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1 Learning

1. �e purpose of this exercise is to gain some insight into the way in which the parameters of
a basic, linear perceptron a�ect the position and orientation of its decision boundary. Recall
that a linear perceptron is based on the function

f(x) = wTx+ b

where x ∈ Rn, w ∈ Rn and b ∈ R. �e perceptron decides that a new input x is in class 1 if
f(x) ≥ 0 and decides that the input is in class 2 otherwise. �e decision boundary is therefore
the collection of all points where f(x) = 0.
It’s always easy to �nd n distinct points where f(x) = 0 because for any w and b we just
need to solve

wTx′ = −b

which is easy using

xT = ( (−b/w1) 0 · · · 0 )

xT = ( 0 (−b/w2) · · · 0 )

and so on. If any of the weights is 0 this is problematic but easy to �x. (I leave it as a warm-up
exercise to work out how.) Let x′ and x′′ be two points where f(x′) = 0 and f(x′′) = 0. Let’s
concentrate on the case where n = 2. Consider the vector

y = x′ − x′′.

Now take any number a ∈ R and look at what happens if we evaluate

f(x′ + ay).

We obtain

f(x′ + ay) = wT (x′ + ay) + b

= wTx′ + awTy + b

= f(x′) + awT (x′ − x′′)

= a(wTx′ −wTx′′)

= a(−b− (−b))
= 0.

�is works for any value a ∈ R, and suggests that the decision boundary is a straight line in
R2 as illustrated in �gure 1. (Note however that we haven’t yet demonstrated that f(x) 6= 0
if x is not of the form x = x′ + ay.)
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Figure 1: �e decision boundary appears to be a straight line.

(a) Prove that the weight vectorw is perpendicular to the line described by x′ + ay; that is,
the line corresponding to the set

{x|x = x′ + ay where a ∈ R}.

(Hint: remember that vectors are perpendicular if their inner product is 0.) Note that this
tells us that w describes the orientation of the decision boundary.

(b) Let v be the vector from the origin to the line described by x′+ay and perpendicular to
it as illustrated in �gure 1. Prove that

||v|| = |b|
||w||

.

Note that this tells us the following: if ||w|| = 1 then |b| tells us the distance from the
origin to the decision boundary.

(c) Let x be any point not on the line described by x′+ ay. Let z be the vector from the line
to x and perpendicular to the line as illustrated in �gure 1. Prove that

||z|| = |f(x)|
||w||

.

�is tells us that points not on the line do not obey f(x) = 0 and that the value of f(x)
tells us the distance from the decision boundary to x.

(d) Prove that replacingwwithw/||w|| and bwith b/||w|| does not alter the decision bound-
ary.

2. In the application of neural networks to pa�ern classi�cation—where we wish to assign any
input vectorx tomembership in a speci�c class—itmakes sense to a�empt to interpret network
outputs as probabilities of class membership.
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For example, in the medical diagnosis scenario presented in the lectures, where we try to map
an input x to either class A (patient has the disease) or class B (patient is free of the disease)
it makes sense to use a network with a single output producing values constrained between 0
and 1 such that the output h(w;x) of a network using weights w is interpreted as

h(w;x) = Pr(x is in class A).

Clearly we also have
Pr(x is in class B) = 1− h(w;x)

and it follows that training examples should be labelled 1 and 0 for classes A and B respec-
tively.
Say we have a speci�c training example (x′, 0). What does it tell us about how to choose a
good w? Clearly we might want to choose w to maximise1

Pr(We see the example (x′, 0)|w) = Pr(We see the label 0|w,x′)× Pr(x′)

=
{
1− h(w;x′)

}
× Pr(x′)

where the second step incorporates the assumption that x′ andw are independent. �is quan-
tity is called the likelihood of w. Given an entire training sequence

s = ((x1, c1), (x2, c2), . . . , (xm, cm))

where the labels ci take values 0 or 1 we can also consider choosingw to maximise the prob-
ability that the entire collection of m input vectors is labelled in the speci�ed manner (the
likelihood Pr(s|w) of w).
Assuming that the examples in s are independent, show that in order to achieve this we should
choose w to maximise the expression

m∑
i=1

ci log h(w;xi) + (1− ci) log(1− h(w;xi)).

(Hint: When independence is assumed, Pr(A,B) = Pr(A) Pr(B), and you can maximise an
expression equally well by maximising its log.) What does this allow you to conclude about
the version of the backpropagation algorithm presented in the lectures?

3. We now return to the case of regression. As in the previous question, the likelihood of a
hypothesis h can be thought of as the probability of obtaining a training sequence s given
that h is a perfect mapping from a�ribute vectors to classi�cations. Assume that H contains
functions h : X → R and examples are labelled using a speci�c target function f ∈ H but
corrupted by noise, so

s = ((x1, o1), (x2, o2), . . . , (xm, om))

and
oi = f(xi) + ei

1�e basic result in probability theory being used here is that Pr(A,B|C) = Pr(A|B,C) Pr(B|C). You might want
at this point to review the relevant notes.
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for i = 1, 2, . . . ,m where ei denotes noise. If the a�ribute vectors are �xed, and the ei are
independent and identically distributed with the Gaussian distribution

p(ei) =
1√
2πσ2

exp

(
−(ei − µ)2

2σ2

)
where µ is the noise mean and σ2 the noise variance, then the likelihood of any hypothesis is

p(s|h) = p((o1, o2, . . . , om)|h) =
m∏
i=1

p(oi|h)

where the last step follows because the ei are independent. Assume in the following that
µ = 0.

(a) Show that the mean of oi is f(xi) and the variance of oi is σ2.
(b) Show that

p(oi|h) =
1√
2πσ2

exp

(
−(oi − h(xi))

2

2σ2

)
.

(Hint: what happens to data having a Gaussian density if you linearly transform it?)
(c) Show that any hypothesis that maximises the likelihood is also one that minimises the

quantity
m∑
i=1

(oi − h(xi))
2.

(d) What does this tell you about the speci�c example of the backpropagation algorithm
given in the lectures?

4. �e demonstration of the backpropagation algorithm given in the lectures can be improved.
In solving the parity problem what we really want to know is the probability that an example
should be placed in class one, exactly as described above. Probabilities lie in the interval [0, 1],
but the output of the network used in the lectures is unbounded.

• Derive the modi�cation required to the algorithm if the activation function on the output
node is changed from g(x) = x to g(x) = 1/(1+exp(−x)). (�is is a function commonly
used to produce probabilities as outputs, as it has range lying between 0 and 1.)

• Implement the modi�ed algorithm. (Matlab is probably a good language to use.) Apply
it to the parity data described in the lectures, and plot the results you obtain.
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