
Arti�cial Intelligence

Games (adversarial search)

Reading: AIMA chapter 5.
1

Solving problems by search: playing games

How might an agent act when the outcomes of its actions are not known because
an adversary is trying to hinder it?

• �is is essentially a more realistic kind of search problem because we do not
know the exact outcome of an action.

• �is is a common situation when playing games: in chess, draughts, and so
on an opponent responds to our moves.

Game playing has been of interest in AI because it provides an idealisation of a
world in which two agents act to reduce each other’s well-being.

We now look at:

• How game-playing can be modelled as search.
• �e minimax algorithm for game-playing.
• Some problems inherent in the use of minimax.
• �e concept of α− β pruning.

2

Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be an excellent
source of hard problems. For instance with chess:

• �e average branching factor is roughly 35.
• Games can reach 50 moves per player.
• So a rough calculation gives the search tree 35100 nodes.
• Even if only di�erent, legal positions are considered it’s about 1040.

So: in addition to the uncertainty due to the opponent:

• We can’t make a complete search to �nd the best move…
• … so we have to act even though we’re not sure about the best thing to do.

And chess isn’t even very hard: Go is much harder…

Note: yes, more advanced learning-based methods have conquered chess and Go, but that’s an entirely di�erent approach with its own pros and cons.

3

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are called Max and Min for reasons
that will become clear.

• We’ll use noughts and crosses as an initial example.
• Max moves �rst.
• �e players alternate until the game ends.
• At the end of the game, prizes are awarded. (Or punishments administered—

EVIL ROBOT is starting up his favourite chainsaw…)

�is is exactly the same game format as chess, Go, draughts and so on.

4

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

• �ere is an initial state.

Max to move

• �ere is a set of operators. Here, Max can place a cross in any empty square,
or Min a nought.

• �ere is a terminal test. Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

• �ere is a utility or payo� function. �is tells us, numerically, what the out-
come of the game is.

�is is enough to model the entire game.

5

Perfect decisions in a two-person game

We can construct a tree to represent a game.

From the initial state Max can make nine possible moves:

. . .

�en it’s Min’s turn…

6

Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

. . .

. . .

And so on…

�is can be continued to represent all possibilities for the game.

7

Perfect decisions in a two-person game

. . .

. . .

+1
0

−1

At the leaves a player has won or there are no spaces. Leaves are labelled using
the utility function.

8

Perfect decisions in a two-person game

How can Max use this tree to decide on a �rst move?

Consider a much simpler tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

Labels on the leaves denote utility.
High values are preferred by Max.
Low values are preferred by Min.

If Max is rational he will play to reach a position with the biggest utility possible

But if Min is rational she will play to minimise the utility available to Max.

9

�e minimax algorithm

�ere are two moves: Max then Min. Game theorists would call this one move,
or two ply deep.

�e minimax algorithm allows us to infer the best move that the current player
can make, given the utility function, by working backward from the leaves.

4 5 20 20 15 7 4 10 9 5 8 52

2

6

6

1

1

4

4

As Min plays the last move, she minimises the utility available to Max.

10

�e minimax algorithm

Moving one further step up the tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6

6

We can see that Max’s best opening move is move 2, as this leads to the node
with highest utility.

11

�e minimax algorithm

In general:

• Generate the complete tree and label the leaves according to the utility func-
tion.

• Working from the leaves of the tree upward, label the nodes depending on
whether Max or Min is to move.

• If Min is to move label the current node with the minimum utility of any
descendant.

• If Max is to move label the current node with the maximum utility of any
descendant.

If the game is p ply and at each point there are q available moves then this process
has (surprise, surprise) O(qp) time complexity and space complexity linear in p
and q.

12

Making imperfect decisions

We need to avoid searching all the way to the end of the tree.

So:

• We generate only part of the tree: instead of testing whether a node is a leaf
we introduce a cut-o� test telling us when to stop.

• Instead of a utility function we introduce an evaluation function for the eval-
uation of positions for an incomplete game.

�e evaluation function a�empts to measure the expected utility of the current
game position.

13

Making imperfect decisions

How can this be justi�ed?

• �is is a strategy that humans clearly sometimes make use of.
• For example, when using the concept of material value in chess.
• �e e�ectiveness of the evaluation function is critical…
• … but it must be computable in a reasonable time.
• (In principle it could just be done using minimax.)

�e importance of the evaluation function can not be understated—it is probably
the most important part of the design.

14

�e evaluation function

Designing a good evaluation function can be extremely tricky:

• Let’s say we want to design one for chess by giving each piece its material
value: pawn = 1, knight/bishop = 3, rook = 5 and so on.

• De�ne the evaluation of a position to be the di�erence between the material
value of black’s and white’s pieces

eval(position) =
∑

black’s pieces pi

value of pi −
∑

white’s pieces qi

value of qi

�is seems like a reasonable �rst a�empt. Why might it go wrong?

• Until the �rst capture the evaluation function gives 0, so in fact we have
a category containing many di�erent game positions with equal estimated
utility.

• For example, all positions where white is one pawn ahead.

So in fact this seems highly naı̈ve …

15

�e evaluation function

We can try to learn an evaluation function.

• For example, using material value, construct aweighted linear evaluation func-
tion

eval(position) =
n∑

i=1

wifi

where the wi are weights and the fi represent features of the position—in this
case, the value of the ith piece.

• Weights can be chosen by allowing the game to play itself and using learning
techniques to adjust the weights to improve performance.

However in general

• Here we probably want to give di�erent evaluations to individual positions.
• �e design of an evaluation function can be highly problem dependent and

might require signi�cant human input and creativity.

16

α− β pruning

Even with a good evaluation function and cut-o� test, the time complexity of the
minimax algorithm makes it impossible to write a good chess program without
some further improvement.

• Assuming we have 150 seconds to make each move, for chess we would be
limited to a search of about 3 to 4 ply whereas…

• …even an average human player can manage 6 to 8.

Luckily, it is possible to prune the search tree without a�ecting the outcome and
without having to examine all of it.

17

α− β pruning

Returning for a moment to the earlier, simpli�ed example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

�e search is depth-�rst and le� to right.

18

α− β pruning

�e search continues as previously for the �rst 8 leaves.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

�en we note: if Max plays move 3 then Min can reach a leaf with utility at most
1.

So: we don’t need to search any further under Max’s opening move 3. �is is be-
cause the search has already established that Max can do be�er by making open-
ing move 2.

19

α− β pruning in general

Remember that this search is depth-�rst. We’re only going to use knowledge of
nodes on the current path.

While searching under this node
we �nd that the opponent can force
a score of n.

If n < m we can stop. �ere is a
be�er choice earlier in the game.

If n < m′ we can stop. �e player
maximises and will never move here.

of m′.
the opponent can force a score
Searching here establishes that

�e value of α is updated as
the search progresses.

α = m tells us that the
value of this node is ≥ m.

m′

= Player

= Opponent
value ≥ m

value ≥ m′

So: once you’ve established that n is su�ciently small, you don’t need to explore
any more of the corresponding node’s children.

20

α− β pruning in general

�e situation is exactly analogous if we swap player and opponent in the previous
diagram.

�e search is depth-�rst, so we’re only ever looking at one path through the tree.

We need to keep track of the values α and β where

α = the highest utility seen so far on the path for Max

β = the lowest utility seen so far on the path for Min

Assume Max begins. Initial values for α and β are

α = −∞
and

β = +∞.

21

α− β pruning in general

So: we start with the function call

player(−∞,+∞, root)
�e following function implements the procedure suggested by the previous di-
agram:

1 function player(α, β, n)
2 if cutoff(n) then
3 return eval(n);
4 value = −∞;
5 for each successor n′ of n do
6 value = max(value, opponent(α, β, n′));
7 if value > β then
8 return value;
9 if value > α then
10 α = value;

11 return value;

22

α− β pruning in general

�e function opponent is exactly analogous:

1 function opponent(α, β, n)
2 if cutoff(n) then
3 return eval(n);
4 value =∞;
5 for each successor n′ of n do
6 value = min(value, player(α, β, n′));
7 if value < α then
8 return value;
9 if value < β then
10 β = value;

11 return value;

Note: the semantics here is that parameters are passed to functions by value.

23

α− β pruning in general

Applying this to the earlier example and keeping track of the values for α and β
you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞

Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

Return 1

24

How e�ective is α− β pruning?

(Warning: the theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the order in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves �rst:

• If you were to have a perfect move-ordering technique then α − β pruning
would be O(qp/2) as opposed to O(qp).

• Consequently the branching factor would e�ectively be √q instead of q.
• We would therefore expect to be able to search ahead twice as many moves as
before.

However, this is not realistic: if you had such an ordering technique you’d be
able to play perfect games!

25

How e�ective is α− β pruning?

If moves are arranged at random then α− β pruning is:

• O((q/ log q)p) asymptotically when q > 1000 or…
• …about O(q3p/4) for reasonable values of q.

In practice simple ordering techniques can get close to the best case. For example,
if we try captures, then threats, then moves forward etc.

Alternatively, we can implement an iterative deepening approach and use the
order obtained at one iteration to drive the next.

26

A further optimisation: the transposition table

Finally, note that many games correspond to graphs rather than trees because the
same state can be arrived at in di�erent ways.

• �is is essentially the same e�ect we saw in heuristic search: recall graph
search versus tree search.

• It can be addressed in a similar way: store a state with its evaluation in a hash
table—generally called a transposition table—the �rst time it is seen.

�e transposition table is essentially equivalent to the closed list introduced as
part of graph search.

�is can vastly increase the e�ectiveness of the search process, because we don’t
have to evaluate a single state multiple times.

27

Arti�cial Intelligence

Constraint satisfaction problems (CSPs)

Reading: AIMA chapter 6.
28

Constraint satisfaction problems (CSPs)

�e search scenarios examined so far seem in some ways unsatisfactory.

• States were represented using an arbitrary and problem-speci�c data struc-
ture.

• Heuristics were also problem-speci�c.
• It would be nice to be able to transform general search problems into a stan-
dard format.

CSPs standardise the manner in which states and goal tests are represented. By
standardising like this we bene�t in several ways:

• We can devise general purpose algorithms and heuristics.
• We can look at general methods for exploring the structure of the problem.
• Consequently it is possible to introduce techniques for decomposing prob-

lems.
• We can try to understand the relationship between the structure of a problem

and the di�culty of solving it.

29

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it from this
new perspective.

Aims:

• To introduce the idea of a constraint satisfaction problem (CSP) as a general
means of representing and solving problems by search.

• To look at a backtracking algorithm for solving CSPs.
• To look at some general heuristics for solving CSPs.
• To look at more intelligent ways of backtracking.

Another method of interest in AI that allows us to do similar things involves
transforming to a propositional satis�ability problem.

We’ll see an example of this—and of the application of CSPs—when we discuss
planning.

30

Constraint satisfaction problems

We have:

• A set of n variables V1, V2, . . . , Vn.
• For each Vi a domain Di specifying the values that Vi can take.
• A set of m constraints C1, C2, . . . , Cm.

Each constraintCi involves a set of variables and speci�es an allowable collection
of values.

• A state is an assignment of speci�c values to some or all of the variables.
• An assignment is consistent if it violates no constraints.
• An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.

31

Example

We will use the problem of colouring the nodes of a graph as a running example.

1

2

8

6
5

3
4

7 7

5
6

4
3

1

2

8

Each node corresponds to a variable. We have three colours and directly con-
nected nodes should have di�erent colours.

32

Example

�is translates easily to a CSP formulation:

• �e variables are the nodes
Vi = node i

• �e domain for each variable contains the values black, red and cyan

Di = {B,R,C}

• �e constraints enforce the idea that directly connected nodes must have dif-
ferent colours. For example, for variables V1 and V2 the constraints specify

(B,R), (B,C), (R,B), (R,C), (C,B), (C,R)

• Variable V8 is unconstrained.

33

Di�erent kinds of CSP

�is is an example of the simplest kind of CSP: it is discrete with �nite domains.
We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints between pairs
of variables.

• Constraints on single variables—unary constraints—can be handled by adjust-
ing the variable’s domain. For example, if we don’t want Vi to be red, then
we just remove that possibility from Di.

• Higher-order constraints applying to three or more variables can certainly be
considered, but…

• …when dealing with �nite domains they can always be converted to sets of
binary constraints by introducing extra auxiliary variables.

How does that work?

34

Auxiliary variables

Example: three variables each with domain {B,R,C}.
A single constraint

(C,C,C), (R,B,B), (B,R,B), (B,B,R)

V1 V1V2

V3

�e original constraint connects all
three variables.

V2

V3

A = 3

New, binary constraints:

(A = 1, V1 = C), (A = 1, V2 = C), (A = 1, V3 = C)
(A = 2, V1 = R), (A = 2, V2 = B), (A = 2, V3 = B)
(A = 3, V1 = B), (A = 3, V2 = R), (A = 3, V3 = B)
(A = 4, V1 = B), (A = 4, V2 = B), (A = 4, V3 = R)

Introducing auxiliary variableAwith domain {1, 2, 3, 4} allows us to convert this
to a set of binary constraints.

35

Backtracking search

Backtracking search now takes on a very simple form: search depth-�rst, assign-
ing a single variable at a time, and backtrack if no valid assignment is available.

Using the graph colouring example, the search now looks something like this…

1=B1=B1=B

2=R 2=R2=R

3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B

2=B 2=R 2=C

…and new possibilities appear.

36

Backtracking search

1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-speci�c heuristics to try to improve searching, we
can now explore heuristics applicable to general CSPs.

37

Backtracking search

Starting with:
backtrack([], problemDescription)

1 function backTrack(assignmentList, problemDescription)
2 if assignmentList is complete then
3 return SOME assignmentList;
4 nextVar = getNextVariable(assignmentList, problemDescription);
5 for each v in orderValues(nextVar, assignmentList, problemDescription) do
6 if v is consistent with assignmentList then
7 add “nextVar = v” to assignmentList;
8 solution = backTrack(assignmentList, problemDescription);
9 if solution is not FAIL then
10 return solution;
11 remove “nextVar = v” from assignmentList;

12 return FAIL;

38

Backtracking search: possible heuristics

�ere are several points we can examine in an a�empt to obtain general CSP-
based heuristics:

• In what order should we try to assign variables?
• In what order should we try to assign possible values to a variable?

Or being a li�le more subtle:

• What e�ect might the values assigned so far have on later a�empted assign-
ments?

• When forced to backtrack, is it possible to avoid the same failure later on?
• Can we try to force the search in a successful direction (remember the use of
heuristics)?

• Can we try to force failures/backtracks to occur quickly?

39

Heuristics I: Choosing the order of variable assignments and values

Say we have 1 = B and 2 = R

1

2

3

4

5

6

8

?

7

At this point there is only one possible assignment
for 3, whereas the others have more �exibility.

Assigning such variables �rst is called the minimum remaining values (MRV)
heuristic.

(Alternatively, the most constrained variable or fail �rst heuristic.)

40

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

�e degree heuristic chooses the variable involved in the most constraints on as
yet unassigned variables.

1

2

3

4

5

6

8

Start with 3, 5 or 7.

7

MRV is usually be�er but the degree heuristic is a good tie breaker.

41

Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removes
the �nal possibility for 3.

�e least constraining value heuristic chooses �rst the value that leaves the max-
imum possible freedom in choosing assignments for the variable’s neighbours.

42

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add 1 = C .

3
4

5
6

8

2 and 3.

7

C is ruled out as an assignment to

2

1

Each time we assign a value to a variable, it makes sense to delete that value from
the collection of possible assignments to its neighbours.

�is is called forward checking. It works nicely in conjunction with MRV.

43

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
2 = B RC = B RC RC BRC BRC BRC BRC
3 = R C = B = R RC BC BRC BC BRC
6 = B C = B = R RC C = B C BRC
5 = C C = B = R R = C = B ! BRC

At the fourth step 7 has no possible assignments le�.

However, we could have detected a problem a li�le earlier…

44

Heuristics II: forward checking and constraint propagation

…by looking at step three.

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
2 = B RC = B RC RC BRC BRC BRC BRC
3 = R C = B = R RC BC BRC BC BRC
6 = B C = B = R RC C = B C BRC
5 = C C = B = R R = C = B ! BRC

• At step three, 5 can be C only and 7 can be C only.
• But 5 and 7 are connected.
• So we can’t progress, but this hasn’t been detected.
• Ideally we want to do constraint propagation.

Trade-o�: time to do the search, against time to explore constraints.

45

Constraint propagation

Arc consistency:

Consider a constraint as being directed. For example 4→ 5.

In general, say we have a constraint i→ j and currently the domain of i is Di

and the domain of j is Dj.

i→ j is consistent if

∀d ∈ Di,∃d′ ∈ Dj such that i→ j is valid

Example:

In step three of the table, D4 = {R,C} and D5 = {C}.

• 5→ 4 in step three of the table is consistent.
• 4→ 5 in step three of the table is not consistent.

4→ 5 can be made consistent by deleting C from D4.

Or in other words, regardless of what you assign to i you’ll be able to �nd some-
thing valid to assign to j.

46

Enforcing arc consistency

We can enforce arc consistency each time a variable i is assigned.

• We need to maintain a collection of arcs to be checked.
• Each time we alter a domain, we may have to include further arcs in the

collection.

�is is because if i→ j is inconsistent resulting in a deletion from Di we may as
a consequence make some arc k → i inconsistent.

Why is this?

47

Enforcing arc consistency

with i = R.

{R} kK → i is no longer consistent

i→ j is now consistent.

i→ j is not consistent so
delete B from the domain
of i.

{R} kK → i is consistent but
kK = R can only be paired
with i = B.

because kK = R can not be paired

{B}{R}{R,B} {B}
ji

...

k1

k2

kK

ji
...

k1

k2

kK

• i→ j inconsistent means removing a value from Di.
• ∃d ∈ Di such that there is no valid d′ ∈ Dj so delete d ∈ Di.

However some d′′ ∈ Dk may only have been pairable with d.

We need to continue until all consequences are taken care of.

48

�e AC-3 algorithm

1 function AC-3(problemDescription)
2 �eue toCheck = [all arcs i→ j];
3 while toCheck is not empty do
4 i→ j = next(toCheck);
5 if removeInconsistencies(Di, Dj) then
6 for each k that is a neighbour of i do
7 add k → i to toCheck;

1 function removeInconsistencies(D1, D2)
2 Bool result = FALSE;
3 for each d ∈ D1 do
4 if no d′ ∈ D2 valid with d then
5 remove d from D1;
6 result = TRUE;

7 return result;

49

Enforcing arc consistency

Complexity:

• A binary CSP with n variables can have O(n2) directional constraints i→ j.
• Any i→ j can be considered at most d times where d = maxk |Dk| because

only d things can be removed from Di.
• Checking any single arc for consistency can be done in O(d2).

So the complexity is O(n2d3).

Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time, which suggests
this doesn’t guarantee to �nd all inconsistencies.

50

A more powerful form of consistency

We can de�ne a stronger notion of consistency as follows:

• Given: any k − 1 variables and any consistent assignment to these.
• �en: We can �nd a consistent assignment to any kth variable.

�is is known as k-consistency.

Strong k-consistency requires the we be k-consistent, k − 1-consistent etc as far
down as 1-consistent.

If we can demonstrate strong n-consistency (where as usual n is the number of
variables) then an assignment can be found in O(nd).

Unfortunately, demonstrating strong n-consistency will be worst-case exponen-
tial.

51

Backjumping

�e basic backtracking algorithm backtracks to the most recent assignment. �is
is known as chronological backtracking. It is not always the best policy:

5

1
1

3

2

7

8

6

5

4

4

7

3

�?

Say we’ve assigned 1 = B, 3 = R, 5 = C and 4 = B and now we want to as-
sign something to 7. �is isn’t possible so we backtrack, however re-assigning 4
clearly doesn’t help.

52

Backjumping

With some careful bookkeeping it is o�en possible to jump back multiple levels
without sacri�cing the ability to �nd a solution.

We need some de�nitions:

• When we set a variable Vi to some value d ∈ Di we refer to this as the assign-
ment Ai = (Vi ← d).

• A partial instantiation Ik = {A1, A2, . . . , Ak} is a consistent set of assignments
to the �rst k variables…

• … where consistent means that no constraints are violated.
• Conversely, Ik con�icts with some variable V if no value for V is consistent

with Ik.

Henceforth we shall assume that variables are assigned in the order V1, V2, . . . , Vn
when formally presenting algorithms.

53

Gaschnig’s algorithm

Gaschnig’s algorithm works as follows. Say we have a partial instantiation Ik:

• When choosing a value for Vk+1 we need to check that any candidate value
d ∈ Dk+1, is consistent with Ik.

• When testing potential values for d, we will generally discard one or more
possibilities, because they con�ict with some member of Ik

• We keep track of the most recent assignment Aj for which this has happened.

Finally, if no value for Vk+1 is consistent with Ik then we backtrack to Vj.

More formally: if Ik con�icts with Vk+1 we backtrack to Vj where

j = min{j ≤ k|Ij con�icts with Vk+1}.
If there are no possible values le� to try for Vj then we backtrack chronologically.

54

Gaschnig’s algorithm

Example:

2

3

4

5

6

8

7

1

1

3

5

4

7

Backtrack to 5

7 = 7 = 7 =

8

2

�?

If there’s no value le� to try for 5 then backtrack to 3 and so on.

55

Graph-based backjumping

�is allows us to jump back multiple levels when we initially detect a con�ict.

Can we do be�er than chronological backtracking therea�er?

Some more de�nitions:

• We assume an ordering V1, V2, . . . , Vn for the variables.
• Given V ′ = {V1, V2, . . . , Vk} where k < n the ancestors of Vk+1 are the mem-

bers of V ′ connected to Vk+1 by a constraint.
• �e parent P (Vk+1) of Vk+1 is its most recent ancestor.

�e ancestors for each variable can be accumulated as assignments are made.

Graph-based backjumping backtracks to the parent of Vk+1.

Note: Gaschnig’s algorithm uses assignments whereas graph-based backjumping
uses constraints.

56

Graph-based backjumping

2

3

4

5

6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

8

2

�?

At this point, backjump to the parent for 7, which is 5.

57

Backjumping and forward checking

If we use forward checking: say we’re assigning to Vk+1 by making Vk+1 = d:

• Forward checking removes d from the Di of all Vi connected to Vk+1 by a
constraint.

• When doing graph-based backjumping, we’d also add Vk+1 to the ancestors
of Vi.

In fact, use of forward checking can make some forms of backjumping redundant.

Note: there are in fact many ways of combining constraint propagation with back-
jumping, and we will not explore them in further detail here.

58

Backjumping and forward checking

2

3

4

5

6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − { }

6 − { }

7 − {1, , }5

5

5 − { }3
5

32 − {1, , 4}

Ancestors�?

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
1 = B = B RC RC BRC BRC BRC RC BRC
3 = R = B C = R BRC BC BRC C BRC
5 = C = B C = R BR = C BR ! BRC
4 = B = B C = R BR = C BR ! BRC

Forward checking �nds the problem before backtracking does.

59

Graph-based backjumping

We’re not quite done yet though. What happens when there are no assignments
le� for the parent we just backjumped to?

V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

�?

�?

Backjumping from V7 to V4 is �ne. However we shouldn’t then just backjump to
V2, because changing V3 could �x the problem at V7.

60

Graph-based backjumping

To describe an algorithm in this case is a li�le involved.

Leaf dead-end
I6.

Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

�?

�?

Given an instantiation Ik and Vk+1, if there is no consistent d ∈ Dk+1 we call Ik
a leaf dead-end and Vk+1 a leaf dead-end variable.

61

Graph-based backjumping

Also

Leaf dead-end
I6.

Internal dead-end
I3.

Leaf dead-end variable V7

Internal dead-end variable V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

�?

�?

If Vi was backtracked to from a later leaf dead-end and there are no more values
to try for Vi then we refer to it as an internal dead-end variable and call Ii−1 an
internal dead-end.

62

Graph-based backjumping

To keep track of exactly where to jump to we also need the de�nitions:

• �e session of a variable V begins when the search algorithm visits it and
ends when it backtracks through it to an earlier variable.

• �e current session of a variable V is the set of all variables visiting during its
session.

• In particular, the current session for any V contains V .
• �e relevant dead-ends for the current session R(V) for a variable V are:

1. R(V) is initialized to {V } when V is �rst visited.
2. If V is a leaf dead-end variable then R(V) = {V }.
3. If V was backtracked to from a dead-end V ′ then R(V) = R(V) ∪R(V ′).

And we’re not done yet…

63

Graph-based backjumping

Example:

Session of V4 = {V4, V5, V6, V7}.

Session starts

Session starts

Session of V7 = {V7}.
R(V7) = {V7}

R(V4) = {V4, V7}

As expected, the relevant dead-ends for V4 are {V4} and {V7}.

64

Graph-based backjumping

One more bunch of de�nitions before the pain stops. Say Vk is a dead-end:

• �e induced ancestors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩

 ⋃

V ∈R(Vk)
ancestors(V)

• �e culprit for Vk is the most recent V ′ ∈ ind(Vk).

Note that these de�nitions depend on R(Vk).

FINALLY: graph-based backjumping backjumps to the culprit.

65

Graph-based backjumping

Example:

Session of V4 = {V4, V5, V6, V7}.

Backjump from V7
to V4.

Nothing le� to try! R(V4) = {V4, V7}
ind(V4) = {V2, V3}

As expected, we back jump to V3 instead of V2. Hooray!

Gaschnig’s algorithm and graph-based backjumping can be combined to produce
con�ict-directed backjumping.

We will not explore con�ict-directed backjumping in this course.

66

Varieties of CSP

We have only looked at discrete CSPs with �nite domains. �ese are the simplest.
We could also consider:

1. Discrete CSPs with in�nite domains:
• We need a constraint language. For example

V3 ≤ V10 + 5

• Algorithms are available for integer variables and linear constraints.
• �ere is no algorithm for integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints de�ning convex regions we
have linear programming. �is is solvable in polynomial time in n.

3. We can introduce preference constraints in addition to absolute constraints, and
in some cases an objective function.

67

