G 1	

G 2	

C 3	

C 4	

A 5	

G 6	

U 7	

U 8	

C 9	

current record stack 
               1,9 
1,9            1,8 
1,8            1,4 5,8 
1,4      1,4   2,3 5,8 
2,3      2,3   3,2 5,8 
3,2            5,8 
5,8      5,8   6,7 
6,7      6,7   7,6 
7,6               
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RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms 
for loop matchings, SIAM J. Appl. Math 

There are O(n2) terms to be 
computed, each requiring calling 
of O(n) already computed terms 
for the case of bifurcation. Thus 
overall complexity is O(n3) in 
time and O(n2) in space. 



Summary		
(note	different	notation!)	
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Ancestral Node  
or ROOT of  

the Tree 
Internal Nodes 

 

Branches or 
  Lineages A 

B 

C 

D 

E 

((A,(B,C)),(D,E))  = The above phylogeny as nested parentheses 

Terminal Nodes  

unrooted 

rooted 

time 

Phylogeny 

species tree by Darwin 



Phylogenetic tree 
applications 

tree of life based on mitochondrial sequences 

tracing influenza strain variations 



Did	the	Florida	Dentist	infect	his	patients	with	HIV?	
DENTIST 

Patient H 

Patient D 

Patient F 

Patient C 
Patient A 
Patient G 

Patient B 
Patient E 
Patient A 

Local control 2 
Local control 3 

Local control 9 

Local control 35 

Local control 3 

Yes: 
The HIV sequences from 
these patients fall within 
the clade of HIV sequences 
found in the dentist. 

No 

No 

From Ou et al. (1992) and Page & Holmes (1998) 

Phylogenetic  tree 
of HIV sequences 
from the DENTIST, 
his Patients, & Local 
HIV-infected People: 
 

Phylogenetic 
tree 

applications 



EXAMPLE:	Phylogenetic-inspired	techniques	for	reverse	engineering	
and	detection	of	malware	families	

Sequence	alignment	(dbg:	with	debugging	symbols,	def:	default	settings,	spd:	
optimised	for	speed).	(a)	Before	alignment.	(b)	After	alignment	using	an	identity	
substitution	matrix.	(c)	After	alignment	using	a	substitution	matrix	 140 



Trees and Phylogeny�
Outline 

•  Transforming Distance Matrices into Evolutionary Trees 

•  Toward an Algorithm for Distance-Based Phylogeny Construction 

•  Additive Phylogeny 

•  Using Least-Squares to Construct Distance-Based Phylogenies 

•  Ultrametric Evolutionary Trees 

•  The Neighbor-Joining Algorithm 

•  Character-Based Tree Reconstruction 

•  The Small Parsimony Problem 

•  The Large Parsimony Problem 

•  Back to the alignment: progressive alignment 

141 



SPECIES ALIGNMENT DISTANCE MATRIX 

Chimp Human Seal Whale 

Chimp ACGTAGGCCT 0 3 6 4 
Human ATGTAAGACT 3 0 7 5 

Seal TCGAGAGCAC 6 7 0 2 
Whale TCGAAAGCAT 4 5 2 0 

Constructing a Distance Matrix 

Di,j = number of differing symbols between i-th and 
j-th rows of a “multiple alignment”. 



SPECIES ALIGNMENT DISTANCE MATRIX 

Chimp Human Seal Whale 

Chimp ACGTAGGCCT 0 3 6 4 
Human ATGTAAGACT 3 0 7 5 

Seal TCGAGAGCAC 6 7 0 2 
Whale TCGAAAGCAT 4 5 2 0 

Constructing a Distance Matrix 

Di,j = number of differing symbols between i-th and 
j-th rows of a “multiple alignment”. 



SPECIES ALIGNMENT DISTANCE MATRIX 

Chimp Human Seal Whale 

Chimp ACGTAGGCCT 0 3 6 4 
Human ATGTAAGACT 3 0 7 5 

Seal TCGAGAGCAC 6 7 0 2 
Whale TCGAAAGCAT 4 5 2 0 

Constructing a Distance Matrix 

How else could we form a distance matrix? 

Di,j = number of differing symbols between i-th and 
j-th rows of a multiple alignment. 



cnidarians 

flowering!
seed plants 

non-flowering !
seed plants 

sponges 

bacteria 

archaebacteria 

protoctists 

green algae 

ferns 

mosses 

fungi 

ANIMALS 

PLANTS 

EUKARYOTES 

LIFE 

flatworms 

rotifers roundworms lophophorates 

snakes!
& lizards 

crocodiles!
& birds 

ARTHROPODS 

echinoderms 

VERTEBRATES 

mollusks segmented!
worms 

chelicerates 

crustaceans insects 

cartilaginous!
fish 

bony fish 

TETRAPODS 

amphibians 

AMNIOTES 

mammals 

turtles 

Leaves (degree = 1): 
present-day species 

Internal nodes 
(degree ≥ 1): 
ancestral species 

Tree: Connected 
graph containing no 
cycles. 

Trees 



Present Day 

Most Recent Ancestor 

TIME 

Rooted tree: one node is designated as the root (most 
recent common ancestor) 

Trees 



Distance-Based Phylogeny Problem: Construct an 
evolutionary tree from a distance matrix.  
•  Input: A distance matrix. 
•  Output: The unrooted tree “fitting” this distance 

matrix. 

Distance-Based Phylogeny 



SPECIES ALIGNMENT DISTANCE MATRIX 

Chimp Human Seal Whale 

Chimp ACGTAGGCCT 0 3 6 4 
Human ATGTAAGACT 3 0 7 5 

Seal TCGAGAGCAC 6 7 0 2 
Whale TCGAAAGCAT 4 5 2 0 

Constructing a Distance Matrix 

Di,j = number of differing symbols between i-th and 
j-th rows of a “multiple alignment”. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

Fitting a Tree to a Matrix 



Distance-Based Phylogeny Problem: Construct an 
evolutionary tree from a distance matrix.  
•  Input: A distance matrix. 
•  Output: The unrooted tree fitting this distance 

matrix. 

Return to Distance-Based Phylogeny 

Now is this problem well-defined? 



i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

Exercise Break: Try fitting a tree to the following 
matrix. 

Return to Distance-Based Phylogeny 



No Tree Fits a Matrix 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

Exercise Break: Try fitting a tree to the following 
matrix. 

Additive matrix: distance matrix such that there 
exists an unrooted tree fitting it. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

More Than One Tree Fits a Matrix 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Chimp 

1 

1 
3 

1.5 

0 

Seal 
0.5 

More Than One Tree Fits a Matrix 

Human 1 



Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

Which Tree is “Better”? 

Simple tree: tree with no nodes of degree 2. 

Theorem: There is a unique simple tree fitting an 
additive matrix. 



Distance-Based Phylogeny Problem: Construct an 
evolutionary tree from a distance matrix.  
•  Input: A distance matrix. 
•  Output: The simple tree fitting this distance 

matrix (if this matrix is additive). 

Reformulating Distance-Based Phylogeny 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

An Idea for Distance-Based Phylogeny 



Seal and whale are neighbors (meaning they share 
the same parent). 

Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

An Idea for Distance-Based Phylogeny 

Theorem: Every simple tree with at least two nodes 
has at least one pair of neighboring leaves. 



An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 
? 

? 

How do we compute 
the unknown 
distances? 



j 

i 

m 

k di, k = di, m + dk, m 

dj, k = dj, m + dk, m 

di, j = di, m + dj, m 

Toward a Recursive Algorithm 

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2 



j 

i 

m 

k di, k = di, m + dk, m 

dj, k = dj, m + dk, m 

di, j = di, m + dj, m 

Toward a Recursive Algorithm 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 di,m = (Di,k + Di,j – Dj,k) / 2 

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2 

∴ 



An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 
? 

? 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 di,m = (Di,k + Di,j – Dj,k) / 2 



An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 
? 

? 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 di,m = (Di,k + Di,j – Dj,k) / 2 

m 



dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 dSeal,m = (DSeal,Chimp + DSeal,Whale – DWhale,Chimp) / 2 

An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 

? 

m 

dSeal,m Chimp 



Chimp 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 dSeal,m = 2 

An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 
2 

0 

m 



Chimp 

An Idea for Distance-Based Phylogeny 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Whale 

Seal 
2 

0 

m 

4 
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An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human Seal Whale m 

Chimp 0 3 6 4 4 
Human 3 0 7 5 5 

Seal 6 7 0 2 2 
Whale 4 5 2 0 0 

m 4 5 2 0 0 

Chimp 
4 

Human 5 



Human 5 

Chimp 
4 2 

An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human Seal Whale m 

Chimp 0 3 6 4 4 
Human 3 0 7 5 5 

Seal 6 7 0 2 2 
Whale 4 5 2 0 0 

m 4 5 2 0 0 



Human 5 

Chimp 
4 2 

An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 



Human 

Chimp 
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An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 

? 

? 

a 



Human 

Chimp 
2 

An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 

? 

? 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 dChimp,a = (DChimp,m +  DChimp,Human – DHuman,m) / 2 

a 



Human 

Chimp 
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An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 

? 

1 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 dChimp,a = 1 

a 
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An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 

2 

1 

a 
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An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

Chimp Human m 

Chimp 0 3 4 
Human 3 0 5 

m 4 5 0 
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1 
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3 



Human 

Chimp 
2 

An Idea for Distance-Based Phylogeny 

Whale 

Seal 

0 

m 

2 

1 

a 
3 

Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 



Exercise Break: Apply this recursive approach to the 
distance matrix below. 

i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

An Idea for Distance-Based Phylogeny 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

What Was Wrong With Our Algorithm? 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

What Was Wrong With Our Algorithm? 
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i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 
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i k 
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11 
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What Was Wrong With Our Algorithm? 

minimum�
element is Dj,k 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

minimum�
element is Dj,k 

j and k are�
not neighbors! 

j 

i k 

l 

11 

2 

4 
6 

7 

What Was Wrong With Our Algorithm? 



Rather than trying to find neighbors, let’s instead try 
to compute the length of limbs, the edges attached 
to leaves.  

From Neighbors to Limbs 

j 

i k 

l 

? 

? 

4 
? 

? 



j 

i 

m 

k di, k = di, m + dk, m 

dj, k = dj, m + dk, m 

di, j = di, m + dj, m 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 di,m = (Di,k + Di,j – Dj,k) / 2 

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2 

∴ 

From Neighbors to Limbs 



j 

i 

m 

k di, k = di, m + dk, m 

dj, k = dj, m + dk, m 

di, j = di, m + dj, m 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2 

 di,m = (Di,k + Di,j – Dj,k) / 2 

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2 

∴ 

From Neighbors to Limbs 

Assumes that i and 
j are neighbors...  



Code Challenge: Solve the Limb Length Problem. 

Computing Limb Lengths 

Limb Length Problem: Compute the length of a limb 
in the simple tree fitting an additive distance matrix. 
•  Input: An additive distance matrix D and an 

integer j. 
•  Output: The length of the limb connecting leaf j 

to its parent, LimbLength(j). 

Limb Length Theorem: LimbLength(i) is equal to the 
minimum value of (Di,k + Di,j – Dj,k)/2 over all leaves 
j and k. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Computing Limb Lengths 

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2          = (3 + 6 – 7) / 2 = 1 

Limb Length Theorem: LimbLength(chimp) is equal 
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2 
over all leaves j and k. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Computing Limb Lengths 
 

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2          = (3 + 6 – 7) / 2 = 1 

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2  = (3 + 4 – 5) / 2 = 1 

Limb Length Theorem: LimbLength(chimp) is equal 
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2 
over all leaves j and k. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Computing Limb Lengths 

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2          = (3 + 6 – 7) / 2 = 1 

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2  = (3 + 4 – 5) / 2 = 1 
(Dchimp, whale + Dchimp, seal – Dwhale, seal) / 2        = (6 + 4 – 2) / 2 = 4 

Limb Length Theorem: LimbLength(chimp) is equal 
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2 
over all leaves j and k. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Computing Limb Lengths 

(Dhuman, chimp + Dchimp, seal – Dhuman, seal) / 2          = (3 + 6 – 7) / 2 = 1 

(Dhuman, chimp + Dchimp, whale – Dhuman, whale) / 2  = (3 + 4 – 5) / 2 = 1 
(Dwhale, chimp + Dchimp, seal – Dwhale, seal) / 2        = (6 + 4 – 2) / 2 = 4 

Limb Length Theorem: LimbLength(chimp) is equal 
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2 
over all leaves j and k. 



Chimp Human Seal Whale 

Chimp 0 3 6 4 
Human 3 0 7 5 

Seal 6 7 0 2 
Whale 4 5 2 0 

Computing Limb Lengths 

Whale 

Seal 

Human 

Chimp 

2 

1 
3 

2 

0 

Limb Length Theorem: LimbLength(chimp) is equal 
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2 
over all leaves j and k. 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 
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TREE(D) 

AdditivePhylogeny In Action 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

D 

AdditivePhylogeny In Action 

1. Pick an arbitrary leaf j. 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

D 

AdditivePhylogeny In Action 

LimbLength(j) = 2 

2. Compute its limb length, LimbLength(j). 



i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald 

AdditivePhylogeny In Action 

j 

i k 

l 

11 
4 

6 

7 0 

TREE(Dbald) 

3. Subtract LimbLength(j) from each row and column 
to produce Dbald in which j is a bald limb (length 0). 



i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dtrim 

AdditivePhylogeny In Action 

4. Remove the j-th row and column of the matrix to 
form the (n – 1) x (n – 1) matrix Dtrim. 



i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dtrim 

AdditivePhylogeny In Action 

5. Construct Tree(Dtrim). 
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TREE(Dtrim) 



i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald 

AdditivePhylogeny In Action 

6. Identify the point in Tree(Dtrim) where leaf j should 
be attached. 
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i k 
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11 
4 
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7 0 

TREE(Dbald) 



i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

D 

AdditivePhylogeny In Action 

LimbLength(j) = 2 

j 

i k 

l 

11 

2 

4 
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TREE(D) 

7. Attach j by an edge of length LimbLength(j) in 
order to form Tree(D). 



AdditivePhylogeny(D): 
1.  Pick an arbitrary leaf j. 
2.  Compute its limb length, LimbLength(j). 
3.  Subtract LimbLength(j) from each row and column to 

produce Dbald in which j is a bald limb (length 0). 
4.  Remove the j-th row and column of the matrix to 

form the (n – 1) x (n – 1) matrix Dtrim. 
5.  Construct Tree(Dtrim). 
6.  Identify the point in Tree(Dtrim) where leaf j should be 

attached. 
7.  Attach j by an edge of length LimbLength(j) in order 

to form Tree(D). 

AdditivePhylogeny 



AdditivePhylogeny(D): 
1.  Pick an arbitrary leaf j. 
2.  Compute its limb length, LimbLength(j). 
3.  Subtract LimbLength(j) from each row and column to 

produce Dbald in which j is a bald limb (length 0). 
4.  Remove the j-th row and column of the matrix to 

form the (n – 1) x (n – 1) matrix Dtrim. 
5.  Construct Tree(Dtrim). 
6.  Identify the point in Tree(Dtrim) where leaf j should 

be attached. 
7.  Attach j by an edge of length LimbLength(j) in order 

to form Tree(D). 

AdditivePhylogeny 



Attaching a Limb 

i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald i 

k 

l 

15 
6 

7 

TREE(Dtrim) 

Limb Length Theorem: the length of the limb of j is 
equal to the minimum value of (Dbald

i,j + Dbald
j,k – 

Dbald
i,k)/2 over all leaves i and k. 



Attaching a Limb 

i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald 

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0 
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15 
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TREE(Dtrim) 

Limb Length Theorem: the length of the limb of j is 
equal to the minimum value of (Dbald

i,j + Dbald
j,k – 

Dbald
i,k)/2 over all leaves i and k. 



Attaching a Limb 

i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald 

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0 

Dbald
i,j + Dbald

j,k = Dbald
i,k 
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15 
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TREE(Dtrim) 



Attaching a Limb 

i j k l 

i 0 11 21 22 

j 11 0 10 11 

k 21 10 0 13 

l 22 11 13 0 

Dbald 
j 

i k 

l 

11 
4 

6 

7 0 

TREE(Dbald) 

The attachment point for j is found on the path between 
leaves i and k at distance Dbald

i,j from i. 

 
Dbald

i,j + Dbald
j,k = Dbald

i,k 
 



AdditivePhylogeny 

Code Challenge: Implement AdditivePhylogeny. 

AdditivePhylogeny(D): 
1.  Pick an arbitrary leaf j. 
2.  Compute its limb length, LimbLength(j). 
3.  Subtract LimbLength(j) from each row and column to 

produce Dbald in which j is a bald limb (length 0). 
4.  Remove the j-th row and column of the matrix to 

form the (n – 1) x (n – 1) matrix Dtrim. 
5.  Construct Tree(Dtrim). 
6.  Identify the point in Tree(Dtrim) where leaf j should be 

attached. 
7.  Attach j by an edge of length LimbLength(j) in order 

to form Tree(D). 



j 

i k 

l 

T 
1.5 

1.5 

1 

1 

1.5 

Discrepancy(T, D) = Σ1≤ i < j ≤ n (di,j(T) – Di,j)2 

                             = 12 + 12 = 2 

Sum of Squared Errors 

D d 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

i j k l 

i 0 3 4 4 

j 3 0 4 4 

k 4 4 0 2 

l 4 4 2 0 
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i k 

l 

T 
? 

? 

? 

? 

? 

D d 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

i j k l 

i 0 ? ? ? 

j ? 0 ? ? 

k ? ? 0 ? 

l ? ? ? 0 

Exercise Break: Assign lengths to edges in T in order 
to minimize Discrepancy(T, D). 

Sum of Squared Errors 



Least-Squares Distance-Based Phylogeny Problem: 
Given a distance matrix, find the tree that minimizes 
the sum of squared errors. 
•  Input: An n x n distance matrix D. 
•  Output: A weighted tree T with n leaves 

minimizing Discrepancy(T, D) over all weighted 
trees with n leaves. 

Least-Squares Phylogeny 

Unfortunately, this problem is NP-Complete... 



Ultrametric tree: distance 
from root to any leaf is the 
same (i.e., age of root). 

Baboon Orangutan Gorilla Chimpanzee Bonobo Human Squirrel�
Monkey 

23 
33 

10 

10 

6 

1 

2 2 
6 

edge weights: correspond 
to difference in ages on the 
nodes the edge connects. 

Ultrametric Trees 

33 

23 

13 

7 

6 

2 

Rooted binary tree: an 
unrooted binary tree with 
a root (of degree 2) on 
one of its edges. 



Ultrametric tree: distance 
from root to any leaf is the 
same (i.e., age of root). 

Baboon Orangutan Gorilla Chimpanzee Bonobo Human Squirrel�
Monkey 

Ultrametric Trees 

23 
33 

10 

10 

6 

1 

2 2 
6 

33 

23 

13 

7 

6 

2 



UPGMA: A Clustering Heuristic 

1. Form a cluster for each present-day species, each 
containing a single leaf. 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 
i j k l 0 0 0 0 



UPGMA: A Clustering Heuristic 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

2. Find the two closest clusters C1 and C2 according 
to the average distance�
        Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|�
where |C| denotes the number of elements in C. 

i j k l 0 0 0 0 



i j k l 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 
0 0 0 0 

3. Merge C1 and C2 into a single cluster C. 

UPGMA: A Clustering Heuristic 

{ k, l } 



i j k l 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 
0 0 0 0 

4. Form a new node for C and connect to C1 and C2 
by an edge. Set age of C as Davg(C1, C2)/2. 

UPGMA: A Clustering Heuristic 

{ k, l } 
1 

1 1 



i j k l 0 0 0 0 

1 

1 1 

i j { k, l } 

i 0 3 3.5 

j 3 0 4.5 

{ k, l } 3.5 4.5 0 

{ k, l } 

UPGMA: A Clustering Heuristic 

5. Update the distance matrix by computing the 
average distance between each pair of clusters. 



1.5 

1.5 1.5 

i j k l 0 0 0 0 

1 

1 1 

i j { k, l } 

i 0 3 3.5 

j 3 0 4.5 

{ k, l } 3.5 4.5 0 

{ i, j } 

UPGMA: A Clustering Heuristic 

6. Iterate until a single cluster contains all species. 



1.5 

1.5 1.5 

i j k l 0 0 0 0 

1 

1 1 

{ i, j } 
{i, j} { k, l } 

{i, j} 0 4 

{ k, l } 4 0 

UPGMA: A Clustering Heuristic 

6. Iterate until a single cluster contains all species. 



2 

1 

0.5 

1.5 

1.5 1.5 

i j k l 0 0 0 0 

1 

1 1 

{i, j} { k, l } 

{i, j} 0 4 

{ k, l } 4 0 

UPGMA: A Clustering Heuristic 

6. Iterate until a single cluster contains all species. 



2 

1 

0.5 

1.5 

1.5 1.5 

i j k l 0 0 0 0 

1 

1 1 

UPGMA: A Clustering Heuristic 

6. Iterate until a single cluster contains all species. 



UPGMA: A Clustering Heuristic 

UPGMA(D): 
1.  Form a cluster for each present-day species, each 

containing a single leaf. 
2.  Find the two closest clusters C1 and C2 according to the 

average distance�
        Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|�
where |C| denotes the number of elements in C 

3.  Merge C1 and C2 into a single cluster C. 
4.  Form a new node for C and connect to C1 and C2 by an 

edge. Set age of C as Davg(C1, C2)/2. 
5.  Update the distance matrix by computing the average 

distance between each pair of clusters. 
6.  Iterate steps 2-5 until a single cluster contains all species. 



i j k l 
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1 1 

1.5 

1.5 1.5 
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1 
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0 0 0 0 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

UPGMA Doesn’t “Fit” a Tree to a Matrix 



i j k l 

1 

1 1 

1.5 

1.5 1.5 

2 

1 

0.5 

0 0 0 0 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

UPGMA Doesn’t “Fit” a Tree to a Matrix 



•  AdditivePhylogeny: 
– good: produces the tree fitting an additive matrix 
– bad: fails completely on a non-additive matrix 

•  UPGMA: 
– good: produces a tree for any matrix 
– bad: tree doesn’t necessarily fit an additive matrix 

•  ?????: 
– good: produces the tree fitting an additive matrix  
– good: provides heuristic for a non-additive matrix 

In Summary... 



Neighbor-Joining Theorem 

Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as�
�
�
where TotalDistanceD(i) is the sum of distances from i 
to all other leaves. 

D 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

D* 

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j) 



Neighbor-Joining Theorem 

D 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

D* 

Neighbor-Joining Theorem: If D is additive, then the 
smallest element of D* corresponds to neighboring 
leaves in Tree(D). 



Neighbor-Joining in Action 

D* 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

1. Construct neighbor-joining matrix D* from D. 



Neighbor-Joining in Action 

D* 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

2. Find a minimum element D*i,j of D*. 



Neighbor-Joining in Action 

D* 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

2. Find a minimum element D*i,j of D*. 



Neighbor-Joining in Action 

D* 

TotalDistanceD 

56 

38 

46 

48 

i j k l 

i 0 -68  -60  -60  

j -68  0 -60  -60  

k -60  -60  0 -68  

l -60  -60  -68  0 

3. Compute Δi,j = (TotalDistanceD(i) –
TotalDistanceD(j)) / (n – 2). 

Δi,j = (56 – 38) / (4 – 2) 
     = 9 



Neighbor-Joining in Action 

TotalDistanceD 

56 

38 

46 

48 

4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and 
LimbLength(j) equal to ½(Di,j – Δj,i). 

Δi,j = (56 – 38) / (4 – 2) 
     = 9 

D 

i j k l 

i 0 13 21 22 

j 13 0 12 13 

k 21 12 0 13 

l 22 13 13 0 

LimbLength(i) = ½(13 + 9) = 11 
LimbLength(i) = ½(13 – 9) = 2 



Neighbor-Joining in Action 

5. Form a matrix D’ by removing i-th and j-th row/
column from D and adding an m-th row/column 
such that for any k, Dk,m = (Di,k + Dj,k – Di,j) / 2. 

m k l 

m 0 10 11 

k 10 0 13 

l 11 13 0 

D’ 

TotalDistanceD 

21 

23 

24 



j 

i 

m 

k di, k = di, m + dk, m 

dj, k = dj, m + dk, m 

di, j = di, m + dj, m 

Flashback: Computation of dk,m 

dk,m = (di,k + dj,k – di,j) / 2 
dk,m = (Di,k + Dj,k – Di,j) / 2 
 

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2 



Neighbor-Joining in Action 

6. Apply NeighborJoining to D’ to obtain Tree(D’). 

m k l 

m 0 10 11 

k 10 0 13 

l 11 13 0 

D’ 

j 

i 

m 

k 

4 
6 

7 
l 

Tree(D’) 



j 

i k 

l 

11 

2 

4 
6 

7 

Neighbor-Joining in Action 

7. Reattach limbs of i and j to obtain Tree(D). 

m k l 

m 0 10 11 

k 10 0 13 

l 11 13 0 

D’ 

Tree(D) 

LimbLength(i) = ½(13 + 9) = 11 
LimbLength(i) = ½(13 – 9) = 2 



j 

i k 

l 

11 

2 

4 
6 

7 

Neighbor-Joining in Action 

7. Reattach limbs of i and j to obtain Tree(D). 

m k l 

m 0 10 11 

k 10 0 13 

l 11 13 0 

D’ 

Tree(D) 



NeighborJoining(D): 
1.  Construct neighbor-joining matrix D* from D. 
2.  Find a minimum element D*i,j of D*. 
3.  Compute Δi,j = (TotalDistanceD(i) – TotalDistanceD(j)) / (n 

– 2). 
4.  Set LimbLength(i) equal to ½(Di,j + Δi,j) and LimbLength(j) 

equal to ½(Di,j – Δj,i). 
5.  Form a matrix D’ by removing i-th and j-th row/column 

from D and adding an m-th row/column such that for any 
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2. 

6.  Apply NeighborJoining to D’ to obtain Tree(D’). 
7.  Reattach limbs of i and j to obtain Tree(D). 

Neighbor-Joining 

Code Challenge: Implement NeighborJoining. 



Neighbor-Joining 

Exercise Break, check the following: Neighbor 
joining on a set of r taxa requires r-3 iterations.  
At each step one has to build and search a D* 
matrix. Initially the D* matrix is size r2, then the 
next step it is (r -1)2, etc. This leads to a time 
complexity of O(r 3). 



Neighbor-Joining 

i j k l 

i 0 3 4 3 

j 3 0 4 5 

k 4 4 0 2 

l 3 5 2 0 

Exercise Break: Find the tree returned by 
NeighborJoining on the following non-additive 
matrix.  How does the result compare with the tree 
produced by UPGMA? 

D 

2 

1 

0.5 

1.5 

1.5 1.5 

i j k l 0 0 0 0 

1 

1 1 

UPGMA�
tree 
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Example (different notation) 



We lost information when we converted a multiple 
alignment to a distance matrix... 

Weakness of Distance-Based Methods 

SPECIES ALIGNMENT DISTANCE MATRIX 

Chimp Human Seal Whale 

Chimp ACGTAGGCCT 0 3 6 4 
Human ATGTAAGACT 3 0 7 5 

Seal TCGAGAGCAC 6 7 0 2 
Whale TCGAAAGCAT 4 5 2 0 

Distance-based algorithms for evolutionary tree 
reconstruction say nothing about ancestral states at 
internal nodes. 



An Alignment As a Character Table 

n species 

m characters 

SPECIES ALIGNMENT 

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT



Toward a Computational Problem 

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

n species 

m characters 



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale 

Toward a Computational Problem 

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale 

Toward a Computational Problem 



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale 

Toward a Computational Problem 

2 1 

2 

0 2 

1 

Parsimony score: sum of Hamming distances along 
each edge. 



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale 

Toward a Computational Problem 

2 1 

2 

0 2 

1 

Parsimony score: sum of Hamming distances along 
each edge. 

Parsimony Score: 8 



Small Parsimony Problem: Find the most 
parsimonious labeling of the internal nodes of a 
rooted tree. 
•  Input: A rooted binary tree with each leaf labeled 

by a string of length m. 
•  Output: A labeling of all other nodes of the tree 

by strings of length m that minimizes the tree’s 
parsimony score. 

Toward a Computational Problem 



Small Parsimony Problem: Find the most 
parsimonious labeling of the internal nodes of a 
rooted tree. 
•  Input: A rooted binary tree with each leaf labeled 

by a string of length m. 
•  Output: A labeling of all other nodes of the tree 

by strings of length m that minimizes the tree’s 
parsimony score. 

Toward a Computational Problem 

Is there any way we can simplify this problem 
statement? 



Small Parsimony Problem: Find the most 
parsimonious labeling of the internal nodes of a 
rooted tree. 
•  Input: A rooted binary tree with each leaf labeled 

by a single symbol. 
•  Output: A labeling of all other nodes of the tree 

by single symbols that minimizes the tree’s 
parsimony score. 

Toward a Computational Problem 



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale 

Toward a Computational Problem 



v 

A Dynamic Programming Algorithm 

Let Tv denote the subtree of T�
whose root is v. 

Tv 

Define sk(v) as the minimum 
parsimony score of Tv over 
all labelings of Tv, assuming 
that v is labeled by k. 

The minimum parsimony score for the tree is equal to 
the minimum value of sk(root) over all symbols k. 



Exercise Break: Prove the following recurrence 
relation:�
 
sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}	

A Dynamic Programming Algorithm 

For symbols i and j, define 
•  δi,j = 0 if i = j  
•  δi,j = 1 otherwise. 

v 

Tv 



A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm 

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k} 



A! C G T!

2 0 2 2 

A! C G T!

1 1 2 2 

A! C G T!

2 2 0 2 

A! C G T!

2 1 2 1 

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm 

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k} 



A! C G T!

2 1 2 1 

A! C G T!

2 2 0 2 

A! C G T!

1 1 2 2 

A! C G T!

2 0 2 2 

A! C G T!

2 1 3 3 

A! C G T!

3 2 2 2 

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm 

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k} 



A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

A! C G T!

2 0 2 2 

A! C G T!

1 1 2 2 

A! C G T!

2 2 0 2 

A! C G T!

2 1 3 3 

A! C G T!

3 2 2 2 

A! C G T!

5 3 4 4 

A! C G T!

2 1 2 1 

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm 

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k} 



A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

A! C G T!

2 0 2 2 

A! C G T!

1 1 2 2 

A! C G T!

2 2 0 2 

A! C G T!

2 1 3 3 

A! C G T!

3 2 2 2 

A! C G T!

5 3 4 4 

A! C G T!

2 1 2 1 

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm 

Exercise Break: “Backtrack” to fill in the remaining 
nodes of the tree. 



A Dynamic Programming Algorithm 

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0 

A! C G T!

2 0 2 2 

A! C G T!

1 1 2 2 

A! C G T!

2 2 0 2 

A! C G T!

2 1 3 3 

A! C G T!

3 2 2 2 

A! C G T!

5 3 4 4 

A! C G T!

2 1 2 1 

C!

C! C! A! C! G! G! T! C!

C! C!

G! C!C!C!

Code Challenge: Solve the Small Parsimony 
Problem. 



Parsimony 

Exercise Break, check the following: Complexity: if 
we want to calculate the overall length (cost) of a 
tree with m species, n characters, and k states, the 
Parsimony algorithm is of complexity O(mnk2). 

David Sankoff 



Parsimony 

Exercise Break, check the following: Complexity: if 
we want to calculate the overall length (cost) of a 
tree with m species, n characters, and k states, the 
Parsimony algorithm is of complexity O(mnk2). 

COMMENT: if each mutation costs the same then a 
simplified, earlier version of this algorithm from Walter 
Fitch gives a run time complexity of O(mnk). If  Each 
mutation a↔b costs differently you have a weighted 
edit distance (particularly for amino acid sequences) then 
your complexity is likely to be O(mnk2) 
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7 -5 

example:	Y	(Tyr)	often	mutates	into	F	(score	+7)	but	rarely	mutates	into	P	(score	-5)			262 

Margaret Dayhoff 

How	to	compare	amino	acids:	scoring	matrices 

Y
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Pick states for each internal node 
 
•   Select minimal cost character for root (s minimizing Rroot(s)) 

•   Do pre-order (from root to leaves) traversal of tree: 
- For internal node j, with parent i, select state that produced 
   minimal cost at i (use pointers kept in 1st stage) 

Top-down	phase	

C T AG T T 

Complexity: O(mnk2) 

{ }
{ }

+
+

+
=

),'()'(min
),'()'(min

)(
'

'

ssSsR
ssSsR

sR
ks

js
i

Sankoff’s	Algorithm 



simple versus more 
general case 



Why is 
interesting to 
know internal 
node’s 
composition? 



Small Parsimony in an Unrooted Tree Problem: Find 
the most parsimonious labeling of the internal nodes 
of an unrooted tree. 
•  Input: An unrooted binary tree with each leaf 

labeled by a string of length m. 
•  Output: A position of the root and a labeling of 

all other nodes of the tree by strings of length m 
that minimizes the tree’s parsimony score. 

Code Challenge: Solve this problem. 

Small Parsimony for Unrooted Trees 



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale 

2 1 

2 

0 2 

1 

Finding the Most Parsimonious Tree 

Parsimony Score: 8 



ACGTAGGCCT ATGTAAGACTTCGAGAGCAC TCGAAAGCAT

4 2 

0 

2 3 

0 

Chimp Human Seal Whale 

ACGTAAGCAT ACGTAAGCAT

ACGTAAGCAT

Parsimony Score: 11 

Finding the Most Parsimonious Tree 



ACGTAGGCCT ATGTAAGACT TCGAGAGCACTCGAAAGCAT

3 1 

2 

5 2 

1 

Chimp Human Seal Whale 

ACGTAAGCCT ACGTAAGCCT

ACGTAAGCCT

Parsimony Score: 14 

Finding the Most Parsimonious Tree 



Large Parsimony Problem: Given a set of strings, 
find a tree (with leaves labeled by all these strings) 
having minimum parsimony score. 
•  Input: A collection of strings of equal length. 
•  Output: A rooted binary tree T that minimizes 

the parsimony score among all possible rooted 
binary trees with leaves labeled by these strings. 

Finding the Most Parsimonious Tree 



Large Parsimony Problem: Given a set of strings, 
find a tree (with leaves labeled by all these strings) 
having minimum parsimony score. 
•  Input: A collection of strings of equal length. 
•  Output: A rooted binary tree T that minimizes 

the parsimony score among all possible rooted 
binary trees with leaves labeled by these strings. 

Finding the Most Parsimonious Tree 

Unfortunately, this problem is NP-Complete... 



A Greedy Heuristic for Large Parsimony 

Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z). 
 

Z 

Y W 

X 

w 

x 

a b 

y 

z 



A Greedy Heuristic for Large Parsimony 

Z 

Y W 

X 

w 

x 

a b 

y 

z 

Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z). 
 



A Greedy Heuristic for Large Parsimony 

Z 

Y W 

X 

w 

x 

y 

z 

Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z). 
 



A Greedy Heuristic for Large Parsimony 

Z 

Y W 

X Z 

X W 

Y 

X 

Y W 

Z 

w 

x 

a b 

y 

z 

w 

z 

a b 

y 

x 

w 

y 

a b 

x 

z 

Rearranging these subtrees is called a nearest 
neighbor interchange. 
 



Nearest Neighbors of a Tree Problem: Given an 
edge in a binary tree, generate the two neighbors of 
this tree. 
•  Input: An internal edge in a binary tree. 
•  Output: The two nearest neighbors of this tree 

(for the given internal edge). 

Code Challenge: Solve this problem. 

A Greedy Heuristic for Large Parsimony 



Code Challenge: Implement the nearest-neighbor 
interchange heuristic. 

A Greedy Heuristic for Large Parsimony 

Nearest Neighbor Interchange Heuristic: 
1.  Set current tree equal to arbitrary binary rooted 

tree structure. 
2.  Go through all internal edges and perform all 

possible nearest neighbor interchanges. 
3.  Solve Small Parsimony Problem on each tree. 
4.  If any tree has parsimony score improving over 

optimal tree, set it equal to the current tree. 
Otherwise, return current tree. 



•  If	there	are	m	sequences,	each	with	n	nucleotides,	a	phylogenetic	tree	can	
be	reconstructed	using	some	tree	building	methods.		

•  From	each	sequence,	n	nucleotides	are	randomly	chosen	with	
replacements,	giving	rise	to	m	rows	of	n	columns	each.	These	now	
constitute	a	new	set	of	sequences.		

•  A	tree	is	then	reconstructed	with	these	new	sequences	using	the	same	
tree	building	method	as	before.		

•  Next	the	topology	of	this	tree	is	compared	to	that	of	the	original	tree.	
Each	interior	branch	of	the	original	tree	that	is	different	from	the	
bootstrap	tree	is	given	a	score	of	0;	all	other	interior	branches	are	given	
the	value	1.		

•  This	procedure	of	resampling	the	sites	and	tree	reconstruction	is	repeated	
several	hundred	times,	and	the	percentage	of	times	each	interior	branch	is	
given	a	value	of	1	is	noted.	This	is	known	as	the	bootstrap	value.	As	a	
general	rule,	if	the	bootstrap	value	for	a	given	interior	branch	is	95%	or	
higher,	then	the	topology	at	that	branch	is	considered	"correct".	

278 

Tree validation: the bootstrap algorithm 
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Tree validation: the bootstrap algorithm 



EXAMPLE:	Phylogenetic-inspired	techniques	for	reverse	engineering	
and	detection	of	malware	families	

Sequence	alignment	(dbg:	with	debugging	symbols,	def:	default	settings,	spd:	
optimised	for	speed).	(a)	Before	alignment.	(b)	After	alignment	using	an	identity	
substitution	matrix.	(c)	After	alignment	using	a	substitution	matrix	 280 

Phylogenetic tree 
applications in 

computer science 



 Distance algorithm in computer science 
A) A sequence logo for the FakeAV-DO function “ F1 ”. Positions  
with large characters indicate invariant parts of the function; 
positions with small characters vary due to code metamorphism 
 
B) A neighbour joining tree of FakeAV-DO set of procedures F1. 
 
C) Neighbor joining tree of FakeAV-DO set of procedures F2 
from  
the same samples of B. 
 
(W.M. Khoo and P. Lio’  Unity in diversity: Phylogenetic-inspired 
techniques for reverse  engineering and detection of malware families.  
2011 First SysSec Workshop) 

A 
B 

C 



BROWSER SNAPSHOT 

Human  

Chimp  

Baboon      
Cat 

Dog     

Pig           
Cow     

Rat    

Mouse   
Chicken 
Zebrafish  

Fugu  

Tetraodon 

Data from Eric Green at NGHRI, alignments by Webb Miller 

More species increases power to detect conserved 
sequence elements: the phylogeny becomes a weight 



•  Alignment	of	2	sequences	is	a	2-row	matrix.	
•  Alignment	of	3	sequences	is	a	3-row	matrix	
	
	 									A T - G C G - 
     A - C G T - A 
     A T C A C - A 
	
•  Our	scoring	function	should	score	alignments	with	
conserved	columns	higher.	

283 

Generalizing Pairwise to Multiple Alignment 



A A T -- C 

A -- T G C 

-- A T G C 

Alignments	=	Paths	in	3-D	

•  Alignment	of	ATGC,	AATC,	and	ATGC	

0 1 1 2 3 4 #symbols	up	to	a	given	position		

0 1 2 3 3 4 

284 



A A T -- C 

A -- T G C 

-- A T G C 

Alignments	=	Paths	in	3-D	

•  Alignment	of	ATGC,	AATC,	and	ATGC	

0 1 1 2 3 4 

0 1 2 3 3 4 

0 0 1 2 3 4 

(0,0,0)→(1,1,0)→(1,2,1)	→(2,3,2)	→(3,3,3)	→(4,4,4)	

285 



(i-1,j-1,k-1)	

(i,j-1,k-1)	

(i,j-1,k)	

(i-1,j-1,k)	 (i-1,j,k)	

(i,j,k)	

(i-1,j,k-1) 

(i,j,k-1)	2-D	

2-D	Alignment	Cell	versus	3-D	Alignment	Cell		
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•  δ(x, y, z) is	an	entry	in	the	3-D	scoring	matrix.	

Multiple	Alignment:	Dynamic	Programming	
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Multiple	Alignment:	Running	Time	

•  For	3	sequences	of	length	n,	the	run	time	is	
proportional	to	7n3	

•  For	a	k-way	alignment,	build	a	k-dimensional	
Manhattan	graph	with	
– nk	nodes	
– most	nodes	have	2k	–	1	incoming	edges.			
– Runtime:	O(2knk)	

288 



Multiple	Alignment	Induces	Pairwise	Alignments	

Every	multiple	alignment	induces	pairwise	alignments:			
	 	 	    A C - G C G G - C    
       A C - G C - G A G  
       G C C G C - G A G  

	
	 	ACGCGG-C  AC-GCGG-C  AC-GCGAG 
  ACGC-GAC  GCCGC-GAG  GCCGCGAG 

289 



Idea:	Construct	Multiple	from	Pairwise	Alignments	

Given	a	set	of	arbitrary	pairwise	alignments,	can	
we	construct	a	multiple	alignment	that	induces	
them?	

AAAATTTT----     ----AAAATTTT     TTTTGGGG---- 
----TTTTGGGG     GGGGAAAA----     ----GGGGAAAA 

290 



Progressive alignment 
Progressive alignment methods are heuristic in nature. 
They produce multiple alignments from a number of 
pairwise alignments. Perhaps the most widely used 
algorithm of this type is the software CLUSTAL (https://
www.ebi.ac.uk/Tools/msa/clustalo/) 



Progressive Alignment 

Clustalw: 
1.  Given N sequences, align each sequence against 

each other. 
2.  Use the score of the pairwise alignments to 

compute a distance matrix. 
3.  Build a guide tree (tree shows the best order of 

progressive alignment). 
4.  Progressive Alignment guided by the tree. 



Progressive Alignment 

Not all the pairwise alignments build well into a 
multiple sequence alignment (compare the 
alignments on the left and right) 



Progressive Alignment 
The progressive alignment builds a final alignment by 
merging sub-alignments (bottom to top) with a guide tree  



295 
from wikipedia 

D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for 
multiple sequence alignments. Methods in Enzymology, 266:383402, 
1996. 



296 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Populations".	PLOS	Genetics.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	https://commons.wikimedia.org/w/index.php?curid=30550950		

Example of complexity in alignment: 
bacterial genomes   



•  What	Is	Genome	Sequencing:		Exploding	Newspapers	
analogy	

•  The	String	Reconstruction	Problem	
•  String	Reconstruction	as	a	Hamiltonian	Path	Problem	
•  String	Reconstruction	as	an	Eulerian	Path	Problem		
•  De	Bruijn	Graphs	
•  Euler’s	Theorem		
•  Assembling	Read-Pairs	
•  De	Bruijn	Graphs	Face	Harsh	Realities	of	Assembly		
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•  2010:	Nicholas	Volker	became	the	first	human	
being	to	be	saved	by	genome	sequencing.	
– Doctors	could	not	diagnose	his	condition;	he	went	
through	dozens	of	surgeries.		

– Sequencing	revealed	a	rare	mutation	in	a	XIAP	gene	
linked	to	a	defect	in	his	immune	system.	

– This	led	doctors	to	use	immunotherapy,	which	saved	the	
child.	

		Why	Do	We	Sequence	Personal	Genomes?		

•  Different	people	have	slightly	different	genomes:	
on	average,	roughly	1	mutation	in	1000	
nucleotides.		 
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The Newspaper Problem 
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The Newspaper Problem as          an 
Overlapping Puzzle  
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The Newspaper Problem as          an 
Overlapping Puzzle  
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CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

		Multiple	Copies	of	a	Genome	(Millions	of	them)	

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC 

		Breaking	the	Genomes	at	Random	Positions	
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CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA  TCGTAGCTACG  ATGCATTAGCAA  GCTATCGGA  TCAGCTACCA  CATCGTAGC 
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC  ACATCGTAGCT  ACGATGCATTA  GCAAGCTATC  GGATCAGCTAC  CACATCGTAGC 

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC  ATCGTAGCTACG  ATGCATTAGCA  AGCTATCGG A TCAGCTACCA  CATCGTAGC 

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT  AGCTACGATGCA  TTAGCAAGCT  ATCGGATCA  GCTACCACATC  GTAGC 

		Generating	“Reads”	

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA  TCGTAGCTACG  ATGCATTAGCAA  GCTATCGGA  TCAGCTACCA  CATCGTAGC 
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC  ACATCGTAGCT  ACGATGCATTA  GCAAGCTATC  GGATCAGCTAC  CACATCGTAGC 

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC  ATCGTAGCTACG  ATGCATTAGCA  AGCTATCGG A TCAGCTACCA  CATCGTAGC 

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT  AGCTACGATGCA  TTAGCAAGCT  ATCGGATCA  GCTACCACATC  GTAGC 

		“Burning”	Some	Reads	
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CTG
TAT

TAC
G  

ATGCATTAGCAA  
GCTATCGGA  

CAT
CGT

AGC
 

GACTACGCT  

ACTACTGCTA  

GCTGTATTACG  

ACATCGTAGCT  CTGATGATGG  

ATCGTAGCTACG  

ATGCATTAGCA  

CTGATGATGGACT  

GCTAGCTGTAT  

TACCACATCGT  

GCTACCACATC  

	No	Idea	What	Position	Every	Read	Comes	From	
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Multiple (unsequenced) genome copies 

Reads 

Assembled genome 
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC… 

Read	generation	

Genome	assembly	

		From	Experimental	to	Computational	Challenges		
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•  Modern	sequencing	machines	cannot	read	an	
entire	genome	one	nucleotide	at	a	time	from	
beginning	to	end	(like	we	read	a	book)	

•  They	can	only	shred	the	genome	and	generate	
short		reads.	

•  The	genome	assembly	is	not	the	same	as	a	jigsaw	
puzzle:	we	must	use	overlapping	reads	to	
reconstruct	the	genome,	a		giant	overlap	puzzle!	

		What Makes Genome Sequencing Difficult?		

Genome	Sequencing	Problem.	Reconstruct	a	genome	from	reads.		
•  Input.	A	collection	of	strings	Reads.		
•  Output.	A	string	Genome	reconstructed	from	Reads.		
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Composition3(TAATGCCATGGGATGTT)= 
 

 

	What	Is	k-mer	Composition?	

 
            TAA 
             AAT 
              ATG 
               TGC 
                GCC 
                 CCA 
                  CAT 
                   ATG 
                    TGG 
                     GGG 
                      GGA 
                       GAT 
                        ATG 
                         TGT 
                          GTT 
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Composition3(TAATGCCATGGGATGTT)= 
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT 
                                = 
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT 

 

e.g.,	lexicographic	order	(like	in	a	dictionary)	
 
 

 

	k-mer	Composition	
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String	Reconstruction	Problem.	Reconstruct	a	string	from	
its	k-mer	composition.		
		
•  Input.	A	collection	of	k-mers.		
		
•  Output.	A	Genome	such	that	Compositionk(Genome)	is	
equal	to	the	collection	of	k-mers.		

		Reconstructing	a	String	from	its	Composition	
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ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT 

TAA	 
AAT 

ATG 

		A	Naive	String	Reconstruction	Approach	

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG 

TAA	 
AAT 
ATG 
TGT 
GTT 310 



TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Composition3(TAATGCCATGGGATGTT)= 
  
 
 

Representing	a	Genome	as	a	Path			

Can	we	construct	this	genome	path	without	knowing	the	genome	TAATGCCATGGGATGTT,	only	
from	its	composition?		

Yes.	We	simply	need	to	connect	k-mer1	with	k-mer2	if								suffix(k-mer1)=prefix(k-mer2).		
E.g.	TAA	→	AAT	
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TAATGCCATGGGATGTT	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

A	Path	Turns	into	a	Graph			

Yes.	We	simply	need	to	connect	k-mer1	with	k-mer2	if								suffix(k-mer1)=prefix(k-mer2).		
E.g.	TAA	→	AAT	
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TAATGCCATGGGATGTT	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Can	we	still	find	the	genome	path	in	this	graph?		

A	Path	Turns	into	a	Graph			
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Where	Is	the	Genomic	Path?			

TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

Nodes	are	arranged	from	left	to	right	in	lexicographic	order.			What	are	we	trying	to	find	in	this	graph?				

A	Hamiltonian	path:	a	path	that	visits	each	node	in	a	graph	
exactly	once.	

	 TA
A	

T G C C A T G G G A T G T T 
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Does	This	Graph	Have	a	Hamiltonian	Path?					

Icosian	game	(1857)	

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.		
Input.	A	graph.			
Output.	A	path	visiting	every	node	in	the	graph	exactly	once.		

William	
Hamilton	

Undirected	graph	

1 2 
3 4 6 

7 
8 

9 

10 

11 

12 13 

14 

15 

16 17 

18 
19 

20 

5 
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TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

TA
A	

T G C C A T G G G A T G T T 

TA
A	

T G A T G G G A T G T T C C 
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TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

 TAATGCCATGGGATGTT 

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

A	Slightly	Different	Path				

3-mers as nodes 

3-mers as edges 

TAA	

How	do	we	label	the	starting	and	ending	nodes	of	an	edge?		

TA	 AA	prefix	of	TAA	 suffix	of	TAA	
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TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

 TAATGCCATGGGATGTT 

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Labeling	Nodes	in	the	New	Path			

3-mers as nodes 

3-mers as edges and 2-mers as nodes 
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TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

Labeling	Nodes	in	the	New	Path			

3-mers as edges and 2-mers as nodes 

319 



TAA	 AAT	
ATG	

TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 AA	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TGC	

GCC	CCA	

CAT	
CA	

TG	

GC	

CC	

ATG	AT	

Gluing	Identically	Labeled	Nodes				
TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	
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TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				
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TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

De	Bruijn	Graph	of	TAATGCCATGGGATGTT				

Where	is	the	Genome		
hiding	in	this	graph?	
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What	are	we	trying	to	
find	in	this	graph?				

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

It	Was	Always	There!		

An	Eulerian	path	in	a	
graph	is	a	path	that	
visits	each	edge	exactly	
once.	

TA
A	

T G C C A T G G G A T G T T 
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Eulerian	Path	Problem					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

327 



Eulerian	Versus	Hamiltonian	Paths					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.				
	
•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	node	in	the	graph	exactly	once.		

Find a difference! 
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What	Problem	Would	You	Prefer	to	Solve?		

Hamiltonian Path Problem Eulerian Path Problem 

While	Euler	solved	the	Eulerian	Path	Problem	
(even	for	a	city	with	a	million	bridges),	nobody	
has	developed	a	fast	algorithm	for	the	
Hamiltonian	Path	Problem	yet.					
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NP-Complete	Problems	
•  The	Hamiltonian	Path	Problem	belongs	to	a	
collection	containing	thousands	of	
computational	problems	for	which	no	fast	
algorithms	are	known.	

That	would	be	an	excellent	argument,	but	the	
question	of	whether	or	not	NP-Complete	
problems	can	be	solved	efficiently	is	one	of	
seven	Millennium	Problems	in	mathematics.			

NP-Complete	problems	are	all	equivalent:	find	an	
efficient	solution	to	one,	and	you	have	an	
efficient	solution	to	them	all.	 330 



Eulerian	Path	Problem					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

We	constructed	the	de	Bruijn	
graph	from	Genome,	but	in	
reality,	Genome	is	unknown!		
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What	We	Have	Done:	From	Genome	to	de	Bruijn	Graph					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT 
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What	We	Want:	From	Reads	(k-mers)	to	Genome					
 TAATGCCATGGGATGTT 

 
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT 
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What	We	will	Show:	From	Reads	to	de	Bruijn	Graph	to	Genome					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT 

 
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT 
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Constructing	de	Bruijn	Graph	when	Genome	Is	Known	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TAATGCCATGGGATGTT 
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TAA	

AAT	

ATG	

TGC	

GCC	

CCA	

CAT	

ATG	

TGG	

GGG	

GGA	

GAT	

ATG	

TGT	

GTT	

Constructing	de	Bruijn	when	Genome	Is	Unknown	

Composition3(TAATGCCATGGGATGTT) 
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TAA	

AAT	

ATG	

TGC	

GCC	

CCA	

CAT	

ATG	

TGG	

GGG	

GGA	

GAT	

ATG	

TGT	

GTT	

Representing	Composition	as	a	Graph	Consisting	of	Isolated	Edges	

Composition3(TAATGCCATGGGATGTT) 
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TAA	
TA	 AA	

AAT	
AA	 AT	

ATG	
AT	 TG	

TGC	
TG	 GC	

GCC	
GC	 CC	

CCA	
CA	CC	

CAT	
CA	 AT	

ATG	
AT	 TG	

TGG	
TG	 GG	

GGG	
GG	 GG	

GGA	
GG	 GA	

GAT	
GA	 AT	

ATG	
AT	 TG	

TGT	
TG	 GT	

GTT	
GT	 TT	

Constructing	de	Bruijn	Graph	from	k-mer	Composition	

Composition3(TAATGCCATGGGATGTT) 
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TAA	
TA	 AA	

AA	
AT	

ATG	
AT	 TG	

TGC	
TG	 GC	

GCC	
GC	 CC	

CCA	
CA	CC	

CAT	
CA	 AT	

ATG	
AT	 TG	

TGG	
TG	 GG	

GGG	
GG	 GG	

GGA	
GG	 GA	

GAT	
GA	 AT	

ATG	
AT	 TG	

TGT	
TG	 GT	

GTT	
GT	 TT	

Gluing	Identically	Labeled	Nodes	
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TAA	
TA	 AA	

AAT	 ATG	
AT	 TG	

TGC	 GCC	
GC	 CC	

CCA	 CAT	
CA	 AT	

TGG	
TG	 GG	

GGG	 GGA	
GG	 GA	

GAT	 ATG	
AT	 TG	

TGT	
GT	

GTT	
GT	 TT	

ATG	
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TAA	
TA	 AA	

AAT	 ATG	
AT	 TG	

TGC	 GCC	
GC	 CC	

CCA	 CAT	
CA	 AT	

TGG	
TG	 GG	

GGG	 GGA	
GG	 GA	

GAT	 ATG	
AT	 TG	

TGT	 GTT	
GT	 TT	

ATG	

We	Are	Not	Done	with	Gluing	Yet	
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TAA	 AAT	
ATG	

TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 AA	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TGC	

GCC	CCA	

CAT	
CA	

TG	

GC	

CC	

ATG	AT	

Gluing	Identically	Labeled	Nodes				
TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	
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TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				
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TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

The	Same	de	Bruijn	Graph:	
DeBruin(Genome)=DeBruin(Genome	Composition)	
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 DeBruijn(k-mers) 
   form a node for each (k-1)-mer from k-mers 
   for each k-mer in k-mers 
      connect its prefix node with its suffix node by an edge 
 

Constructing	de	Bruijn	Graph		

De	Bruijn	graph	of	a	collection	of	k-mers:	
– Represent	every	k-mer	as	an	edge	between	its	prefix	
and	suffix	

– Glue	ALL	nodes	with	identical	labels.	
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From	Hamilton											to	Euler												to	de	Bruijn													

	
Universal	String	Problem	(Nicolaas	de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer	
exactly	once.			

000		001		010		011		100		101		110		111	

 0 0 

0 

1 

1 1 

0 

1 
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From	Hamilton											to	Euler												to	de	Bruijn													

	
Universal	String	Problem	(Nicolaas	de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer	
exactly	once.			

000		001		010		011		100		101		110		111	
000	

00	 00	
001	

00	 01	
010	

01	 10	
011	

01	 11	
100	

10	 00	
101	

10	 01	
110	

11	 10	
111	

11	 11	

00	 01	

10	 11	
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From	Hamilton											to	Euler												to	de	Bruijn													

00	 01	

10	 11	

 0 0 

0 

1 

1 1 

0 

1 
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De	Bruijn	Graph	for	4-Universal	String	

Does	it	have	an	Eulerian	cycle?	If	yes,	how	can	we	find	it?	
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Eulerian	CYCLE	Problem					
Eulerian	CYCLE	Problem.	Find	an	Eulerian	cycle	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	cycle	visiting	every	edge	in	the	graph	exactly	once.		
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A	Graph	is	Eulerian	if	It	Contains	an	Eulerian	
Cycle.	
	

Is	this	graph	Eulerian?			
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A	Graph	is	Eulerian	if	It	Contains	an	Eulerian	
Cycle.	
	

Is	this	graph	Eulerian?			
	 1	in,	2	out	

A	graph	is	balanced	if	indegree	=	outdegree	for	each	node		
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•  Every	Eulerian	graph	is	balanced	
•  Every	balanced*	graph	is	Eulerian	

Euler’s	Theorem		

(*)	and	strongly	connected,	of	course!	 355 



Recruiting	an	Ant	to	Prove	Euler’s	Theorem		

Let	an	ant	randomly	walk	through	the	graph.	
The	ant	cannot	use	the	same	edge	twice!		
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If	Ant	Was	a	Genius…		

“Yay!  Now 
can I go 
home 
please?” 
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A	Less	Intelligent	Ant	Would	Randomly	Choose	a	
Node	and	Start	Walking…	

Can	it	get	stuck?	In	what	node?		
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The	Ant	Has	Completed	a	Cycle																BUT	has	not	
Proven	Euler’s	theorem	yet…	

The	constructed	cycle	is	not	Eulerian.	Can	we	enlarge	it?		
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Let’s	Start	at	a	Different	Node	in	the	Green	Cycle	

Let’s	start	at	a	node	with	still	unexplored	edges.		
	

“Why	should	I	start	at	a	different	node?	
Backtracking?	I’m	not	evolved	to	walk	
backwards!	And	what	difference	does	it	
make???”	
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1 

2 

3 
“Why	do	I	have	to	walk	along	the	
same	cycle	again???	Can	I	see	
something	new?”		

An	Ant	Traversing	Previously	Constructed	Cycle		
Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	(green	cycle)	and	return	back	to	the	starting	node.	
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1 3 

2 

4 

I	Returned	Back	BUT…	I	Can	Continue	Walking!		

After	completing	the	cycle,	start	random	exploration	of	still	
untraversed	edges	in	the	graph. 

Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	(green	cycle)	and	return	back	to	the	starting	node.	

362 



1 

2 

3 

4 

5 

6 7 

8 

Stuck	Again!			

No	Eulerian	cycle	yet…	can	we	enlarge	the	green-blue	cycle?		
	
The	ant	should	walk	along	the	constructed	cycle	starting	at	
yet	another	node.	Which	one?			
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1 

2 

3 

4 

5 

6 

7 8 

I	Returned	Back	BUT…	I	Can	Continue	Walking!		

“Hmm,	maybe	these	
instructions	were	not	
that	stupid…”		
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I	Proved	Euler’s	Theorem!		
	

4 

5 

2 

3 

7 8 

1 

6 

9 

10 
11 

EulerianCycle(BalancedGraph)	
			form	a	Cycle	by	randomly	walking	in	BalancedGraph	(avoiding	already	visited	edges)	
						while	Cycle	is	not	Eulerian						
									select	a	node	newStart		in	Cycle	with	still	unexplored	outgoing	edges				
									form	a	Cycle’	by	traversing	Cycle	from	newStart	and	randomly	walking	afterwards			
									Cycle	←	Cycle’		
			return	Cycle		

000

001

010

011

100

101

110

1111001

1100

0000 1111

1010

0101

0011

0110

11010100

0010 1011

0111

11101000

0001
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From	Reads	to	de	Bruijn	Graph	to	Genome					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT 

 
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT 
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TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

Multiple	Eulerian	Paths	

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

TA
A	

T G C C A T G G G A T G T T TA
A	

T G A T G G G A T G T T C C 
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Breaking	Genome	into	Contigs	

TA
A	

T G C C A T G G G A T G T T 

TAA	 AAT	
TA	 AA	 AT	

TGT	 GTT	
TG	 GT	 TT	

TGC	

GCC	CCA	

CA	

AT	 TG	

GC	

CC	

TGG	

GGA	

AT	

GG	GA	

TAAT	

TGCCAT	

GGGAT	

TGTT	

ATG	

AT	 TG	

ATG	

ATG	AT	 TG	

ATG	

AT	 TG	

TGG	

GG	

TG	

GGG	
GG	

GGG	

TGG	
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DNA	Sequencing	with	Read-pairs	

Randomly	cut	genomes	into	large	equally	
sized	fragments	of	size	InsertLength	
		

Multiple		identical	copies	of	genome	

Generate	read-pairs:		
two	reads	from	the	
ends	of	each	fragment		
(separated	by	a	fixed	
distance)	200	bp	 200	bp	

InsertLength	 369 



From	k-mers	to	Paired	k-mers	

Genome 

Read	1	 Read	2	

...A	T	C	A	G	A	T	T	A	C	G	T	T	C	C	G	A	G	…	

A	paired	k-mer	is	a	pair	of	k-mers	at	a	fixed	distance	d	apart	in	Genome.					
E.g.		TCA	and	TCC	are	at	distance	d=11	apart.		

Distance	d=11	

Disclaimers:		
1.	In	reality,	Read1	and	Read2	are	typically	sampled	from	different	strands:			
																																					(→ ……. ←		rather	than		→ ……. →)	
2.	In	reality,	the	distance	d	between	reads	is	measured	with	errors.		
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TAA GCC 
 AAT CCA 
  ATG CAT 
   TGC ATG 
    GCC TGG 
     CCA GGG 
      CAT GGA 
       ATG GAT 
        TGG ATG 
         GGG TGT 
          GGA GTT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

What	is	PairedComposition(TAATGCCATGGGATGTT)? 
 

Representing	a	paired	3-mer TAA GCC as	a	2-line	expression:	     TAA 
GCC 

Show first line first  
And then show all the lines 
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TAA GCC 
 AAT CCA 
  ATG CAT 
   TGC ATG 
    GCC TGG 
     CCA GGG 
      CAT GGA 
       ATG GAT 
        TGG ATG 
         GGG TGT 
          GGA GTT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

												PairedComposition(TAATGCCATGGGATGTT)	
 

Representing	PairedComposition	in	lexicographic	order   

Show first line first  
And then show all the lines 
 

TAA 
GCC 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

AAT 
CCA 
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String	Reconstruction	from	Read-Pairs	Problem	

String	Reconstruction	from	Read-Pairs	Problem.	Reconstruct	
a	string	from	its	paired	k-mers.		
•  Input.	A	collection	of	paired	k-mers.		
•  Output.	A	string	Text	such	that	PairedComposition(Text)	is	

equal	to	the	collection	of	paired	k-mers.			
 

How	Would	de	Bruijn	Assemble	Paired	k-mers?		
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TAA GCC 
 AAT CCA 
  ATG CAT 
   TGC ATG 
    GCC TGG 
     CCA GGG 
      CAT GGA 
       ATG GAT 
        TGG ATG 
         GGG TGT 
          GGA GTT 

 
  

 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

																								Representing	Genome	TAATGCCATGGGATGTT as	a	Path	
 

											paired	prefix	of										→																							← paired	suffix	of						

CCA 
GGG 

CC 
GG CA 

GG CCA 
GGG CCA 

GGG 
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TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

TG 
AT GG 

TG 
GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

Labeling	Nodes	by	Paired	Prefixes	and	Suffixes 

											paired	prefix	of										→																							← paired	suffix	of						

CCA 
GGG 

CC 
GG CA 

GG CCA 
GGG CCA 

GGG 
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TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

TG 
AT GG 

TG 
GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

Glue	nodes	with	identical	labels 

TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

TG 
AT GG 

TG 
GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

376 



TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

TG 
AT GG 

TG 
GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

GG 
TG 

GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

Paired	de	Bruijn	Graph	from	the	Genome	

Glue	nodes	with	identical	labels 
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Constructing	Paired	de	Bruijn	Graph 

TA 
GC AA 

CC 

TAA 
GCC 

AA 
CC 

AT 
CA 

AAT 
CCA 

AT 
CA 

TG 
AT 

ATG 
CAT 

TG 
AT 

GC 
TG 

TGC 
ATG 

GC 
TG 

CC 
GG 

GCC 
TGG 

CC 
GG 

CA 
GG 

CCA 
GGG 

CA 
GG 

AT 
GA 

CAT 
GGA 

AT 
GA 

TG 
AT 

ATG 
GAT 

TG 
AT GG 

TG 

TGG 
ATG 

GG 
TG 

GG 
GT 

GGG 
TGT 

GG 
GT 

GA 
TT 

GGA 
GTT 

											paired	prefix	of										→																							← paired	suffix	of						

CCA 
GGG 

CC 
GG CA 

GG CCA 
GGG CCA 

GGG 
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Constructing	Paired	de	Bruijn	Graph 

TA 
GC AA 

CC 

TAA 
GCC 

AA 
CC 

AT 
CA 

AAT 
CCA 

AT 
CA 

TG 
AT 

ATG 
CAT 

TG 
AT 

GC 
TG 

TGC 
ATG 

GC 
TG 

CC 
GG 

GCC 
TGG 

CC 
GG 

CA 
GG 

CCA 
GGG 

CA 
GG 

AT 
GA 

CAT 
GGA 

AT 
GA 

TG 
AT 

ATG 
GAT 

TG 
AT GG 

TG 

TGG 
ATG 

GG 
TG 

GG 
GT 

GGG 
TGT 

GG 
GT 

GA 
TT 

GGA 
GTT 

•  Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:	
– Represent	every	paired	k-mer	as	an	edge	between	its	
paired	prefix	and	paired	suffix.		

– Glue	ALL	nodes	with	identical	labels.	
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Constructing	Paired	de	Bruijn	Graph 

TA 
GC AA 

CC 

TAA 
GCC 

AT 
CA 

AAT 
CCA 

AT 
CA 

TG 
AT 

ATG 
CAT 

TG 
AT 

GC 
TG 

TGC 
ATG 

GC 
TG 

CC 
GG 

GCC 
TGG 

CC 
GG 

CA 
GG 

CCA 
GGG 

CA 
GG 

AT 
GA 

CAT 
GGA 

AT 
GA 

TG 
AT 

ATG 
GAT 

TG 
AT GG 

TG 

TGG 
ATG 

GG 
TG 

GG 
GT 

GGG 
TGT 

GG 
GT 

GA 
TT 

GGA 
GTT 

We	Are	Not	Done	with	Gluing	Yet 

TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

TG 
AT GG 

TG 
GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 
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Constructing	Paired	de	Bruijn	Graph 

TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

GG 
TG 

GG 
GT 

GA 
TT 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

Paired	de	Bruijn	Graph	from	read-pairs	

•  Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:	
– Represent	every	paired	k-mer	as	an	edge	between	its	
paired	prefix	and	paired	suffix.		

– Glue	ALL	nodes	with	identical	labels.	
	 381 



TA 
GC AA 

CC 
AT 
CA 

TG 
AT 

GC 
TG 

CC 
GG 

CA 
GG 

AT 
GA 

GG 
TG 

GG 
GT 

GA 
TT 

Which	Graph	Represents	a	Better	Assembly?	 

TAA 
GCC 

AAT 
CCA 

ATG 
CAT 

TGC 
ATG 

GCC 
TGG 

CCA 
GGG 

CAT 
GGA 

ATG 
GAT 

TGG 
ATG 

GGG 
TGT 

GGA 
GTT 

Unique	genome	reconstruction		
	

	TAATGCCATGGGATGTT 
 

Multiple	genome	reconstructions		
		
    TAATGCCATGGGATGTT 
        
   TAATGGGATGCCATGTT 
 
 
 
 

GGA	

Paired	de	Bruijn	Graph	 De	Bruijn	Graph	
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Some	Ridiculously	Unrealistic	Assumptions	

•  Perfect	coverage	of	genome	by	reads	(every	k-mer	
from	the	genome	is	represented	by	a	read)	

•  Reads	are	error-free.	

•  Multiplicities	of	k-mers	are	known	

•  Distances	between	reads	within	read-pairs	are	
exact.		
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Some	Ridiculously	Unrealistic	Assumptions	

•  Imperfect	coverage	of	genome	by	reads	(every	k-
mer	from	the	genome	is	represented	by	a	read)	

•  Reads	are	error-prone.	

•  Multiplicities	of	k-mers	are	unknown.	

•  Distances	between	reads	within	read-pairs	are	
inexact.		

•  Etc.,	etc.,	etc.	
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1st	Unrealistic	Assumption:	Perfect	Coverage	
	
	atgccgtatggacaacgact     

atgccgtatg               
  gccgtatgga              
     gtatggacaa            
          gacaacgact     
 

250-nucleotide	reads	generated	by	Illumina	
technology	capture	only	a	small	fraction	of	250-
mers	from	the	genome,	thus	violating	the	key	
assumption	of	the	de	Bruijn	graphs.		
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Breaking	Reads	into	Shorter	k-mers	

atgccgtatggacaacgact     atgccgtatggacaacgact 
atgccgtatg               atgcc 
  gccgtatgga              tgccg 
     gtatggacaa            gccgt 
          gacaacgact        ccgta 
                             cgtat 
                              gtatg  
                               tatgg 
                                atgga  
                                 tggac   
                                  ggaca 
                                   gacaa 
                                    acaac  
                                     caacg 
                                      aacga 
                                       acgac 
                                        cgact 
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atgccgtatggacaacgact     atgccgtatggacaacgact 
atgccgtatg               atgcc 
  gccgtatgga              tgccg 
     gtatggacaa            gccgt 
          gacaacgact        ccgta 
    cgtaCggaca               cgtat 
                              gtatg  
                               tatgg 
                                atgga  
                                 tggac   
                                  ggaca 
                                   gacaa 
                                    acaac  
                                     caacg 
                                      aacga 
                                       acgac 
                                        cgact 
                             cgtaC 
                              gtaCg 
                               taCgg 
                                aCgga 
                                 Cggac   
 
 

2nd		Unrealistic	Assumption:	Error-free	Reads	
	

Erroneous	read	
(change	of	t	into	C)	
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De	Bruijn	Graph	of	ATGGCGTGCAATG…		
Constructed	from	Error-Free	Reads	

. 
CGTA GTAT TATG ATGG TGGA GGAC GACA TGCC GCCG CCGT ATGC 

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA 

Errors	in	Reads	Lead	to	Bubbles	in	the	
De	Bruijn	Graph	

CGCA GCAT CATG CCGC 

GCCGC 

CCGCA CGCAT GCATG 

CATG Bubble! 

CGTA GTAT TATG ATGG TGGA GGAC GACA TGCC GCCG CCGT ATGC 

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA 
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Bubble	Explosion	

389 

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from 
k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in 
reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are 
small.  



De	Bruin	Graph	of	N.	meningitidis		
Genome	AFTER	Removing	Bubbles		

Red	edges	represent	repeats	
390 
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Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 



394 

The de Bruijn graph for k = 4 and 
a 2-character alphabet composed 
of the digits 0 and 1.  
This graph has an Eulerian cycle 
since each node has indegree 
and outdegree equal to 2.  
Following the blue numbered 
edges in order 1, 2, ..., 16 gives 
an Eulerian cycle  0000, 0001, 
0011, 0110, 1100, 1001, 0010, 
0101, 1011, 0111, 1111, 1110,  
1101, 1010, 0100, 1000,  
which spells the cyclic superstring  
0000110010111101 
. 

Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 



De	Bruijn	Graph		

398 

Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 



De	Bruijn	Graph		

401 

Example	and	RECAP	 



De	Bruijn	Graph		

402 

Example	and	RECAP	 
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Example	and	RECAP	 



404 

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf 
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/
CG_deBruijn.ipynb 

Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 
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Example	and	RECAP	 



•  Clustering as an optimization problem  
•  The Lloyd algorithm for k-means clustering  
•  From Hard to Soft Clustering 
•  From Coin Flipping to k-means Clustering 
•  Expectation Maximization 
•  Soft k-means Clustering 
•  Hierarchical Clustering 
•  Markov Clustering Algorithm 
•  Stochastic Neighbor Embedding 
 410 

Clustering Algorithms   



	
							

-6h         -4h         -2h         0         +2h         +4h         +6h 
                                   diauxic shift 
  

Measuring	3	Genes	at	7	Checkpoints	

Measure expression of various yeast genes at 7 checkpoints: 

YLR258W  1.1  1.4  1.4  3.7  4.0 10.0  5.9
YPL012W  1.1  0.8  0.9  0.4  0.3  0.1  0.1
YPR055W  1.1  1.1  1.1  1.1  1.1  1.1  1.1

eij = expression level of 
gene i at checkpoint  j 
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Switching	to	Logarithms	of	Expression	Levels	

-4 
-2 
0 
2 
4 

-4 
-2 
0 
2 
4 

-4 
-2 
0 
2 
4 

YLR258W  1.1  1.4  1.4  3.7  4.0 10.0  5.9
YPL012W  1.1  0.8  0.9  0.4  0.3  0.1  0.1
YPR055W  1.1  1.1  1.1  1.1  1.1  1.1  1.1

YLR258W  0.1  0.4  0.5  1.9  2.0  3.3  2.6
YPL012W  0.1 -0.3 -0.2 -1.2 -1.6 -3.0 -3.1
YPR055W  0.2  0.2  0.2  0.1  0.1  0.1  0.1

taking logarithms (base-2) 
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C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00
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FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which
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Gene	Expression	Matrix			

gene expression 
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Gene	Expression	Matrix			

Goal: partition all yeast genes into clusters so that: 
•  genes in the same cluster have similar behavior  
•  genes in different clusters have different behavior 

1997: Joseph deRisi 
measured expression 
of 6,400 yeast genes 
at 7 checkpoints 
before and after the 
diauxic shift. 

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00
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FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

6,400 x 7 gene 
expression matrix 
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n	x	m																													
gene	expression	

matrix	

Genes	as	Points	in	Multidimensional	Space	

n points in                  
m-dimensional 

space  

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00
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FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which
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(10, 3) (1, 3) 
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(8, 7) 

(7, 1) 

(3, 4) 
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Gene	Expression	and	Cancer	Diagnostics	

MammaPrint: a test that evaluates the likelihood of 
breast cancer recurrence based on the expression 
of just 70 genes. 

But how did scientists discover these 70 human genes? 
417 



Toward	a	Computational	Problem	

            
            Good Clustering Principle: Elements within the 

same cluster are closer to each other than 
elements in different clusters. 
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Toward	a	Computational	Problem	

            

            

            

            

•  distance between elements in the same cluster < ∆ 
•  distance between elements in different clusters > ∆ 
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Clustering	Problem	

Clustering Problem: Partition a set of expression 
vectors into clusters.  
•  Input: A collection of n vectors and an integer k.  
•  Output: Partition of n vectors into k disjoint 

clusters satisfying the Good Clustering Principle. 

Any partition into 
two clusters does not 
satisfy the Good 
Clustering Principle!  
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What is the “best” partition into three clusters?  
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Clustering	as	Finding	Centers	

Equivalent goal: find a set of k points Centers that 
will serve as the “centers” of the k clusters in Data.  

Goal: partition a set Data into k clusters. 
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Clustering	as	Finding	Centers	

Equivalent goal: find a set of k points Centers that 
will serve as the “centers” of the k clusters in Data 
and will minimize some notion of distance from 
Centers to Data .  

Goal: partition a set Data into k clusters. 

What is the “distance” from Centers to Data?   
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Distance	from	a	Single	DataPoint	to	Centers	

d(DataPoint,	Centers)	=	minall	points	x	from	Centers	d(DataPoint,	x)	

The distance from DataPoint in Data to Centers is 
the distance from DataPoint to the closest center: 
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Distance	from	Data	to	Centers	

 MaxDistance(Data, Centers) =  
max all points DataPoint from Data  d(DataPoint, Centers) 
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k-Center	Clustering	Problem	

k-Center Clustering Problem. Given a set of points 
Data, find k centers minimizing MaxDistance(Data, 
Centers).  
•  Input: A set of points Data and an integer k. 
•  Output: A set of k points Centers that minimizes 

MaxDistance(DataPoints, Centers) over all 
possible choices of Centers. 
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k-Center Clustering Problem. Given a set of points 
Data, find k centers minimizing MaxDistance(Data, 
Centers).  
•  Input: A set of points Data and an integer k. 
•  Output: A set of k points Centers that minimizes 

MaxDistance(DataPoints, Centers) over all 
possible choices of Centers. 

k-Center	Clustering	Problem	

An even better 
set of centers!  
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k-Center	Clustering	Heuristic	

FarthestFirstTraversal(Data, k) 
   Centers ← the set consisting of a single DataPoint from Data 
   while Centers have fewer than k points 
      DataPoint ← a point in Data maximizing d(DataPoint, Centers)  

      among all data points 
      add DataPoint to Centers 
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k-Center	Clustering	Heuristic	

FarthestFirstTraversal(Data, k) 
   Centers ← the set consisting of a single DataPoint from Data 
   while Centers have fewer than k points 
      DataPoint ← a point in Data maximizing d(DataPoint, Centers)  

      among all data points 
      add DataPoint to Centers 
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What	Is	Wrong	with	FarthestFirstTraversal?	

FarthestFirstTraversal selects Centers that minimize 
MaxDistance(Data, Centers). 

human eye FarthestFirstTraversal 

But biologists are interested in typical rather than 
maximum deviations, since maximum deviations may 
represent outliers (experimental errors). 
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The	maximal	distance	between	Data	
and	Centers:				

		MaxDistance(Data,	Centers)=			
max	DataPoint	from	Data	d(DataPoint,	Centers)	

The squared error distortion 
between Data and Centers:  									

 Distortion(Data, Centers) =  

∑ DataPoint from Data d(DataPoint, Centers)2/n 

Modifying	the	Objective	Function	

A single data point contributes 
to MaxDistance 

All data points contribute to 
Distortion 
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NP-Hard for k > 1 

k-Means	Clustering	Problem	
k-Center Clustering Problem:  
   Input: A set of points Data and an�
   integer k. 
   Output: A set of k points Centers�
   that minimizes 

MaxDistance(DataPoints,Centers)  

over all choices of Centers. 

k-Means Clustering Problem:   
   Input: A set of points Data and an�
   integer k.   
   Output: A set of k points Centers�
   that minimizes  

Distortion(Data,Centers) 

over all choices of Centers. 
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k-Means	Clustering	for	k	=	1	

  2     4    6

  
5 
  
3 
   
1

i-th coordinate of the center of 
gravity = the average of the i-th 
coordinates of datapoints: 

((2+4+6)/3, (3+1+5)/3 ) = (4, 3) 

Center of Gravity Theorem: The center of gravity of 
points Data is the only point solving the 1-Means 
Clustering Problem.  

The center of gravity of points Data is 
     ∑all points DataPoint in Data   DataPoint / #points in Data 
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Select k arbitrary data points as Centers 

The Lloyd Algorithm in Action 



The Lloyd Algorithm in Action 

Clusters 

Centers 

assign each data point to its nearest center 



The Lloyd Algorithm in Action 

new centers ç clusters’ centers of gravity 

Clusters 

Centers 



The Lloyd Algorithm in Action 

assign each data point to its nearest center 

Clusters 

Centers 

again! 



The Lloyd Algorithm in Action 

new centers ç clusters’ centers of gravity 

Clusters 

Centers 

again! 



The Lloyd Algorithm in Action 

Clusters 

Centers 

again! 

assign each data point to its nearest center 



The	Lloyd	Algorithm	

Select k arbitrary data points as Centers and then 
iteratively performs the following two steps: 
  
•  Centers to Clusters: Assign each data point to the 

cluster corresponding to its nearest center (ties 
are broken arbitrarily). 

•  Clusters to Centers: After the assignment of data 
points to k clusters, compute new centers as 
clusters’ center of gravity. 

The Lloyd algorithm terminates when the centers 
stop moving (convergence). 
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Must	the	Lloyd	Algorithm	Converge?		

•  If	a	data	point	is	assigned	to	a	new	center	
during	the	Centers	to	Clusters	step:	
–  the	squared	error	distortion	is	reduced	
because	this	center	must	be	closer	to	
the	point	than	the	previous	center	was.	

	
	

•  If	a	center	is	moved	during	the	Clusters	to	
Centers	step:	
–  the	squared	error	distortion	is	reduced	
since	the	center	of	gravity	is	the	only	
point	minimizing	the	distortion	(the	
Center	of	Gravity	Theorem).				
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RECAP	

442 



Clustering	Yeast	Genes		
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Soft	vs.	Hard	Clustering	

•  The Lloyd algorithm assigns the midpoint either to 
the red or to the blue cluster. 
•  “hard” assignment of data points to clusters. 

 
 
 
 

•  Can we color the midpoint half-red and half-blue?  
•  “soft” assignment of data points  to clusters. 

  

Midpoint:	A	point	approximately	
halfway	between	two	clusters.	
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Soft	vs.	Hard	Clustering	

•  The Lloyd algorithm assigns the midpoint either to 
the red or to the blue cluster. 
•  “hard” assignment of data points to clusters. 

 
 
 
 

•  Can we color the midpoint half-red and half-blue?  
•  “soft” assignment of data points  to clusters. 
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Soft	vs.	Hard	Clustering	

																							 

Soft choices: points are assigned 
“red” and “blue” responsibilities 
rblue and rred  (rblue + rred  =1)   

(0.98, 0.02) 

(0.48, 0.52) 

(0.01, 0.99) 

Hard choices: points are 
colored red or blue depending 
on their cluster membership.  
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•  We flip a loaded coin with an unknown biasθ           
(probability that the coin lands on heads). 

•  The coin lands on heads i out of n times.  
•  For each bias, we can compute the probability of the 

resulting sequence of flips. 

Probability of generating the given sequence of flips is 
  

Pr(sequence|θ) = θi * (1-θ)n-i  

This expression is maximized at θ= i/n (most likely bias)  

Flipping	One	Biased	Coins		
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                               Data 
HTTTHTTHTH  0.4
HHHHTHHHHH  0.9
HTHHHHHTHH  0.8
HTTTTTHHTT  0.3
THHHTHHHTH  0.7 
  

Goal: estimate the probabilitiesθA andθB 

Flipping	Two	Biased	Coins		
A                                                                      B 
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								If	We	Knew	Which	Coin																															
Was	Used	in	Each	Sequence…		

                               Data    HiddenVector 
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  
  

Goal: estimate Parameters = (θA ,θB) 
when HiddenVector is given  
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θB = fraction of heads generated in all flips with coin B = 
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80 

                               Data    HiddenVector     
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0          
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  
  

									If	We	Knew	Which	Coin																															
Was	Used	in	Each	Sequence…		

θA = fraction of heads generated in all flips with coin A = 
(4+3) / (10+10) = (0.4+0.3) / 2 = 0.35 
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    1     *    HiddenVector  

                               Data   HiddenVector   Parameters=(θA, θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80)  
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  
  

Parameters	as	a	Dot-Product	

*
*
*
*
*

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/  (1+0+0+1+0) = 0.35 

 ∑all data points i Datai*HiddenVectori  / ∑all data points iHiddenVectori= 0.35 

                Data * HiddenVector   /  

                       1 refers to a vector (1,1, … ,1) consisting of all 1s 

(1,1,…, 1)*HiddenVector =0.35 

θA = fraction of heads generated in all flips with coin A = 
= (4+3) / (10+10) = (0.4+0.3) / 2 = 0.35 
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θB = fraction of heads generated in all flips with coin B�
= (9+8+7) / (10+10+10) = (0.9+0.8+0.7) /( 1+1+1) = 0.80 

                               Data    HiddenVector   Parameters=(θA, θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80)  
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  
  

Parameters	as	a	Dot-Product		

*
*
*
*
*

 (0.5*0+0.9*1+0.8*1+0.4*0+0.7*1) / (0+1+1+0+1) = 0.80 

∑all points i  Datai * (1- HiddenVectori) / ∑ all points i (1- HiddenVectori)= 

           Data * (1-HiddenVector)      /  1 *  (1 - HiddenVector) 452 



θA = fraction of heads generated in all flips with coin A�
      = (0.4+0.3)/2=0.35 
      = Data * HiddenVector / 1 * HiddenVector 

                               Data    HiddenVector   Parameters=(θA, θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80)  
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  
  

Parameters	as	a	Dot-Product	

*
*
*
*
*

θB = fraction of heads generated in all flips with coin B�
      = (0.9+0.8+0.7)/3=0.80 
      = Data * (1-HiddenVector) / 1 * (1 - HiddenVector) 
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Data,	HiddenVector,	Parameters		

Parameters HiddenVector 

                                     Data    HiddenVector   Parameters=(θA, θB)  
            0.4      1
            0.9      0
            0.8      0       (0.35, 0.80)  
            0.3      1
            0.7      0  
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Data,	HiddenVector,	Parameters	

                               Data    HiddenVector   Parameters=(θA, θB)  
            0.4      ?
            0.9      ?
            0.8      ?       (0.35, 0.80)  
            0.3      ?
            0.7      ?  
  

Parameters HiddenVector 
? 
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                               Data    HiddenVector   Parameters=(θA, θB)  
            0.4      ?
            0.9      ?
            0.8      ?       (0.35, 0.80)  
            0.3      ?
            0.7      ?  
  

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656  ≈ 0.00113  >  

Pr(1st sequence|θB )= θB
4(1-θB)6 = 0.804 • 0.206  ≈ 0.00003  

From	Data	&	Parameters	to	HiddenVector		

Which coin is more likely to generate the 
1st sequence (with 4 H)? 
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                               Data    HiddenVector   Parameters=(θA, θB)  
            0.4       
            0.9      ?
            0.8      ?       (0.35, 0.80)  
            0.3      ?
            0.7      ?  
  

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656  ≈ 0.00113  >  

Pr(1st sequence|θB )= θB
4(1-θB)6 = 0.804 • 0.206  ≈ 0.00003  

From	Data	&	Parameters	to	HiddenVector		

1

Which coin is more likely to generate the 
1st sequence (with 4 H)? 
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                               Data    HiddenVector   Parameters=(θA, θB)  
            0.4       
            0.9      ?
            0.8      ?       (0.35, 0.80)  
            0.3      ?
            0.7      ?  
  

From	Data	&	Parameters	to	HiddenVector		

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005  <  

 Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684 

Which coin is more likely to generate the 
2nd sequence (with 9 H)? 

1

458 



                               Data    HiddenVector   Parameters=(θA, θB)  
            0.4       
            0.9       
            0.8      ?       (0.35, 0.80)  
            0.3      ?
            0.7      ?  
  

From	Data	&	Parameters	to	HiddenVector		

0

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈  0.00005  <  

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684 

Which coin is more likely to generate the 
2nd sequence (with 9 H)? 

1
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HiddenVector	Reconstructed!			

                                Data    HiddenVector   Parameters=(θA, θB)  
            0.4      1
            0.9      0
            0.8      0       (0.35, 0.80)  
            0.3      1
            0.7      0  
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Reconstructing	HiddenVector	and	Parameters	

Data 

Parameters HiddenVector 
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Reconstructing	HiddenVector	and	Parameters	

Data 

Parameters’ HiddenVector 
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Reconstructing	HiddenVector	and	Parameters	

Data 

Parameters’ HiddenVector 
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Reconstructing	HiddenVector	and	Parameters	

Data 

Parameters’ HiddenVector’ 

Iterate! 
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From	Coin	Flipping	to	k-means	Clustering:		
Where	Are	Data,	HiddenVector,	and	Parameters?	

Data: data points Data = (Data1,…,Datan) 
 
Parameters: Centers = (Center1,…,Centerk) 
 
HiddenVector: assignments of data points to k centers  
(n-dimensional vector with coordinates varying from 1 to k).   

1 

2 

3 

1 2 

1 

3 
3 

3 

2 

1 
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Coin	Flipping	and	Soft	Clustering	

•  Coin flipping: how would you select  between coins A and B if 
Pr(sequence|θA) = Pr(sequence|θB)? 

•  k-means clustering: what cluster would you assign a data point it 
to if it is a midpoint of centers C1 and C2?  

Soft assignments: assigning C1 and C2 “responsibility” ≈0.5 for 
a midpoint.   466 



                            Data    HiddenVector     Parameters = (θA,θB)  
            0.4      ?
            0.9      ?
            0.8      ?        (0.60, 0.82)  
            0.3      ?
            0.7      ?  
  

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >  

Pr(1st sequence|θB )= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015  

From	Data	&	Parameters	to	HiddenVector		

Which coin is more likely to have generated the first 
sequence (with 4 H)? 
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                            Data    HiddenVector     Parameters = (θA,θB)  
            0.4       
            0.9      ?
            0.8      ?        (0.60, 0.82)  
            0.3      ?
            0.7      ?  
  

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >  

Pr(1st sequence|θB )= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015  

Memory	Flash:	
From	Data	&	Parameters	to	HiddenVector		

1

Which coin is more likely to have generated the first 
sequence (with 4 H)? 
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                            Data    HiddenMatrix     Parameters = (θA,θB)  
            0.4       
            0.9      ?
            0.8      ?        (0.60, 0.82)  
            0.3      ?
            0.7      ?  
  

                             Pr(1st sequence|θA)  ≈ 0.000531 >  
                             Pr(1st sequence|θB ) ≈ 0.000015  

From	Data	&	Parameters	to	HiddenMatrix		

0.000531 / (0.000531 + 0.000015) ≈ 0.97 
0.000015 / (0.000531 + 0.000015) ≈ 0.03  

What are the responsibilities of coins for this sequence? 

0.97 0.03 
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                              Data    HiddenMatrix     Parameters = (θA, θB)  
            0.4       
            0.9 
            0.8      ?        (0.60, 0.82)  
            0.3      ?
            0.7      ?  
  

From	Data	&	Parameters	to	HiddenMatrix		

0.0040 / (0.0040 + 0.0302) = 0.12   
0.0342 / (0.0040 + 0.0342) = 0.88  

What are the responsibilities of coins for the 2nd sequence? 

                             Pr(2nd sequence|θA) ≈ 0.0040 <  
                             Pr(2nd sequence|θB ) ≈ 0.0302  

0.97 0.03 
0.12 0.88 
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                             Data    HiddenMatrix    Parameters = (θA,θB)  
            0.4   
            0.9   
            0.8  0.29 0.71    (0.60, 0.82)  
            0.3  0.99 0.01     
            0.7  0.55 0.45  
  

HiddenMatrix	Reconstructed!		

0.97 0.03 
0.12 0.88 
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Expectation	Maximization	Algorithm	

Data 

Parameters HiddenMatrix 
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E-step	

Data 

Parameters HiddenMatrix 
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M-step	

Data 

Parameters’ HiddenVector 

??? 
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                               Data    HiddenVector   Parameters=(θA, θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0          ???  
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  

*
*
*
*
*

Memory	Flash:	Dot	Product	

    θA = Data     *     HiddenVector           /  1    *     HiddenVector 
 
 
    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector) 
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HiddenVector =    ( 1     0     0      1     0 )     
 
                               

    θA = Data     *     HiddenVector           /  1    *     HiddenVector 
 
 
    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector) 

                                Data    HiddenVector   Parameters=(θA,θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0         
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  

		From	Data	&	HiddenMatrix	to	Parameters	

What is HiddenMatrix  corresponding  to this HiddenVector? 
476 



HiddenVector =    ( 1     0     0      1     0 )     
 
Hidden Matrix =                               
                               

1      0     0      1     0 
0      1     1      0     1 

    θA = Data     *     HiddenVector           /  1    *     HiddenVector 
 
 
    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector) 

                                Data    HiddenVector   Parameters=(θA,θB)  
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0         
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0  

		From	Data	&	HiddenMatrix	to	Parameters	

    θB = Data * 2nd row of HiddenMatrix /  1*2nd row of HiddenMatrix 

    θA = Data * 1st row of HiddenMatrix /  1*1st row of HiddenMatrix 

= HiddenVector     
= 1 - HiddenVector 477 



HiddenVector =    ( 1     0     0      1     0 )     
 
Hidden Matrix =                               
                               

.97  .03  .29  .99  .55 

.03  .97  .71  .01  .45 

    θA = Data     *     HiddenVector           /  1    *     HiddenVector 
 
 
    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector) 

                                Data    HiddenMatrix   Parameters=(θA,θB)  
HTTTHTTHTH  0.4  0.97 0.03
HHHHTHHHHH  0.9  0.12 0.88
HTHHHHHTHH  0.8  0.29 0.71         
HTTTTTHHTT  0.3  0.99 0.01
THHHTHHHTH  0.7  0.55 0.45  

		From	Data	&	HiddenMatrix	to	Parameters	

    θB = Data * 2nd row of HiddenMatrix /  1*2nd row of HiddenMatrix 

    θA = Data * 1st row of HiddenMatrix /  1*1st row of HiddenMatrix 
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Data: data points Data = {Data1, … ,Datan}   
Parameters: Centers = {Center1, … ,Centerk} 
HiddenVector: assignments of data points to centers    

1  2  1 3 2 1 3 3 HiddenVector  

1 

2 

3 

1 2 

1 

3 
3 

3 

2 

1 

A 

    A           B             C             D            E             F            G           
H  

C 
F 

B 
E 

D 
G 

H 

1  0 1 0 0 1 0 0 

0 1 0 0 1 0 0 0 

0 0 0 1 0 0 1 1 

HiddenMatrix 
1 
2 
3 

From	HiddenVector	to	HiddenMatrix	

479 



0 1 0 0 1 0 0 

1 0 0 1 0 0 0 

0 0 1 0 0 1 1 

From	HiddenVector	to	HiddenMatrix	
Data: data points Data = {Data1, … ,Datan}   
Parameters: Centers = {Center1, … ,Centerk} 
HiddenMatrixi,j: responsibility of center i for data point j     

HiddenMatrix 
1 
2 
3 

0.7 

0.2 

0.1 

    A           B             C            D             E             F            G           
H  

1 

2 

3 

1 2 

1 

3 
3 

3 

2 

1 

A 

C 
F 

B 
E 

D 
G 

H 
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0.70  0.15  0.73 0.40 0.15   0.80 0.05 0.05 

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20 

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75 

From	HiddenVector	to	HiddenMatrix	
Data: data points Data = {Data1, … ,Datan}   
Parameters: Centers = {Center1, … ,Centerk} 
HiddenMatrixi,j: responsibility of center i for data point j     

    A           B             C            D             E             F            G           
H  

1 

2 

3 

1 2 

1 

3 
3 

3 

2 

1 

A 

C 
F 

B 
E 

D 
G 

H 

HiddenMatrix 
1 
2 
3 
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Responsibilities	and	the	Law	of	Gravitation		

HiddenMatrixij: =                                                                    
Forcei,j  / ∑all centers j Forcei,j  

stars 

planets 

responsibility of star i for a planet j is proportional to the 
pull (Newtonian law of gravitation):  

   
Forcei,j=1/distance(Dataj, Centeri)2  

0.70  0.15  0.73 0.40 0.15   0.80 0.05 0.05 

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20 

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75 
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Responsibilities	and	Statistical	Mechanics		

centers 

data points 

responsibility of center i for a data point j is proportional to 
 

Forcei,j = e-β·distance(Dataj, Centeri)  
 

where β is a stiffness parameter. 

HiddenMatrixij: =                                                                    
Forcei,j  / ∑all centers j Forcei,j  

0.70  0.15  0.73 0.40 0.15   0.80 0.05 0.05 

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20 

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75 
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How	Does	Stiffness	Affect	Clustering?		

Hard k-means�
clustering 

  

Soft k-means�
clustering�

(stiffness β=1)  

Soft k-means�
clustering�

(stiffness β= 0.3)  
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Stratification	of	Clusters	

Clusters	often	have	subclusters,	which	have	
subsubclusters,	and	so	on.	
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Stratification	of	Clusters	

Clusters	often	have	subclusters,	which	have	sub-
subclusters,	and	so	on.	
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From	Data	to	a	Tree	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n	data	points	into	a	tree.	

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 
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g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

																								 

From	a	Tree	to	a	Partition	into	4	Clusters	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n	data	points	into	a	tree.	

Line 
crossing  
the tree  

at 4 points 

488 



g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

																								 

From	a	Tree	to	a	Partition	into	6	Clusters	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	first	organizes	n	data	points	into	a	tree.	

Line 
crossing  
the tree  

at 6 points 

6 Clusters 
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

Hierarchical clustering starts from a transformation of n x m 
expression matrix into n x n similarity matrix or distance matrix.   

Distance Matrix 
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

{g3, g5} 

Identify the two closest clusters and merge them. 
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g1 g2 g3, g5  g4 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0 

g3, g5  9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5 

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1 

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

{g3, g5} 

Recompute the distance between two clusters as 
average distance between elements in the cluster. 
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g1 g2 g3, g5  g4 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0 

g3, g5  9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5 

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1 

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

{g3, g5} 

{g2, g4} 

Identify the two closest clusters and merge them. 
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g1 g2, g4  g3, g5  g6 g7 g8 g9 g10 

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0 

g2, g4  7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0 

g3, g5  9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5 

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5 

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

{g3, g5} 

{g2, g4} 

Recompute the distance between two clusters (as 
average distance between elements in the cluster). 
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g1 g2, g4  g3, g5  g6 g7 g8 g9 g10 

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0 

g2, g4  7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0 

g3, g5  9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5 

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5 

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0 

Constructing	the	Tree	

																								 

																				 

																				 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

{g2, g4} 

{g3, g5, g8} 

Identify the two closest clusters and merge them. 
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Constructing	the	Tree	

																								 

																				 

																				 

Iterate until all elements form a single cluster (root). 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 496 



Constructing	a	Tree	from	a	Distance	Matrix	D			
HierarchicalClustering (D, n) 
   Clusters ← n single-element clusters labeled 1 to n  
   T ← a graph with the n isolated nodes labeled 1 to n  
   while there is more than one cluster 
      find the two closest clusters Ci and Cj 
      merge Ci and Cj into a new cluster Cnew with |Ci| + |Cj| elements 
      add a new node labeled by cluster Cnew to T  
      connect node Cnew to Ci and Cj by directed edges  
      remove the rows and columns of D corresponding to Ci and Cj 
      remove Ci and Cj  from Clusters 
      add a row and column to D for the cluster Cnew by computing�
         D(Cnew ,C) for each cluster C in Clusters 
      add Cnew   to Clusters 
   assign root in T as a node with no incoming edges 
   return T 
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Different	Distance	Functions	Result	in	Different	
Trees	

Average distance between elements of two clusters:  
 
Davg(C1, C2) = (∑ all points i and j in clusters C1 and C2, respectively Di,j)/ (|C1|*|C2|) 

 

Minimum distance between elements of two clusters:  
 
Dmin(C1, C2) = min all points i and j in clusters C1 and C2, respectively Di,j  
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Clusters	Constructed	by	HierarchicalClustering	
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Surge	in	expression	
at	final	checkpoint	
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Markov	Clustering	Algorithm	
Unlike most clustering algorithms, the MCL (micans.org/
mcl) does not require the number of expected clusters to be 
specified beforehand. The basic idea underlying the 
algorithm is that dense clusters correspond to regions with a 
larger number of paths. 
 

You can find the code at micans.org/mcl 
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Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of 
protein families. Nucleic Acids Res. 2002 30:1575-84. 



Markov	Clustering	Algorithm	
We take a random walk on the graph described by the 
similarity matrix, but after each step we weaken the links 
between distant nodes and strengthen the links between 
nearby nodes. 
A random walk has a higher probability to stay inside the 
cluster than to leave it soon. The crucial point lies in 
boosting this effect by an iterative alternation of expansion 
and inflation steps. An inflation parameter is responsible 
for both strengthening and weakening of current, i.e. 
Strengthens strong currents, and weakens already weak 
currents. An expansion parameter, r, controls the extent of 
this strengthening / weakening. In the end, this influences 
the granularity of clusters. 
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Markov	Clustering	Algorithm	

Matrix representation 
 

502 



Markov	Clustering	Algorithm	
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Markov	Clustering	Algorithm	
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The number of steps to converge is not proven, but 
experimentally shown to be 10 to 100 steps, and 
mostly consist of sparse matrices after the first few 
steps. 

The expansion step of MCL has time complexity O(n3). 

The inflation has complexity O(n2). However, the 

matrices are generally very sparse, or at least the vast 

majority of the entries are near zero. Pruning in MCL 

involves setting near-zero matrix entries to zero, and 

can allow sparse matrix operations to improve the speed 

of the algorithm vastly. 

Markov	Clustering	Algorithm	
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Markov	Clustering	Algorithm	
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A	popular	method	for	exploring	high-dimensional	data	is	
something	called	t-SNE,	introduced	by	van	der	Maaten	and	
Hinton	in	2008.	The	technique	has	become	widespread	in	the	
field	of	machine	learning,	since	it	has	an	almost	magical	ability	
to	create	compelling	two-dimensonal	“maps”	from	data	with	
hundreds	or	even	thousands	of	dimensions.		
	
The goal is to take a set of points in a high-dimensional 
space and find a faithful representation of those points in 
a lower-dimensional space, typically the 2D plane. The 
algorithm is non-linear and adapts to the underlying data, 
performing different transformations on different regions. 
Those differences can be a major source of confusion. 

Stochastic Neighbor Embedding : key points 



A	second	feature	of	t-SNE	is	a	tuneable	parameter,	
“perplexity,”	which	says	(loosely)	how	to	balance	
attention	between	local	and	global	aspects	of	your	
data.	The	parameter	is,	in	a	sense,	a	guess	about	the	
number	of	close	neighbors	each	point	has.		The	
original	paper	says,	“The	performance	of	SNE	is	fairly	
robust	to	changes	in	the	perplexity,	and	typical	
values	are	between	5	and	50.”	But	the	story	is	more	
nuanced	than	that.	Getting	the	most	from	t-SNE	may	
mean	analyzing	multiple	plots	with	different	
perplexities. 

Stochastic Neighbor Embedding : key points 



Stochastic Neighbor Embedding : key points 



First convert each high-dimensional similarity into 
the probability that one data point will pick the other 
data point as its neighbor. To evaluate a map: 

– Use the pairwise distances in the low-dimensional 
map to define the probability that a map point will pick 
another map point as its neighbor. 

– Compute the Kullback-Leibler divergence between the 
probabilities in the high-dimensional and low-
dimensional spaces. 

– Each point in high-Dimension has a conditional 
probability of picking each other point as its neighbor.  

– The distribution over neighbors is based on the high-
Dimension pairwise distances. 

Stochastic Neighbor Embedding : key points 



i 

j k 

high dim
ension space i 

j 

k 

low
 dim

ension space 

Evaluate this representation by seeing how well the low-Dimension probabilities 
model the high-Dimension ones. 

Stochastic Neighbor Embedding 



Stochastic	Neighbor	Embedding	(SNE)	is	the	process	
of	constructing	conditional	probabilities	representing	
the	similarity	between	high	dimensional	data	points	
using	their	Euclidean	distances.	The	conditional	
probability	pj|i	for	points	xj	and	xi	is	defined	by	the	
equation	
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Stochastic Neighbor Embedding 



Similarity	is	ultimately	the	probability	that	xi	would	define	x	j	
as	a	neighbor,	in	which	a	neighborhood	is	defined	by	a	
Gaussian	probability	density	centered	at	xi.	where	σi	is	the	
variance	of	the	xi-centered	distribution.		
	
A	large	pj|i	is	indicative	of	close,	or	similar,	data	points,	and	a	
very	small	pj|i	means	that	x	j	is	not	likely	a	neighbor	of	xi.	
	
Instead	of	using	a	Gaussian	distribution,	t-SNE	assumes	the	
closely-related	Student-t	distribution	to	compute	the	
pairwise	conditional	probabilities	in	a	low-dimensional	space	
more	efficiently.		
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Stochastic Neighbor Embedding 



The	t-SNE	algorithm	improves	upon	the	original	SNE	
algorithm	by	implementing	a	cost	function	with	a	
simpler	gradient	that	uses	the	Kullback-Leibler	
divergence	(DKL)	between	the	high-dimensional	joint	
probability	distribution	P	and	a	low-dimensional	
Student-t	based	joint	probability	distribution	Q	
(Equation	2)	.	The	gradient	is	explicitly	defined	in	
Equation	3.	
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equation 2 

equation 3 

Stochastic Neighbor Embedding 



With	higher-dimensional	data,	one	runs	the	risk	of	
overcrowding	the	projection	such	that	dissimilarities	
between	points	cannot	be	faithfully	plotted	due	to	a	
lack	of	space	in	the	two-dimensional	map	to	reduce	
the	high-dimensional	data.		
	
The	use	of	the	heavy-tailed	Student-t	distribution	
mitigates	this	issue	because	it	converts	the	moderate	
distances	that,	when	mapped	to	a	two-dimensional	
plane	tend	to	be	too	close	to	xi,	to	probabilities	that	
map	the	points	an	appropriately	greater	distance	
away.		
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Stochastic Neighbor Embedding 



516 

1)	

2)	

3)	

Stochastic Neighbor Embedding 



References	on	t-SNE		
•  t-SNE	main	paper:	,	L.J.P.	van	der	Maaten	and	G.E.	Hinton.	Visualizing	

High-Dimensional	Data	Using	t-SNE.	Journal	of	Machine	Learning	Research	
9(Nov):2579-2605,	2008			

•  useful	video:	https://lvdmaaten.github.io/tsne/)https://youtu.be/
RJVL80Gg3lA?list=UUtXKDgv1AVoG88PLl8nGXmw)	

.	
•  	how	to	use:	https://distill.pub/2016/misread-tsne/	
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Burrows	–	Wheeler	Transform	 

Burrows (left), Wheeler (right) 
both at the Computer Laboratory 



Burrows	Wheeler	Transform	
Three	steps:	1)	Form	a	N*N	matrix	by	cyclically	rotating	(left)	the	
given	text	to	form	the	rows	of	the	matrix.	Here	we	use	’$’	as	a	
sentinel	(lexicographically	greatest	character	in	the	alphabet	and	
occurs	exactly	once	in	the	text	but	it	is	not	a	must).	2)	Sort	the	matrix	
according	to	the	alphabetic	order.	Note	that	the	cycle	and	the	sort	
procedures	of	the	Burrows-Wheeler	induces	a	partial	clustering	of	
similar	characters	providing	the	means	for	compression.	3)	The	last	
column	of	the	matrix	is	BWT(T)	(we	need	also	the	row	number	where	
the	original	string	ends	up).	
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BWT	

Property	that	makes	BWT(T)	reversible	is	LF	Mapping:	
the	ith	occurrence	of	a	character	in	Last	column	is	
same	text	occurrence	as	the	ith	occurrence	in	the	
First	column	(i.e.	the	sorting	strategy	preserves	the	
relative	order	in	both	last	column	and	first	column).	
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BWT	
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Burrows-Wheeler	Transform	(BWT)	

acaacg$ 

$acaacg 

aacg$ac 

acaacg$ 

acg$aca 

caacg$a 

cg$acaa 

g$acaac 

gc$aaac 

Burrows-Wheeler Matrix (BWM) 

BWT 



Burrows-Wheeler	Matrix	

$acaacg 

aacg$ac 

acaacg$ 

acg$aca 

caacg$a 

cg$acaa 

g$acaac 



Burrows-Wheeler	Matrix	

$acaacg 

aacg$ac 

acaacg$ 

acg$aca 

caacg$a 

cg$acaa 

g$acaac 

See the suffix array? 

  
3 
1 
4 
2 
5 
6 



Key	observation	

1$acaacg1 

2aacg$ac1 

1acaacg$1 

3acg$aca2 

1caacg$a1 

2cg$acaa3 

1g$acaac2 

a1c1a2a3c2g1$1 

“last first (LF) mapping” 

The i-th occurrence of character X in the 
last column corresponds to 
the same text character as the i-th 
occurrence of X in the first column. 



Burrow	Wheeler	Transform	
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•  Why	do	we	map	reads?	
•  Using	the	Trie	
•  From	a	Trie	to	a	Suffix	Tree	
•  String	Compression	and	the	Burrows-Wheeler	Transform	

•  Inverting	Burrows-Wheeler	
•  Using	Burrows-Wheeler	for	Pattern	Matching	
•  Finding	the	Matched	Patterns	
•  Setting	Up	Checkpoints	
•  Inexact	Matching	
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Genome Assembly   



Toward	a	Computational	Problem	

•  Reference	genome:	database	genome	used	
for	comparison.	

•  Question:	How	can	we	assemble	individual	
genomes	efficiently	using	the	reference?	

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT Individual 

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference 
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Why	Not	Use	Assembly?	

Multiple copies of 
a genome

AGAATATCASequence the 
reads

Shatter the 
genome into 
reads

Assemble the 
genome with 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
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Why	Not	Use	Assembly?	

•  Constructing	a	de	Bruijn	graph	
takes	a	lot	of	memory.	

•  Hope:	a	machine	in	a	clinic	
that	would	collect	and	
map	reads	in	10	minutes.	

•  Idea:	use	existing	structure	of	reference	
genome	to	help	us	sequence	a	patient’s	
genome.	

TAA# AAT#

TGC#

GCC#CCA#

CAT#

ATG#

TGG#

GGG#
GGA#

GAT#

ATG#
TA#

CA#

AA# AT#

GG#GA#

TG#

GC#

CC#

ATG#
TGT# GTT#

GT# TT#
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Read	Mapping	

•  Read	mapping:	determine	where	each	read	
has	high	similarity	to	the	reference	genome.	

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT  
  GAGGA    CCACG       TGA-A

Reference 
Reads 
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Why	Not	Use	Alignment?	

•  Fitting	alignment:	align	each	read	Pattern	to	
the	best	substring	of	Genome.	

•  Has	runtime	O(|Pattern|	*	|Genome|)	for	
each	Pattern.	

•  Has	runtime	O(|Patterns|	*	|Genome|)	for	a	
collection	of	Patterns.	
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Exact	Pattern	Matching	

•  Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?	

•  Single	Pattern	Matching	Problem:	
–  Input:	A	string	Pattern	and	a	string	Genome.	
– Output:	All	positions	in	Genome	where	Pattern	
appears	as	a	substring.	
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Exact	Pattern	Matching	

•  Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?	

•  Multiple	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns	and	a	string	
Genome.	

– Output:	All	positions	in	Genome	where	a	string	
from	Patterns	appears	as	a	substring.	
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A	Brute	Force	Approach	

•  We	can	simply	iterate	a	brute	force	approach	
method,	sliding	each	Pattern	down	Genome.	

•  Note:	we	use	words	instead	of	DNA	strings	for	
convenience.	

panamabananas
        nana Pattern  

Genome 

535 



Brute	Force	Is	Too	Slow	

•  The	runtime	of	the	brute	force	approach	is	too	
high!	
– Single	Pattern:							O(|Genome|	*	|Pattern|)	
– Multiple	Patterns:	O(|Genome|	*	|Patterns|)	
– |Patterns|	=	combined	length	of	Patterns	

536 



Processing	Patterns	into	a	Trie	

•  Idea:	combine	reads	into	a	graph.	Each	
substring	of	the	genome	can	match	at	most	
one	read.		So	each	read	will	correspond	to	a	
unique	path	through	this	graph.	

•  The	resulting	graph	is	called	a	trie.	
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Root Patterns 
 
banana 
pan 
and 
nab 
antenna 
bandana 
ananas 
nana  
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Using	the	Trie	for	Pattern	Matching	

•  TrieMatching:	Slide	the	trie	down	the	
genome.	

•  At	each	position,	walk	down	the	trie	and	see	if	
we	can	reach	a	leaf	by	matching	symbols.	

•  Analogy:	bus	stops	
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p a n a m a b a n a n a s  
Root 
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Success!	

•  Runtime	of	Brute	Force:	
– Total:	O(|Genome|*|Patterns|)	

•  Runtime	of	Trie	Matching:		
– Trie	Construction:	O(|Patterns|)	
– Pattern	Matching:	O(|Genome|	*	|
LongestPattern|)	
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Memory	Analysis	of	TrieMatching	

•  Son	completely	forgot	
about	memory!	

•  Our	trie:	30	edges,	
|Patterns|	=	39	

•  Worst	case:	#	edges	
=	O(|Patterns|)	

Root 
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Preprocessing	the	Genome	

•  What	if	instead	we	create	a	data	structure	
from	the	genome	itself?	

•  Split	Genome	into	all	its	suffixes.		(Show	
matching	“banana”	by	finding	the	suffix	
“bananas”.)	

•  How	can	we	combine	these	suffixes	into	a	
data	structure?	

•  Let’s	use	a	trie!	
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The	Suffix	Trie	and	Pattern	Matching	

•  For	each	Pattern,	see	if	Pattern	can	be	spelled	
out	from	the	root	downward	in	the	suffix	trie.	
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p a n a m a b a n a n a s
$  
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Memory	Trouble	Once	Again	

•  Worst	case:	the	suffix	trie	
holds	O(|Suffixes|)	nodes.	

	
	
•  For	a	Genome	of	length	n,	
|Suffixes|	=	n(n	–	1)/2	=	O(n2)	

panamabananas$ 
anamabananas$ 
namabananas$ 
amabananas$ 
mabananas$ 
abananas$ 
bananas$ 
ananas$ 
nanas$ 
anas$ 
nas$ 
as$ 
s$ 
$ 

Suffixes 
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Compressing	the	Trie	

•  This	doesn’t	mean	that	our	idea	was	bad!	

•  To	reduce	memory,	we	can	compress	each	
“nonbranching	path”	of	the	tree	into	an	edge.	
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•  This	data	structure	is	called	a	suffix	tree.	
	
•  For	any	Genome,	#	nodes	<	2|Genome|.	

– #	leaves	=	|Genome|;	
– #	internal	nodes	<	|Genome|	–	1		

Root a 

na 

nas$ 

s$ 
s$ 

nas$ 

5 
3 

1 7 9 

6 

11 

2 8 10 

4 0 

12 
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Runtime	and	Memory	Analysis	

•  Runtime:	
– O(|Genome|2)	to	construct	the	suffix	tree.	
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.	

	
•  Memory:	

– O(|Genome|2)	to	construct	the	suffix	tree.	
– O(|Genome|)	to	store	the	suffix	tree.	
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Runtime	and	Memory	Analysis	

•  Runtime:	
– O(|Genome|)	to	construct	the	suffix	tree	directly.	
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.	
– Total:	O(|Genome|	+	|Patterns|)	

•  Memory:	
– O(|Genome|)	to	construct	the	suffix	tree	directly.	
– O(|Genome|)	to	store	the	suffix	tree.	
– Total:	O(|Genome|	+	|Patterns|)	
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We	are	Not	Finished	Yet	

•  I	am	happy	with	the	suffix	tree,	but	I	am	not	
completely	satisfied.	
•  Runtime:	O(|Genome|	+	|Patterns|)	
•  Memory:	O(|Genome|)	

	
•  However,	big-O	notation	ignores	constants!	

•  The	best	known	suffix	tree	implementations	
require	~	20	times	the	length	of	|Genome|.	

•  Can	we	reduce	this	constant	factor?	
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Genome	Compression	

•  Idea:	decrease	the	amount	of	memory	
required	to	hold	Genome.	

•  This	indicates	that	we	need	methods	of	
compressing	a	large	genome,	which	is	
seemingly	a	separate	problem.	
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Idea	#1:	Run-Length	Encoding	

•  Run-length	encoding:	compresses	a	run	of	n	
identical	symbols.	

•  Problem:	Genomes	don’t	have	lots	of	runs…	

GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

10G11C7A15T5C1G

Genome 

Run-length encoding 

555 



Converting	Repeats	to	Runs	

•  …but	they	do	have	lots	of	repeats!	

Genome 

Genome* 

CompressedGenome* 

Run-length encoding 

Convert repeats to runs How do we do this step? 
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The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a

Form all cyclic rotations of 
“panamabananas$” 

p a

n

a

m

a

b
a

n

a

n

a

s

$
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 Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression 
algorithm, Technical Report 124, Digital Equipment Corporation 
Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25:1754-60. 



The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of 
“panamabananas$” 

p a

n

a

m

a

b
a

n

a

n

a

s

$

558 



The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of 
“panamabananas$” 

Sort the strings 
lexicographically 
($ comes first) 

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of 
“panamabananas$” 

Burrows-Wheeler 
Transform: 

Last column = 
smnpbnnaaaaa$a 

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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BWT:	Converting	Repeats	to	Runs	

Genome 

BWT(Genome) 

Compression(BWT(Genome)) 

Run-length encoding 

Convert repeats to runs Burrows-Wheeler Transform! 
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How	Can	We	Decompress?	

Genome 

BWT(Genome) 

Compression(BWT(Genome)) 

Run-length encoding 

Burrows-Wheeler Transform 

EASY 

IS IT POSSIBLE? 
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Reconstructing		banana

•  We	now	know	2-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	2	columns	of	the	
matrix.	

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$
na
na
ba
$b
an
an

$b
a$
an  
an  
ba  
na  
na

Sort 2-mers 
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	3-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	3	columns	of	the	
matrix.

a$b
na$
nan
ban
$ba
ana
ana

3-mers Sort 

$ba
a$b
ana  
ana  
ban  
na$  
nan
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	4-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	4	columns	of	the	
matrix.

a$ba
na$b
nana
bana
$ban
ana$
anan

4-mers Sort 

$ban
a$bb
anaa  
anaa  
bann  
na$b  
nana
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	5-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	5	columns	of	the	
matrix.

a$ban
na$ba
nana$
banan
$bana
ana$b
anana

5-mers Sort 

$bana
a$bbn
anaab  
anaaa  
bannn  
na$ba  
nana$
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort 

$banan
a$bbna
anaaba  
anaaa$  
bannna  
na$ban  
nana$b

•  We	now	know	6-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	6	columns	of	the	
matrix.
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort 

$banan
a$bbna
anaaba  
anaaa$  
bannna  
na$ban  
nana$b

•  We	now	know	6-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	6	columns	of	the	
matrix.
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Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	the	entire	matrix!	

•  Taking	all	elements	in	the	first	row	(after	$)	
produces	banana.	
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More	Memory	Issues	

•  Reconstructing	Genome	from	BWT(Genome)	
required	us	to	store	|Genome|	copies	of		
|Genome|.	

•  Can	we	invert	BWT	with	less	space?	

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba
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A	Strange	Observation	

p a

n

a

m

a

b
a

n

a

n

a

s

$$pa n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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A	Strange	Observation	

p a

n

a

m

a

b
a

n

a

n

a

s

$$pa n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

These strings are sorted 

Chop off a 
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Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted 

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Still 
sorted 

Chop off a 
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Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted 

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Chop off a 

Still 
sorted 

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
s $ p a n a m a b a n a n a

Add a 
to end 

Still 
sorted 

Ordering 
doesn’t 
change! 

1
2
3
4
5

6

575 



Is	It	True	in	General?	

•  First-Last	Property:	The	k-th	
occurrence	of	symbol	in	
FirstColumn	and	the	k-th	
occurrence	of	symbol	in	
LastColumn	correspond	to	
the	same	position	of	symbol	
in	Genome.		

$1panamabananas1
a1bananas$panam1
a2mabananas$pan1
a3namabananas$p1  
a4nanas$panamab1
a5nas$panamaban2
a6s$panamabanan3
b1ananas$panama1
m1abananas$pana2
n1amabananas$pa3
n2anas$panamaba4
n3as$panamabana5
p1anamabananas$1
s1$panamabanana6
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More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

a

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

577 



More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

a
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More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

a

•  Memory:	2|Genome|	=	O(|Genome|).	
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Recalling	Our	Goal 		

•  Suffix	Tree	Pattern	Matching:	
– Runtime:	O(|Genome|	+	|Patterns|)	
– Memory:	O(|Genome|)	
– Problem:	suffix	tree	takes	20	x	|Genome|	space	

•  Can	we	use	BWT(Genome)	as	our	data	
structure	instead?	
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Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6
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Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6
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Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6
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Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6
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Where	Are	the	Matches?	

•  Multiple	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns	and	a	string	
Genome.	

– Output:	All	positions	in	Genome	where	one	of	
Patterns	appears	as	a	substring.	

•  Where	are	the	positions?		BWT	has	not	
revealed	them.	
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Where	Are	the	Matches?	

•  Example:	We	know	that	
ana	occurs	3	times,	but	
where?	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11

panamabananas$  

594 



Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$  
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Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

•  Thus,	ana	occurs	at	
positions	1,	7,	9	of	
panamabananas$.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3 
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12
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The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a 

na 

nas$ 

s$ 
s$ 

nas$ 

5 
3 

1 7 9 

6 

11 

2 8 10 

4 0 

12 

[13    5    3    1    7    9    11    6    4    2    8    10    0   12] 
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The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a 

na 

nas$ 

s$ 
s$ 

nas$ 

5 
3 

1 7 9 

6 

11 

2 8 10 

4 0 

12 

[13    5    3    1    7    9    11    6    4    2    8    10    0   12] 
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The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a 

na 

nas$ 

s$ 
s$ 

nas$ 

5 
3 

1 7 9 

6 

11 

2 8 10 

4 0 

12 

[13    5    3    1    7    9    11    6    4    2    8    10    0   12] 
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Reducing	Suffix	Array	Size	
•  We	don’t	want	to	have	to	store	all	of	the	suffix	
array;	can	we	store	only	part	of	it?		Show	how	
checkpointing	can	be	used	to	store	1/100	the	
suffix	array.	

A	Return	to	Constants	

•  Explain	that	using	a	checkpointed	array	
increases	runtime	by	a	constant	factor,	but	in	
practice	it	is	a	worthwhile	trade-off.	
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$1      s1 
a1      m1 
a2      n1 
a3      p1 
a4      b1 
a5      n2 
a6      n3 
b1      a1 
m1      a2 
n1      a3 
n2      a4 
n3      a5 
p1      $1 
s1      a6 

ana 

$1      s1 
a1      m1 
a2      n1 
a3      p1 
a4      b1 
a5      n2 
a6      n3 
b1      a1 
m1      a2 
n1      a3 
n2      a4 
n3      a5 
p1      $1 
s1      a6 

ana 

$1      s1 
a1      m1 
a2      n1 
a3      p1 
a4      b1 
a5      n2 
a6      n3 
b1      a1 
m1      a2 
n1a     a3 
n2a     a4 
n3a     a5 
p1      $1 
s1      a6 

ana 

$1      s1 
a1      m1 
a2      n1 
a3na    p1 
a4na    b1 
a5na    n2 
a6      n3 
b1      a1 
m1      a2 
n1      a3 
n2      a4 
n3      a5 
p1      $1 
s1      a6 

ana 
0

1

9

3

13

6
5

11

605 



Returning	to	Our	Original	Problem	

•  We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.	

•  Approx.	Pattern	Matching	Problem:	
–  Input:	A	string	Pattern,	a	string	Genome,	and	an	
integer	d.	

– Output:	All	positions	in	Genome	where	Pattern	
appears	as	a	substring	with	at	most	d	mismatches.	

606 



Returning	to	Our	Original	Problem	

•  We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.	

•  Multiple	Approx.	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns,	a	string	
Genome,	and	an	integer	d.	

– Output:	All	positions	in	Genome	where	a	string	
from	Patterns	appears	as	a	substring	with	at	most	
d	mismatches.	

607 



Method	1:	Seeding	

•  Say	that	Pattern	appears	in	Genome	with	1	
mismatch:	

…ggcacactaggctcc…

Pattern 

Genome 

      acttggct   

608 



Method	1:	Seeding	

•  Say	that	Pattern	appears	in	Genome	with	1	
mismatch:	

•  One	of	the	substrings	must	match!	

…ggcacactaggctcc…

Pattern 

Genome 

      acttggct   

609 



Method	1:	Seeding	

•  Theorem:	If	Pattern	occurs	in	Genome	with	d	
mismatches,	then	we	can	divide	Pattern	into	
d	+	1	“equal”	pieces	and	find	at	least	one	
exact	match.	

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

610 



Method	1:	Seeding	

•  Say	we	are	looking	for	at	most	d	mismatches.	

•  Divide	each	of	our	strings	into	d	+	1	smaller	
pieces,	called	seeds.	

•  Check	if	each	Pattern	has	a	seed	that	matches	
Genome	exactly.	

•  If	so,	check	the	entire	Pattern	against	Genome.	611 



Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Now we extend 
all strings with at 
most 1 mismatch. 

# Mismatches 
 
1 
0 
1 
1 
0 
0 

612 



Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

One string 
produces a 
second mismatch 
(the $), so we 
discard it. 

# Mismatches 
 
 
 
 
 
 
 
1 
1 
0 
0 
0 
2 
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Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

In the end, we 
have five 3-mers 
with at most 1 
mismatch. 

# Mismatches 
 
1 
1 
0 
0 
0 
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Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Suffix Array 
 
5 
3 
1 
7 
9 

In the end, we 
have five 3-mers 
with at most 1 
mismatch. 
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Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3  
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Suffix Array 
 
5 
3 
1 
7 
9 

In the end, we 
have five 3-mers 
with at most 1 
mismatch. 

616 



http://www.allisons.org/ll/AlgDS/Strings/BWT/	



The gene information starts with the promoter, 
which is followed by a transcribed (i.e. RNA) but 
non-coding (i.e. not translated) region called 5’ 
untranslated region (5’ UTR). The initial exon 
contains the start codon which is usually ATG. 
There is an alternating series of introns and 
exons, followed by the terminating exon, which 
contains the stop codon. It is followed by 
another non-coding region called the 3’ UTR; at 
the end there is a polyadenylation (polyA) 
signal, i.e. a repetition of the amino acid 
adenine. The intron/exon and exon/intron 
boundaries are conserved short 
sequences and called the acceptor and donor 
sites. For all these different parts we need to 
know their probability of occurrence in a large 
database. 

How to identify Genes and gene parts?   
Hidden Markov models   



619 

Splice	Sites	



FAIR LOADED 

0.05 

0.05 

0.95 0.95 

P(1|F) = 1/6 
P(2|F) = 1/6 
P(3|F) = 1/6 
P(4|F) = 1/6 
P(5|F) = 1/6 
P(6|F) = 1/6 

P(1|L) = 1/10 
P(2|L) = 1/10 
P(3|L) = 1/10 
P(4|L) = 1/10 
P(5|L) = 1/10 
P(6|L) = 1/2 

The dishonest casino model 



Definition:	A	hidden	Markov	model	(HMM)	
•  Alphabet	 	Σ	=	{	b1,	b2,	…,	bM	}	
•  Set	of	states	 	Q	=	{	1,	...,	K	}	
•  Transition	probabilities	between	any	two	states	

	 		
	 	aij	=	transition	prob	from	state	i	to	state	j	

	
	 	ai1	+	…	+	aiK	=	1,			for	all	states	i	=	1…K	

	
•  Start	probabilities	a0i	

	
	 	a01	+	…	+	a0K	=	1	

	
•  Emission	probabilities	within	each	state	
	

	 	ei(b)	=	P(	xi	=	b	|	πi	=	k)	
	

	 	ei(b1)	+	…	+	ei(bM)	=	1,			for	all	states	i	=	1…K	

K 

1 

… 

2 

HMM 



	
	
At	each	time	step	t,		
the	only	thing	that	affects	future	states		
is	the	current	state	πt	
	
P(πt+1	= 	k	|	“whatever	happened	so	far”)	 	=	
P(πt+1	= 	k	|	π1,	π2,	…,	πt,	x1,	x2,	…,	xt) 	=	
P(πt+1	= 	k	|	πt)	
	

K 

1 

… 

2 

A Hidden Markov Model is memory-less 



Given	a	sequence	x	=	x1……xN,	
A	parse	of	x	is	a	sequence	of	states	π	=	π1,	……,	πN	
	

1 

2 

K 

… 

1 

2 

K 

… 

1 

2 

K 

… 

… 

… 

… 

1 

2 

K 

… 

x1 x2 x3 xK 

2 

1 

K 

2 

A parse of a sequence 



Likelihood	of	a	parse	

Given	a	sequence	x	=	x1……xN	
and	a	parse	π	=	π1,	……,	πN,	
	
To	find	how	likely	is	the	parse:	
		(given	our	HMM)	
	
P(x,	π)	=	P(x1,	…,	xN,	π1,	……,	πN)	=	
											P(xN,	πN	|	πN-1)	P(xN-1,	πN-1	|	πN-2)……P(x2,	π2	|	π1)	
P(x1,	π1)	=	
	 			P(xN	|	πN)	P(πN	|	πN-1)	……P(x2	|	π2)	P(π2	|	π1)	P(x1	|	
π1)	P(π1)	=	
					a0π1	aπ1π2……aπN-1πN	eπ1(x1)……eπN(xN)		

1 

2 

K 

… 

1 

2 

K 

… 

1 

2 

K 

… 

… 

… 

… 

1 

2 

K 

… 

x1 x2 x3 xK 

2 

1 

K 

2 



Example:	the	dishonest	casino	
Let	the	sequence	of	rolls	be:	
	
x	=	1,	2,	1,	5,	6,	2,	1,	6,	2,	4	
	
Then,	what	is	the	likelihood	of	
	
π  =	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair?	

(say	initial	probs	a0Fair	=	½,	aoLoaded	=	½)	
	
½	×	P(1	|	Fair)	P(Fair	|	Fair)	P(2	|	Fair)	P(Fair	|	Fair)	…	P(4	|	Fair)	=	
	
½	×	(1/6)10	×	(0.95)9	=	.00000000521158647211	=	0.5	×	10-9	



Example:	the	dishonest	casino	
So,	the	likelihood	the	die	is	fair	in	all	this	run	
is	just	0.521	×	10-9	
	
OK,	but	what	is	the	likelihood	of	
=	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	
Loaded,	Loaded,	Loaded?	

½	×	P(1	|	Loaded)	P(Loaded,	Loaded)	…	P(4	|	Loaded)	=	
½	×	(1/10)8	×	(1/2)2	(0.95)9	=	.00000000078781176215	=	7.9	
×	10-10	

Therefore,	it	is	after	all	6.59	times	more	likely	that	the	die	is	
fair	all	the	way,	than	that	it	is	loaded	all	the	way.	



Example:	the	dishonest	casino	
Let	the	sequence	of	rolls	be:	
	
x	=	1,	6,	6,	5,	6,	2,	6,	6,	3,	6	
	
Now,	what	is	the	likelihood	π	=	F,	F,	…,	F?	

½	×	(1/6)10	×	(0.95)9	=	0.5	×	10-9,	same	as	before	
	
What	is	the	likelihood	
	
π  =	L,	L,	…,	L?	
	
½	×	(1/10)4	×	(1/2)6	(0.95)9	=	.00000049238235134735	=	0.5	×	10-7	
	
So,	it	is	100	times	more	likely	the	die	is	loaded	



The	three	main	questions	on	HMMs	
1.  Evaluation	

GIVEN	 	a	HMM	M,	 	and	a	sequence	x,	
FIND	 	Prob[	x	|	M	]	

2. Decoding	
GIVEN 	a	HMM	M,	 	and	a	sequence	x,	
FIND 	the	sequence	π	of	states	that	maximizes	P[	x,	π	|	

M	]	
	

3.  Learning	
GIVEN 	a	HMM	M,	with	unspecified	transition/emission	

probs., 	and	a	sequence	x,	
FIND 	parameters	θ	=	(ei(.),	aij)	that	maximize	P[	x	|	θ	]	



Let’s	not	be	confused	by	notation	
	
P[	x	|	M	]:	 	The	probability	that	sequence	x	was	generated	by	

	 	the	model	
	
	 	 	The	model	is:	architecture	(#states,	etc)	
	 	 	 											+	parameters	θ	=	aij,	ei(.)	
	 	 		

So,	P[	x	|	θ	],	and	P[	x	]	are	the	same,	when	the	architecture,	
and	the	entire	model,	respectively,	are	implied	

	
Similarly,	P[	x,	π	|	M	]	and	P[	x,	π	]	are	the	same	
	
In	the	LEARNING	problem	we	always	write	P[	x	|	θ	]	to	

emphasize	that	we	are	seeking	the	θ	that	maximizes	P[	x	|	
θ	]	



Decoding	
GIVEN	x	=	x1x2……xN	
	
We	want	to	find	π	=	π1,	……,	πN,	
such	that	P[	x,	π	]	is	maximized	
	
π*	=	argmaxπ	P[	x,	π	]	
	
We	can	use	dynamic	programming!	
	
Let	Vk(i)	=	max{π1,…,i-1}	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi	=	k]	
	 	 	=	Probability	of	most	likely	sequence	of	
states	ending	at					 				state	πi	=	k	
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Decoding	–	main	idea	
Given	that	for	all	states	k,		and	for	a	fixed	position	i,	
		Vk(i)	=	max{π1,…,i-1}	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi	=	k]	

What	is	Vk(i+1)?	
From	definition,		
Vl(i+1)	=	max{π1,…,i}P[	x1…xi,	π1,	…,	πi,	xi+1,	πi+1	=	l	]	
=	max{π1,…,i}P(xi+1,	πi+1	=	l	|	x1…xi,π1,…,	πi)	P[x1…xi,	π1,…,	πi]			
=	max{π1,…,i}P(xi+1,	πi+1	=	l	|	πi	)	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi]	
=	maxk	P(xi+1,	πi+1	=	l	|	πi	=	k)	max{π1,…,i-1}P[x1…xi-1,π1,…,πi-1,	
xi,πi=k]		=	el(xi+1)	maxk	akl	Vk(i)	



The	Viterbi	Algorithm	
Input:	x	=	x1……xN	
Initialization:	
	V0(0)	=	1 	 	 	(0	is	the	imaginary	first	position)	
	Vk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	Vj(i)		 	=	ej(xi)	×	maxk	akj	Vk(i-1)	

	
	Ptrj(i)	 	=	argmaxk	akj	Vk(i-1)	

	
Termination:	
	P(x,	π*)	=	maxk	Vk(N)	

	
Traceback:	
		πN*	=	argmaxk	Vk(N)	
		πi-1*		=	Ptrπi	(i)	

Andrew  
Viterbi 



The	Viterbi	Algorithm	

left:	Similar	to	“aligning”	a	set	of	states	to	a	sequence,	
Time:	O(K2N);		Space:	O(KN);	right	:	comparison	of	valid	
directions	in	the	alignment	and	decoding	problem.	



Viterbi	Algorithm	–	a	practical	detail	
Underflows	are	a	significant	problem	
	
P[	x1,….,	xi,	π1,	…,	πi	]	=		a0π1	aπ1π2……aπi	eπ1(x1)……eπi(xi)	
	
These	numbers	become	extremely	small	–	underflow		
	
	
Solution:	Take	the	logs	of	all	values	
	

Vl(i)	=	log	ek(xi)	+	maxk	[	Vk(i-1)	+	log	akl	]	
	
	



Example	
Let	x	be	a	sequence	with	a	portion	of	~	1/6	6’s,	followed	by	a	portion	of	

~	½	6’s…	
	
x	=	123456123456…12345	6626364656…1626364656	
	
Then,	it	is	not	hard	to	show	that	optimal	parse	is	(exercise):	
	
			FFF…………………...F	LLL………………………...L	

	
6	nucleotides	“123456”	parsed	as	F,	contribute	.956×(1/6)6														=	

1.6×10-5	
	 		 										parsed	as	L,	contribute	.956×(1/2)1×(1/10)5	=	0.4×10-5		
	 									“162636”	parsed	as	F,	contribute	.956×(1/6)6														=	
1.6×10-5	
	 	 										parsed	as	L,	contribute	.956×(1/2)3×(1/10)3	=		
9.0×10-5	



Generating	a	sequence	by	the	model	
Given	a	HMM,	we	can	generate	a	sequence	of	length	n	

as	follows:	
Start	at	state	π1	according	to	prob	a0π1		
1.  Emit	letter	x1	according	to	prob	eπ1(x1)	
2. Go	to	state	π2	according	to	prob	aπ1π2	
3. …	until	emitting	xn		
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A	couple	of	questions	
Given	a	sequence	x,	
	
•  What	is	the	probability	that	x	was	generated	by	the	
model?	

•  Given	a	position	i,	what	is	the	most	likely	state	that	
emitted	xi?	

Example:	the	dishonest	casino 		
		
	Say	x	=	12341623162616364616234161221341	
		
	Most	likely	path:	π	=	FF……F	
	However:	marked	letters	more	likely	to	be	L	than	unmarked	
letters	



Evaluation	
We	will	develop	algorithms	that	allow	us	to	compute:	
	
	P(x)	 	Probability	of	x	given	the	model	
		
	P(xi…xj) 	Probability	of	a	substring	of	x	given	the	model	

	
	P(πI	=	k	|	x) 	Probability	that	the	ith	state	is	k,	given	x	
	 	 	 		
	 	A	more	refined	measure	of	which	states	x	may	be	in	



The	Forward	Algorithm	
We	want	to	calculate	
	
P(x)	=	probability	of	x,	given	the	HMM	
	
Sum	over	all	possible	ways	of	generating	x:	
	

	 	 	P(x)	=	 Σπ	P(x,	π)		=	 Σπ	P(x	|	π)	P(π)		
	
To	avoid	summing	over	an	exponential	number	of	paths	π,	
define		

	
	 	fk(i)	=	P(x1…xi,	πi	=	k)	 	(the	forward	probability)	



The	Forward	Algorithm	–	derivation	
Define	the	forward	probability:	
	
fl(i)	=	P(x1…xi,	πi	=	l)		
	

			=	Σπ1…πi-1	P(x1…xi-1,	π1,…,	πi-1,	πi	=	l)	el(xi)	
	

			=	Σk	Σπ1…πi-2	P(x1…xi-1,	π1,…,	πi-2,	πi-1	=	k)	akl	el(xi)	
	

			=	el(xi)	Σk	fk(i-1)	akl	
	



The	Forward	Algorithm	
We	can	compute	fk(i)	for	all	k,	i,	using	dynamic	programming!	
Initialization: 		
	f0(0)	=	1	
	fk(0)	=	0,	for	all	k	>	0	

Iteration:	
	fl(i)	=	el(xi)	Σk	fk(i-1)	akl	

Termination:	
	P(x)	=	Σk	fk(N)	ak0	

	
	Where,	ak0	is	the	probability	that	the	terminating	state	is	k	
(usually	=	a0k)	



Relation	between	Forward	and	Viterbi	

	 	VITERBI	
Initialization:	
	V0(0)	=	1	
	Vk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	

	Vj(i)	=	ej(xi)		maxk	Vk(i-1)	akj		
	
Termination:	
	

	P(x,	π*)	=		maxk	Vk(N)	

	 	FORWARD	
Initialization: 		
	f0(0)	=	1	
	fk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	

	fl(i)	=	el(xi)	Σk	fk(i-1)	akl	
	
Termination:	

	P(x)	=	Σk	fk(N)	ak0	



Motivation	for	the	Backward	Algorithm	

We	want	to	compute	
	P(πi	=	k	|	x),	

the	probability	distribution	on	the	ith	position,	given	x	
	
We	start	by	computing	
P(πi	=	k,	x)	=	P(x1…xi,	πi	=	k,	xi+1…xN)	
	 						=	P(x1…xi,	πi	=	k)	P(xi+1…xN	|	x1…xi,	πi	=	k)		
	 						=	P(x1…xi,	πi	=	k)	P(xi+1…xN	|	πi	=	k)		

Forward, fk(i)  Backward, bk(i)  



The	Backward	Algorithm	–	derivation	
Define	the	backward	probability:	
	
	bk(i)	=	P(xi+1…xN	|	πi	=	k)		

								=	Σπi+1…πN	P(xi+1,xi+2,	…,	xN,	πi+1,	…,	πN	|	πi	=	k)	

								=	Σl	Σπi+1…πN	P(xi+1,xi+2,	…,	xN,	πi+1	=	l,	πi+2,	…,	πN	|	πi	=	
k)	

								=	Σl	el(xi+1)	akl	Σπi+1…πN	P(xi+2,	…,	xN,	πi+2,	…,	πN	|	πi+1	=	l)	

								=	Σl	el(xi+1)	akl	bl(i+1)	
	



The	Backward	Algorithm	
We	can	compute	bk(i)	for	all	k,	i,	using	dynamic	
programming	

Initialization: 		
	bk(N)	=	ak0,	for	all	k	

	
Iteration:	

	bk(i)	=	Σl	el(xi+1)	akl	bl(i+1)	
	
Termination:	

	P(x)	=	Σl	a0l	el(x1)	bl(1)	



Computational	Complexity	
	
What	is	the	running	time,	and	space	required,	for	
Forward,	and	Backward?	

	
	 	 	 	Time:			O(K2N)	
	 	 	 	Space:	O(KN)	

Useful	implementation	technique	to	avoid	underflows	
	
	Viterbi: 										sum	of	logs	
	Forward/Backward:	rescaling	at	each	position	by	
multiplying	by	a	constant	
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Genscan	
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A	eukaryotic	gene	

•  This	is	the	human	p53	tumor	suppressor	gene	
on	chromosome	17.	

•  Genscan	is	one	of	the	most	popular	gene	
prediction	algorithms.	



A	eukaryotic	gene	

3’ untranslated 
region 

Final exon 

Initial exon 

Introns 

Internal exons 

This particular gene lies on the reverse strand. 



An	Intron	

3’ splice site 5’ splice site 

revcomp(CT)=AG 
revcomp(AC)=GT GT: signals start of intron 

AG: signals end of intron 



Modeling	the	5’	splice	site	

•  Most	introns	begin	with	the	letters	“GT.”	
•  We	can	add	this	signal	to	the	model.	

5’ splice 
site 

3’ splice 
site Intron GT 



Modeling	the	5’	splice	site	

•  Most	introns	begin	with	the	letters	“GT.”	
•  We	can	add	this	signal	to	the	model.	
•  Indeed,	we	can	model	each	nucleotide	with	its	
own	arrow.	

5’ splice 
site 

3’ splice 
site Intron G T 

Pr(A)=0 
Pr(C)=0 
Pr(G)=0 
Pr(T)=1 

Pr(A)=0 
Pr(C)=0 
Pr(G)=1 
Pr(T)=0 



Modeling	the	5’	splice	site	

•  Like	most	biological	phenomenon,	the	splice	
site	signal	admits	exceptions.	

•  The	resulting	model	of	the	5’	splice	site	is	a	
length-2	PSSM.	

5’ splice 
site 

3’ splice 
site Intron G T 

Pr(A)=0.01 
Pr(C)=0.01 
Pr(G)=0.01 
Pr(T)=0.97 

Pr(A)=0.01 
Pr(C)=0.01 
Pr(G)=0.97 
Pr(T)=0.01 



Real	splice	sites	

•  Real	splice	sites	show	some	conservation	at	positions	
beyond	the	first	two.	

•  We	can	add	additional	arrows	to	model	these	states.	

weblogo.berkeley.edu 



Modeling	the	5’	splice	site	

5’ splice 
site 

3’ splice 
site Intron 
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GenScan 
•  N	-	intergenic	region	
•  P	-	promoter	
•  F	-	5’	untranslated	region	
•  Esngl	–	single	exon	(intronless)	(translation	

start	->	stop	codon)	
•  Einit	–	initial	exon	(translation	start	->	

donor	splice	site)	
•  Ek	–	phase	k	internal	exon	(acceptor	

splice	site	->	donor	splice	site)	
•  Eterm	–	terminal	exon	(acceptor	splice	site	

->	stop	codon)	
•  Ik	–	phase	k	intron:	0	–	between	codons;	

1	–	after	the	first	base	of	a	codon;	2	–	
after	the	second	base	of	a	codon	
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E0 E1 E2

E

poly-A

3'UTR5'UTR

termEini

Esingle

I0 I 1 I 2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

… 

… 

 
ttaaggagcagtgactagcgactagcatcgatgctac

gtacgatgc 
………..

acgtactagctagctagcgcatgacgtagctagcacg
catcgaga 

GENSCAN (Burge & Karlin) 

6201 
6261 
6321 
6381 
6441 
6501 
6561 
6621 
6681 
6741 
6801 
6861 
6921 
6981 
7041 
7101 
7601 
7661 
7721 
7781 
7841 
7901 
7961 
8021 
8081 
8141 
8201 
8261 
8321 
8381 
8441 
8901 
8961 
9021 
9081 
9141 
9201 
9261 
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Genscan	model	
•  Duration	of	states	–	length	distributions	of		

–  Exons	(coding)	
–  Introns	(non	coding)	

•  Signals	at	state	transitions	
–  ATG	
–  Stop	Codon	TAG/TGA/TAA	
–  Exon/Intron	and	Intron/Exon	Splice	Sites	

•  Emissions	
–  Coding	potential	and	frame	at	exons	
–  Intron	emissions	



GenScan features 
•  Model both strands at once 
•  Each state may output a string of symbols (according to some probability 

distribution). 
•  Explicit intron/exon length modeling 
•  Advanced splice site modeling 
•  Complete intron/exon annotation for sequence 
•  Able to predict multiple genes and partial/whole genes 
•  Parameters learned from annotated genes 
•  Separate parameter training for different CpG content groups (< 43%, 43-51%, 

51-57%,>57% CG content) 

Performance	
•  >	80%	correct	exon	predictions,	and	>	90%	correct	coding/non	coding	predictions	by	bp.	
•  BUT	-		the	ability	to	predict	the	whole	gene	correctly	is	much	lower	
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Membrane	proteins	that	are	important	for	cell	
import/export.	We	would	like	to	predict	the	
position	in	the	amino	acids	with	respect	to	the	
membrane.	The	prediction	of	gene	parts	and	of	
the	membrane	protein	topology	(i.e.	which	
parts	are	outside,	inside	and	buried	in	the	
membrane)	will	require	to	train	the	model	with	
a	dataset	of	experimentally	determined	
genes	/	transmembrane	helices	and	to	validate	
the	model	with	another	dataset.	The	figure	
below	describes	a	7	helix	membrane	protein	
forming	a	sort	of	a	cylinder	(porus)	across	the	
cell	membrane	
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Hidden Markov models   
How to identify protein structural parts?   



Membrane proteins 



Cystic	fibrosis	

664 

The gene affected by CF controls the movement of salt and 
water in and out of cells. People with cystic fibrosis experience 
a build-up of thick sticky mucus in the lungs, digestive system 
and other organs, causing a wide range of challenging 
symptoms affecting the entire body. 



TMHMM: Prediction of transmembrane topology of protein sequence  
Model consists of submodels for: 

•  helix core and cap regions (cytoplasmic and extracellular) 
•  cytoplasmic and extracellular loop regions 
•  globular domain regions 

Trained form 160 proteins with experimentally determined transmembrane 
helices. 

665	

Prediction method: 
Posterior decoding, the 
program computes for each 
residue of the sequence the 
probability of being part if a 
transmembrane helix, an 
intracellular loop or globular 
domain region, or an 
extracellular loop or domain 
region.  
 



Assessing	performance:	Sensitivity	and	Specificity	
•  Testing	of	predictions	is	performed	on	sequences	where	
the	gene	structure	is	known	

•  Sensitivity	is	the	fraction	of	known	genes	(or	bases	or	
exons)	correctly	predicted:	Sn=NTrue	Positives	/NAll	True	
–  “Am	I	finding	the	things	that	I’m	supposed	to	find?	

•  Specificity	is	the	fraction	of	predicted	genes	(or	bases	or	exons)	
that	correspond	to	true	genes:	Sp=NTrue	Positives	/NAll	Positives	
–  “What	fraction	of	my	predictions	are	true?	

•  In	general,	increasing	one	decreases	the	other	
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Validation	



Assessing	performance:	Sensitivity	and	Specificity	
•  Testing	of	predictions	is	performed	on	sequences	where	
the	gene	structure	is	known	

•  Sensitivity	is	the	fraction	of	known	genes	(or	bases	or	
exons)	correctly	predicted:	Sn=NTrue	Positives	/NAll	True	
–  “Am	I	finding	the	things	that	I’m	supposed	to	find?	

•  Specificity	is	the	fraction	of	predicted	genes	(or	bases	or	exons)	
that	correspond	to	true	genes:	Sp=NTrue	Positives	/NAll	Positives	
–  “What	fraction	of	my	predictions	are	true?	

•  In	general,	increasing	one	decreases	the	other	
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Graphic	View	of	Specificity	and	Sensitivity	
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Correlation Coefficient 



Specificity/Sensitivity	Tradeoffs	

•  Ideal	Distribution	of	
Scores	

•  More	Realistically…	
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Model	architecture	of	TMHMM	

TMHMM: uses cyclic model with 7 states for  
- TM helix core 
- TM helix caps on the N- and  C-terminal side 
- non-membrane region on the cytoplasmic side 
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops  
to account for different membrane insertion mechanism) 
- a globular domain state in the middle of each non-membrane region 
 672 



>gi|218694017|ref|YP_002401684.1| membrane protein; channel [Escherichia 
coli 55989] 
MQDLISQVEDLAGIEIDHTTSMVMIFGIIFLTAVVVHIILHWVVLRTFEKRAIASS
RLWLQIITQNKLFH 
RLAFTLQGIIVNIQAVFWLQKGTEAADILTTCAQLWIMMYALLSVFSLLDVILNL
AQKFPAASQLPLKGI 
FQGIKLIGAILVGILMISLLIGQSPAILISGLGAMAAVLMLVFKDPILGLVAGIQLS
ANDMLKLGDWLEM 
PKYGADGAVIDIGLTTVKVRNWDNTITTIPTWSLVSDSFKNWSGMSASGGRR
IKRSISIDVTSIRFLDED 
EMQRLNKAHLLKPYLTSRHQEINEWNRQQGSTESILNLRRMTNIGTFRAYLN
EYLRNHPRIRKDMTLMVR 
QLAPGDNGLPLEIYAFTNTVVWLEYESIQADIFDHIFAIVEEFGLRLHQSPTGN
DIRSLAGAFKQ 

Example for TMHMM 
www.cbs.dtu.dk/services/TMHMM/ 



TMHMM-Output	
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http://www.cbs.dtu.dk/services/TMHMM-2.0/ 



Adleman's	first	DNA	computation	solved	a	traveling	salesman	problem	of	seven	cities.			He	
used	DNA	techniques	to	assemble	itineraries	at	random;	Select	itineraries	from	initial	city	to	
final	city.	The	correct	number	of	cities	must	be	visited.	No	city	can	be	left	out.	

Each	city	is	represented	by	a	unique	sequence	of	bases.		Connections	between	two	cities	are	
created	from	a	combination	of	the	complement	of	the	first	half	of	the	sequence	of	one	city,	
and	the	complement	of	the	second	half	of	the	sequence	of	a	connected	city.	In	this	way	
DNA	representing	the	trip	will	be	created	with	one	strand	representing	a	sequence	of	cities	
and	the	complementing	strand	representing	a	series	of	connections.		
	
The	next	step	is	filtering	out	trips	that	start	and	end	in	the	correct	cities,	then	filtering	trips	
with	the	correct	number	of	cities,	and	finally	filtering	out	trips	that	contain	each	city	only	
once.	Pros:	1	gram	of	DNA	can	hold	about	1x1014	MB	of	data.	A	test	tube	of	DNA	can	
contain	trillions	of	strands.	Each	operation	on	a	test	tube	of	DNA	is	carried	out	on	all	strands	
in	the	tube	in	parallel;	Adleman	figured	his	computer	was	running	2	x	1019	operations	per	
joule.	Adleman’s	process	to	solve	the	traveling	salesman	problem	for	200	cities	would	
require	an	amount	of	DNA	that	weighed	more	than	the	Earth.	
	
	

675 

Adleman, L. M. (1994). “Molecular computation of solutions to 
combinatorial problems”. Science 266 (5187): 1021-1024. doi:10.1126/
science.7973651. 

DNA for computing: 



DNA for computing:  
Represent Each City By A DNA Strand of 20 Bases City1   ATGCTCAGCTACTATAGCGA

City2    TGCGATGTACTAGCATATAT

City3    GCATATGGTACACTGTACAA

City4    TTATTAGCGTGCGGCCTATG

City5    CCGCGATAGTCTAGATTTCC

Etc.

City 1->2 TGATATCGCTACGCTACATG

City 2->3 ATCGTATATACGTATACCAT

City 3->4 GTGACATGTTAATAATCGCA

City 4->5 CGCCGGATACGGCGCTATCA

City 5->6 GATCTAAAGGTATGCATACG

Etc.

Represent Each Air Route By Mixed Complementary Strands 

L. Adelman, Scientific American, pp. 54-61 (Aug 
1998); 
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 figures from Martyn Amos 

routes 

cities 

selection for length and initial/end points  

DNA for computing  



‘travelling	salesman’	problem	
	

The	challenge	is	finding	a	route	between	various	cities,	passing	
through	each	only	once.		
Adleman	first	generated	all	the	possible	itineraries	and	then	
selected	the	correct	itinerary.		
	Since	the	enzymes	(enzymes	are	proteins	catalyzing	a	reaction)	
work	on	many	DNA	molecules	at	once,	the	selection	process	is	
massively	parallel.	Specifically,	the	method	based	on	Adleman’s	
experiment	would	be	as	follows:	
•  Generate	all	possible	routes.	
•  Select	itineraries	that	start	with	the	proper	city	and	end	with	

the	final	city.	
•  Select	itineraries	with	the	correct	number	of	cities.	
•  Select	itineraries	that	contain	each	city	only	once.	
•  All	of	the	above	steps	can	be	accomplished	with	standard	

molecular	biology	techniques.	
678 
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Discover magazine  
published an article in  
comic strip format  
about Leonard  
Adleman's  DNA computation.  



Sort	the	DNA	by	length	and	select	the	DNA	
whose	length	corresponds	to	7	cities	

		
A	test	tube	is	now	filled	with	DNA	encoded	itineraries	
that	start	with	LA	and	end	with	NY,	where	the	number	
of	cities	in	between	LA	and	NY	varies.		
We	now	want	to	select	those	itineraries	that	are	seven	
cities	long.	To	accomplish	this	we	can	use	a	technique	
called	Gel	Electrophoresis,	which	is	a	common	
procedure	used	to	resolve	the	size	of	DNA.	The	basic	
principle	behind	Gel	Electrophoresis	is	to	force	DNA	
through	a	gel	matrix	by	using	an	electric	field.		
DNA	is	a	negatively	charged	molecule	under	most	
conditions,	so	if	placed	in	an	electric	field	it	will	be	
attracted	to	the	positive	potential.		
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 The gel is made up of a polymer 
that forms a meshwork of linked 
strands. The DNA now is forced to 
thread its way through the tiny 
spaces between these strands, 
which slows down the DNA at 
different rates depending on its 
length. 
 
What we typically end up with after 
running a gel is a series of DNA 
bands, with each band 
corresponding to a certain length. 
 
We can then simply cut out the 
band of interest to isolate DNA of a 
specific length. Since we know that 
each city is encoded with a certain 
number of base pairs of DNA, 
knowing the length of the itinerary 
gives us the number of cities. 
 



Technique	for	Generating	Routes	Strategy:	
Encode	city	names	in	short	DNA	sequences.	Encode	itineraries	by	connecting	the	city	
sequences	for	which	routes	exist.	
Synthesizing	short	single	stranded	DNA	is	now	a	routine	process,	so	encoding	the	city	
strings	is	straightforward.	Itineraries	can	then	be	produced	from	the	city	encodings	by	
linking	them	together	in	proper	order.		
To	accomplish	this	you	can	take	advantage	of	the	fact	that	DNA	hybridizes	(=binds)		with	its	
complimentary	sequence	(complementary	strands	of	DNA	bind	each	other).		
For	example,	you	can	encode	the	routes	between	cities	by	encoding	the	compliment	of	the	
second	half	(last	n	letters)	of	the	departure	city	and	the	first	half	(first	n	letters)	of	the	
arrival	city.		
For	example	the	route	between	Miami	(CTACGG)	and	NY	(ATGCCG)	can	be	made	by	taking	
the	second	half	of	the	coding	for	Miami	(CGG)	and	the	first	half	of	the	coding	for	NY	(ATG).	
This	gives	CGGATG.	
By	taking	the	complement	of	this	you	get,	GCCTAC,	which	not	only	uniquely	represents	the	
route	from	Miami	to	NY,	but	will	connect	the	DNA	representing	Miami	and	NY	by	
hybridizing	itself	to	the	second	half	of	the	code	representing	Miami	(...CGG)	and	the	first	
half	of	the	code	representing	NY	(ATG…).		
Random	itineraries	can	be	made	by	mixing	city	encodings	with	the	route	encodings.	Finally,	
the	DNA	strands	can	be	connected	together	by	an	enzyme	called	ligase	(ligases	are	
enzymes,	i.e.	proteins	connecting	strings).	What	we	are	left	with	are	strands	of	DNA	
representing	itineraries	with	a	random	number	of	cities	and	random	set	of	routes.		
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Strategy:	Selectively	copy	and	amplify	only	the	section	of	the	DNA	that	starts	with	LA	and	ends	
with	NY	by	using	the	Polymerase	Chain	Reaction	(PCR).	See	next	slide.	

After	generating	the	routes,	we	now	have	a	test	tube	full	of	various	lengths	of	DNA	that	encode	
possible	routes	between	cities.		
What	we	want	are	routes	that	start	with	LA	and	end	with	NY.		To	accomplish	this	we	can	use	a	
technique	called	Polymerase	Chain	Reaction	(PCR),	which	allows	you	to	produce	many	copies	of	
a	specific	sequence	of	DNA.		
After	many	iterations	of	PCR,	the	DNA	you're	working	on	is	amplified	exponentially.		
	
So	to	selectively	amplify	the	itineraries	that	start	and	stop	with	our	cities	of	interest,	we	use	
primers	that	are	complimentary	to	LA	and	NY.		
	
What	we	end	up	with	after	PCR	is	a	test	tube	full	of	double	stranded	DNA	of	various	lengths,	
encoding	itineraries	that	start	with	LA	and	end	with	NY.	
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	Itineraries	Selection:		
Start	and	End	with	Correct	Cities	
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from wikipedia 

PCR is an iterative process that cycle through a series of copying events using an enzyme 
called polymerase. Polymerase will copy a section of single stranded DNA starting at the 
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA 
that you're interested in.  
By selecting primers that flank the section of DNA you want to amplify, the polymerase 
preferentially amplifies the DNA between these primers, doubling the amount of DNA containing 
this sequence.  



	

DNA	containing	a	specific	sequence	can	be	purified	from	a	sample	of	mixed	DNA	by	a	technique	called	
affinity	purification,	as	shown	below.	This	is	accomplished	by	attaching	the	compliment	of	the	sequence	
in	question	to	a	substrate	like	a	magnetic	bead.	The	beads	are	then	mixed	with	the	DNA.	DNA,	which	
contains	the	sequence	you're	after	then	hybridizes	with	the	complement	sequence	on	the	beads.	These	
beads	can	then	be	retrieved	and	the	DNA	isolated.	
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Itineraries	Selection:	Have	a	Complete	Set	of	Cities	

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a 
different  city complement for each run.  We are left with itineraries that start in LA, visit each 
city once, and end in NY. 



•  Adleman's	experiment	solved	a	seven	city	problem,	
but	there	are	two	major	shortcomings	preventing	a	
large	scaling	up	of	his	computation.		

•  The	complexity	of	the	traveling	salesman	problem	
simply	doesn’t	disappear	when	applying	a	different	
method	of	solution	-	it	still	increases	exponentially.		

•  For	Adleman’s	method,	what	scales	exponentially	is	
not	the	computing	time,	but	rather	the	amount	of	
DNA.	Unfortunately	this	places	some	hard	restrictions	
on	the	number	of	cities	that	can	be	solved;	after	the	
Adleman	article	was	published,	more	than	a	few	
people	have	pointed	out	that	using	his	method	to	
solve	a	200	city	problem	would	take	an	amount	of	
DNA	that	weighed	more	than	the	earth.		
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Adleman’s	pros	&	cons	

Pros:	1	gram	of	DNA	can	hold	about	1x1014	MB	of	data.	A	
test	tube	of	DNA	can	contain	trillions	of	strands.		
5	grams	of	DNA	contain	10	21	bases	(Zetta	Bytes)	
Each	operation	on	a	test	tube	of	DNA	is	carried	out	on	all	
strands	in	the	tube	in	parallel;	Adleman	figured	his	
computer	was	running	2	x	1019	operations	per	joule.		
Adleman’s	process	to	solve	the	traveling	salesman	
problem	for	200	cities	would	require	an	amount	of	DNA	
that	weighed	more	than	the	Earth.	
Speed:	500-5000	base	pairs	a	second.		
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Design	of	random	access	primers	and	coding	algorithm.	(a,	i)	
They	designed	a	primer	library.	The	primer	sequence	set	is	
then	filtered	that	has	low	similarity	between	the	sequences.	(a,	
ii)	The	resulting	set	of	candidate	primers	is	then	validated	
experimentally	by	synthesizing	a	pool	of	about	100,000	strands	
containing	sets	of	size	1	to	200	DNA	sequences	each,	
surrounded	by	one	of	the	candidate	primer	pairs,	and	then	
randomly	selecting	48	of	those	pairs	for	amplification.	The	
product	is	sequenced,	and	sequences	with	each	of	the	48	
primer	pairs	appear	among	sequencing	reads,	albeit	at	
different	relative	proportions	when	normalized	to	the	number	
of	sequences	in	each	set.		 688 
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  The principle of DNA information storage in Organick  et al.  
(a) Two files are stored by encoding each file in a set of different DNA sequences.  
Redundant information is added to enable error recovery at retrieval, and a distinct primer is 
appended to each set of sequences corresponding to a file.  
The resulting strings are synthesized and stored as a pool of different DNA molecules.  
 
(b) A specific  file is retrieved by amplifying the molecules corresponding to the file by ePCR, 
sequencing the PCR  products, and algorithmically reconstructing the data from the reads. 

1 



Organick	et	al.		stored	and	retrieved	more	than	200	megabytes	of	
data.	
Specifically,		they		attach		distinct		primers		to		each	set	of	DNA	
molecules	carrying	information	about	a	file.	This	allows	them	to	
retrieve	a	given	file	by	selectively	amplifying	and	sequencing	only	
the	molecules	with	the	primer	marking		the	desired	file.		
To	test	their	scheme,	they	designed		a	primer	library	that	allowed	
them	to	uniquely		tag	data	stored	in	DNA.	They	encoded		35	digital	
files	into	13,448,372	DNA	sequences,	each	150-nucleotides	long.	
Redundant	information	using	error	detection	codes	is	also	included	
to		increase		robustness		to		missing		sequences		and	errors.		
	
To		improve		recovery		of		the		information,	Organick	et		al.		
develop		a		clustering		and	consensus		algorithm		that		aligns		and		
filters	reads	before	error	correction.		
	
This		algorithm		also		takes	into	account	reads	that	differ	from	the	
correct		length.			 693 



This	work	describes	large-scale	random	access,	low	redundancy,	and	robust	
encoding	and	decoding	of	information	stored	in	DNA,	as	well	as	a	notable	increase	
in	the	volume	of	data	stored	(200	MB,	the	largest	synthetic	DNA	pool	available	to	
date).Overview	of	the	DNA	data	storage	workflow	and	stored	data.		
(a)  The	encoding	process	maps	digital	files	into	a	large	set	of	150-nucleotide	DNA	

sequences,	including	Reed–Solomon	code	redundancy	to	overcome	errors	in	
synthesis	and	sequencing.	The	resulting	collection	of	sequences	is	
synthesized.	The	random	access	process	starts	with	amplifying	a	subset	of	the	
sequences	corresponding	to	one	of	the	files	using	PCR.	The	amplified	pools	
are	sequenced.	Finally,	sequencing	reads	are	decoded	using	clustering,	
consensus	and	error	correction	algorithms.	
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Example	files	encoded	within	the	200	MB	of	data.	
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a	comparison	to	
research	
achievements	shows	
that	our	coding	
scheme	has	similar	
logical	redundancy,	
but	requires	lower	
sequencing	coverage	
to	recover	files	



The	encoding	process	starts	by	randomizing	data	to	reduce	chances	of	secondary	structures,	primer–payload	non-specific	
binding,	and	improved	properties	during	decoding.	It	then	breaks	the	data	into	fixed-size	payloads,	adds	addressing	information	
(Addr),	and	applies	outer	coding,	which	adds	redundant	sequences	using	a	Reed–Solomon	code	to	increase	robustness	to	
missing	sequences	and	errors.	The	level	of	redundancy	is	determined	by	expected	errors	in	sequencing	and	synthesis,	as	well	as	
DNA	degradation.	Next,	it	applies	inner	coding,	which	ultimately	converts	the	bits	to	DNA	sequences.	The	resulting	set	of	
sequences	is	surrounded	by	a	primer	pair	chosen	from	the	library	based	on	(low)	level	of	overlap	with	payloads.	
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The	decoding	process	starts	by	clustering	reads	based	on	similarity,	and	
finding	a	consensus	between	the	sequences	in	each	cluster	to	reconstruct	the	
original	sequences,	which	are	then	decoded	back	to	digital	data.	



The	data	longevity		and	information	density	of	current	DNA	data	storage	
systems	already	surpass	those	of	traditional	storage	systems,	but	the	cost	
and	the	read	and	write	speeds	do	not.		
	
Storing	one	megabyte		of	data	in	DNA	with	existing	technology	costs	
hundreds	of	dollars,	compared	with	less		than	$0.0001	per	year	using	tape,	
the	standard	for		archival		data		storage.			
The		price		of		DNA	storage		will		undoubtedly		drop		substantially	as		the		
costs		of		DNA		synthesis		and		sequencing		fall.			
	
The		more		pressing		challenge		is		that	DNA		synthesis		and		sequencing		are		
inherently	slow.		
	
DNA	synthesis	and	sequencing	DNA	can	be	extensively	parallelized,	their	
slow	speeds	limit	the	amount	of	data	that	can	be		written		and		read		in		a		
given		time		interval.	The		bottleneck		for		both		cost		and		speed		is	synthesis.	
	
A	fully		automated	DNA	drive	would	include	synthesis	and	sequencing	
technology,	components	to		store	and	handle	the	DNA,	as	well	as	a	supply	of	
chemicals.		
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Exam	questions	



1.  Give the alignment matrix of the sequences `AATCGCGCGGT' and 
`ATGCGCCGT' assuming the following costs: Cost(a,a)=0; Cost(a,b)=3 
when a ≠ b, Cost(a,-)=Cost(-,a)=2.  

2.  How would you set the function Cost in order to compute the longest 
subsequence common to x and y?  

3.  Describe the differences between the algorithms for global and local 
alignments  

4.   Which of the following reasons would lead you to use the Smith-Waterman 
local alignment algorithm instead of the Needleman-Wunsch global 
alignment algorithm? 

Select all appropriate answers. 
(a) Computer memory is too limited to compute the optimal global alignment. 
(b) One wants to identify common protein domains in the two sequences. 
(c) The sequences have very different lengths. 
(d) Smith-Waterman is faster than Needleman-Wunsch on long sequences. 
5.  Describe the notion of a parsimonious phylogeny for a finite set of 

sequences and the hypothesis assumed on them 

Exam	questions	








