Artificial Intelligence

Reading: AIMA chapter 5.

Solving problems by search: playing games

How might an agent act when because
an ?

« This is essentially a more realistic kind of search problem because we do not
know the exact outcome of an action.

« This is a common situation when
on an opponent to our moves.

: in chess, draughts, and so

Game playing has been of interest in Al because it provides an of a
world in which two agents act to each other’s well-being.

We now look at:

« How game-playing can be modelled as
+ The for game-playing.
« Some problems inherent in the use of minimax.

« The concept of

Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be an excellent
source of hard problems. For instance with chess:

« The average branching factor is roughly
« Games can reach () moves per player.
« So a rough calculation gives the search tree nodes.

« Even if only different, legal positions are considered it’s about
to the uncertainty due to the opponent:

« We can’t make a complete search to find the best move...

« ... so we have to act even though we’re not sure about the best thing to do.

And chess isn’t even very hard: Co is harder...

yes, more advanced learning-based methods have conquered chess and Go, but that’s an entirely different approach with its own pros and cons.

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are called and for reasons
that will become clear.

« We'll use as an initial example.

. moves first.

« The players alternate until the game ends.

« At the end of the game, prizes are awarded. (Or punishments administered—

EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughts and so on.

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

« There is an

Max to move

« There is a set of . Here, can place a cross in any empty square,
or a nought.
« There is a . Here, the game ends when three noughts or three

crosses are in a row, or there are no unused spaces.

« There is a or function. This tells us, numerically, what the out-

come of the game is.

This is enough to model the entire game.

Perfect decisions in a two-person game

We can to represent a game.
From the initial state can make nine possible moves:
Then it’s ’s turn...

Perfect decisions in a two-person game

has eight replies:

For each of ’s opening moves
X X
X X
And so on...

This can be continued to represent

possibilities for the game.

Perfect decisions in a two-person game

{ X0
Z X|O|X]| -1
X|O|X XIX10 o X
X|O|O]|+1
X|O]O]0 <lolx
O XX

At the leaves a player has won or there are no spaces. Leaves are
the utility function.

using

Perfect decisions in a two-person game

How can use this tree to decide on a first move?

Consider a much simpler tree:

Labels on the leaves denote utility.
High values are preferred by Max.
Low values are preferred by Min.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4
If is rational he will play to reach a position with the
But if is rational she will play to the utility available to

The minimax algorithm

There are two moves: then . Game theorists would call this one move,
or two /!y deep.

The allows us to infer the best move that the current player
can make, given the utility function, by working backward from the leaves.

4 5 20 20 15 7 4 100 9 5 8 5

As plays the last move, she the utility available to

The minimax algorithm

Moving one further step up the tree:

We can see that ’s best opening move is move , as this leads to the node
with highest utility.

The minimax algorithm

« Generate the complete tree and label the leaves according to the utility func-
tion.

« Working from the leaves of the tree upward, label the nodes depending on

whether or is to move.

o If is to move label the current node with the utility of any
descendant.

o If is to move label the current node with the utility of any
descendant.

If the game is) ply and at each point there are ; available moves then this process
has (surprise, surprise) time complexity and space complexity linear in
and

Making imperfect decisions

We need to avoid searching all the way to the end of the tree.

« We generate only part of the tree: instead of testing whether a node is a leaf
we introduce a test telling us when to stop.

« Instead of a utility function we introduce an for the eval-

uation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of the current
game position.

Making imperfect decisions

How can this be justified?

« This is a strategy that humans clearly sometimes make use of.

« For example, when using the concept of in chess.
« The effectiveness of the evaluation function is

« ... but it must be computable in a reasonable time.

« (In principle it could just be done using minimax.)

The importance of the evaluation function can not be understated—it is probably
the most important part of the design.

The evaluation function

Designing a good evaluation function can be extremely tricky:
« Let’s say we want to design one for chess by giving each piece its material
value: pawn = |, knight/bishop = , rook = * and so on.

« Define the evaluation of a position to be the difference between the material
value of black’s and white’s pieces

This seems like a reasonable first attempt. Why might it go wrong?

« Until the first capture the evaluation function gives [/, so in fact we have
a containing many different game positions with equal estimated
utility.

« For example, all positions where white is one pawn ahead.

So in fact this seems highly naive ...

The evaluation function

We can try to an evaluation function.

« For example, using material value, construct a

where the , are and the | represent of the position—in this
case, the value of the /th piece.

« Weights can be chosen by allowing the game to play itself and using
techniques to adjust the weights to improve performance.

However in general

« Here we probably want to give to

» The design of an evaluation function can be highly and
might require significant

a — [pruning

Even with a good evaluation function and cut-off test, the time complexity of the
minimax algorithm makes it impossible to write a good chess program without
some further improvement.

« Assuming we have 150 seconds to make each move, for chess we would be
limited to a search of about ' to | ply whereas...

- ...even an average human player can manage 0 to

Luckily, it is possible to prune the search tree and

a — [pruning

Returning for a moment to the earlier, simplified example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8§ 5 4

The search is depth-first and left to right.

a — [pruning

The search continues as previously for the first - leaves.

4 5 2 20 20 15 6 7 1147100905 8 5 4
Then we note: if plays move then can reach a leaf with utility at most
So: . This is be-
cause the search has that can do better by making open-

ing move

o — [pruning in general

Remember that this search is . We’re only going to use knowledge of

« = m tells us that the
value of this node is > m.

A = Player

lue > m
value > m v ~ Opponent

The value of a is updated as

the search progresses.

While searching under this node
we find that the opponent can force
a score of n.

value > m/

If n < m we can stop. There is a
better choice earlier in the game.

If n < m’ we can stop. The player
Searching here establishes that maximises and will never move here.

the opponent can force a score
of m/.

once you’ve established that 1 is sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

20

o — [pruning in general

The situation is exactly analogous if we in the previous
diagram.

The search is depth-first, so we’re only ever looking at

We need to keep track of the values « and ' where

Assume . Initial values for < and = are

and

21

o — [pruning in general

we start with the function call

The following function implements the procedure suggested by the previous di-
agram:

1 function player (o, 3,n)

2 | if cutoff (n) then

3 L return eval (n);

4 value = —o0;

5 | for each successorn’ of n do

6 value = max (value, opponent (a, 5,n'));
7 if value > 3 then

8 L return value;

9 if value > o then

10 L « = value;
1 return value;

22

o — (3 pruning in general

The function opponent is exactly analogous:

1 function opponent (a, 3,n)
2 | if cutoff (n) then
3 L return eval(n);

4 | value = oo;

5 | for each successorn’ ofn do

6 value = min (value, player(a, 5,n'));
7 if value < o then

8 L return value;

if value < 3 then
10 L [= value;

1 return value;

the semantics here is that parameters are passed to functions

23

o — [pruning in general

Applying this to the earlier example and keeping track of the values for < and
you should obtain:

a= ;\oc :\‘Z\:G

Return 2 B =00

Return 1

24

How effective is &« — pruning?

(Warning: the theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:
« If you were to have a perfect move-ordering technique then o — 3 pruning
would be as opposed to
« Consequently the branching factor would effectively be instead of .

« We would therefore expect to be able to search ahead

However, this is not realistic: if you had such an ordering technique you’d be
able to play perfect games!

25

How effective is & — 8 pruning?

If moves are arranged at random then o — 3 pruning is:

. asymptotically when or..
. ...about for reasonable values of /.
In practice can get

if we try captures, then threats, then moves forward etc.

Alternatively, we can implement an
order obtained at one iteration to drive the next.

26

. For example,

approach and use the

A further optimisation: the transposition table

Finally, note that many games correspond to rather than because the
same state can be arrived at in different ways.

« This is essentially the same effect we saw in heuristic search: recall
versus

« It can be addressed in a similar way: store a state with its evaluation in a hash

table—generally called a —the first time it is seen.
The transposition table is essentially equivalent to the introduced as
part of graph search.

This can vastly increase the effectiveness of the search process, because we don’t
have to evaluate a single state multiple times.

27

Artificial Intelligence

Reading: AIMA chapter 6.

28

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some ways unsatisfactory.
« States were represented using an and data struc-
ture.
« Heuristics were also
« It would be nice to be able to general search problems into a

CSPs the manner in which states and goal tests are represented. By
standardising like this we benefit in several ways:

« We can devise algorithms and heuristics.

« We can look at general methods for exploring the of the problem.

« Consequently it is possible to introduce techniques for prob-
lems.

« We can try to understand the relationship between the of a problem
and the

29

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it from this
new perspective.

« To introduce the idea of a constraint satisfaction problem (CSP) as a general
means of representing and solving problems by search.

« To look at a for solving CSPs.
« To look at some for solving CSPs.
« To look at

Another method of interest in Al that allows us to do similar things involves
transforming to a problem.

We’ll see an example of this—and of the application of CSPs—when we discuss

30

Constraint satisfaction problems

We have:

« A set of
« Foreach | a specifying the values that |, can take.
+ A set of

Each constraint (| involves a set of variables and specifies an

A is an assignment of specific values to some or all of the variables.
« An assignment is if it violates no constraints.
« An assignment is if it gives a value to every variable.

A is a consistent and complete assignment.

31

Example

We will use the problem of as a running example.

Each node corresponds to a . We have three colours and directly con-
nected nodes should have different colours.

32

Example

This translates easily to a CSP formulation:

« The variables are the nodes

« The domain for each variable contains the values black, red and cyan

« The constraints enforce the idea that directly connected nodes must have dif-
ferent colours. For example, for variables || and |, the constraints specify

« Variable | . is unconstrained.

33

Different kinds of CSP

This is an example of the simplest kind of CSP: it is with
We will concentrate on these.

We will also concentrate on ; that is, constraints between

« Constraints on single variables— —can be handled by adjust-
ing the variable’s domain. For example, if we don’t want | to be , then
we just remove that possibility from

. applying to three or more variables can certainly be

considered, but...

« ...when dealing with finite domains they can always be converted to sets of
binary constraints by introducing extra

How does that work?

34

Augxiliary variables

three variables each with domain

A single constraint

New, binary constraints:

ELEL
TTRD
LI}

CNPNCNN

The original constraint connects all
three variables.

Introducing auxiliary variable | with domain allows us to convert this

to a set of binary constraints.

35

Backtracking search

now takes on a very simple form: search depth-first, assign-
ing a single variable at a time, and backtrack if no valid assignment is available.

Using the graph colouring example, the search now looks something like this...

R @

01D —
JIRL]
[@R=-A-]

W —
(IR]
W R @
01—

...and new possibilities appear.

36

Backtracking search

TR T
® w O m ®

Backtracking search

Starting with:

6=B 1 function backTrack (assignmentList, problemDescription)
2 | if assignmentList is complete then
3 L return SOME assignmentList;
4 | nextVar = getNextVariable (assignmentList, problemDescription);
5 | for eachv in ordervalues (nextVar, assignmentList, problemDescription) do
Nothing is available for 7, so 6 if v is consistent with assignmentList then
either assign 8 or backtrack 7 add “nextVar = v” to assignmentList;
1 8 solution = backTrack (assignmentList, problemDescription);
9 if solution is not FAIL then
10 L return solution;
Rather than using problem-specific heuristics to try to improve searching, we “ remove “nextVar = v” from assignmentList;
can now explore heuristics applicable to CSPs. 12 | return FAIL;
37 38
Backtracking search: possible heuristics Heuristics I: Choosing the order of variable assignments and values
There are several points we can examine in an attempt to obtain general CSP- Say we have and

based heuristics:

« In what order should we try to ?

« In what order should we try to to a variable?

Or being a little more subtle:

« What might the have on
?
« When , is it possible to ?

« Can we try to force the search in a successful direction (remember the use of
)?

« Can we try to force to occur quickly?

39

Assigning such variables

for 3, whereas the others have more flexibility.

is called the

heuristic.

(Alternatively, the or heuristic.)

40

At this point there is only one possible assignment

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The chooses the variable involved in the most constraints on as
yet unassigned variables.

7“." g
6 .
\\5 Start with 3, 5 or 7.

1

MRV is usually better but the degree heuristic is a good tie breaker.

41

Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in ?

Choosing 1 = C'is bad as it removes
the final possibility for 3.

The heuristic prefers 1=B

The heuristic chooses first the value that leaves the max-
imum possible freedom in choosing assignments for the variable’s neighbours.

42

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add

C is ruled out as an assignment to
2 and 3.

Each time we assign a value to a variable, it makes sense to delete that value from
the collection of

This is called . It works nicely in conjunction with MRV.

43

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC'| BRC | BRC' | BRC' | BRC | BRC' | BRC' | BRC
2=B| RC | = RC | RC | BRC|BRC | BRC | BRC
3=R| C =B | =R | RC | BC |BRC| BC |BRC
6=B| C = =R | RC C = C | BRC
5=C| C = = R = BRC

At the fourth step | has

However, we could have detected a problem a little earlier...

44

Heuristics II: forward checking and constraint propagation

...by looking at step three.

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC | BRC' | BRC | BRC' | BRC' | BRC
2=B| RC | =B | RC | RC | BRC|BRC|BRC | BRC

3=R| C | =B | =R | RC | BC |BRC| BC | BRC
6=B| C =B | =R | RC c = C | BRC
5=C| C =B | =R R | =C| = BRC

« At step three, ' can be (' only and '/ can be (' only.
« But © and ' are connected.
+ So we can’t progress, but this hasn’t been detected.

« Ideally we want to do

time to do the search, against time to explore constraints.

45

Constraint propagation

Consider a constraint as being . For example

In general, say we have a constraint and currently the domain of / is
and the domain of) is

is if
In step three of the table, and
. in step three of the table
. in step three of the table

can be made consistent by deleting ' from

Or in other words, regardless of what you assign to / you’ll be able to find some-
thing valid to assign to

46

Enforcing arc consistency

We can enforce arc consistency each time a variable / is assigned.

« We need to maintain a

« Each time we alter a domain, we may have to include further arcs in the

collection.
This is because if is inconsistent resulting in a deletion from //, we may as
a consequence make some arc inconsistent.
Why is this?

47

Enforcing arc consistency

i — j is now consistent.

ky i — j is not consistent so ky
delete B from the domain
ks O\ of i. ks O\
: f j : i j
{r. B} {B {r} {B}

kx O] K K ki O] . X
{R} ky — 1 is consistent but {R} ki — i1is no longer consistent
ki = R can only be paired because ki = R can not be paired

withi = B. withi = R.

. inconsistent means removing a value from

. such that there is no valid

However some may only have been pairable with

We need to continue until all consequences are taken care of.

48

The AC-3 algorithm

function AC-3 (problemDescription)
Queue toCheck = [all arcs i — j |;
while toCheck is not empty do
i — j =next (toCheck);
if removeInconsistencies(D;, D;) then
for each k that is a neighbour of i do
L L add & — 7 to toCheck;

O T N

function removeInconsistencies (D, D)
Bool result = FALSE;
for eachd € D, do
if nod € Dy valid with d then
remove d from Dy;
L result = TRUE;

R R

<

return result;

49

Enforcing arc consistency

« A binary CSP with /» variables can have directional constraints

« Any can be considered at most (/ times where because
only (/ things can be removed from

« Checking any single arc for consistency can be done in

So the complexity is
this setup includes 3SAT.

we can’t check for consistency in polynomial time, which suggests
this doesn’t guarantee to find all inconsistencies.

50

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

. any variables and any consistent assignment to these.

. We can find a consistent assignment to any / th variable.

This is known as

requires the we be /-consistent, -consistent etc as far
down as |-consistent.

If we can demonstrate strong /.-consistency (where as usual 1 is the number of
variables) then an assignment can be found in

Unfortunately, demonstrating strong //-consistency will be

51

Backjumping
The basic backtracking algorithm backtracks to the . This
is known as . It is not always the best policy:

Say we’ve assigned , , and and now we want to as-
sign something to /. This isn’t possible so we backtrack, however re-assigning
clearly doesn’t help.

52

Backjumping

With some careful bookkeeping it is often possible to
without sacrificing the ability to find a solution.

We need some definitions:

« When we set a variable | to some value we refer to this as the
« A

isa
to the first /- variables...

set of assignments

. ... where means that no constraints are violated.

« Conversely, with some variable | if no value for | is consistent
with /.

Henceforth we shall assume that variables are assigned in the order
when formally presenting algorithms.

53

Gaschnig’s algorithm

works as follows. Say we have a partial instantiation

« When choosing a value for

we need to check that any candidate value
, is consistent with

« When testing potential values for /, we will generally discard one or more
possibilities, because they conflict with some member of

« We keep track of the for which this has happened.

Finally, if no value for is consistent with /, then we backtrack to

More formally: if /; conflicts with we backtrack to |, where

If there are no possible values left to try for | then we backtrack

54

Gaschnig’s algorithm

7=0 7=0@
7
Backtrack to 5
X
J
1 Joodox

If there’s no value left to try for - then backtrack to - and so on.

55

Graph-based backjumping

This allows us to jump back multiple levels

Can we do better than chronological backtracking

Some more definitions:

« We assume an ordering for the variables.

where the of
by a constraint.

« Given are the mem-
bers of |’ connected to
« The of is its most recent ancestor.

The ancestors for each variable can be accumulated as assignments are made.

backtracks to the of

Gaschnig’s algorithm uses whereas graph-based backjumping
uses .

56

Graph-based backjumping

4

s}
sQ3) s {?/

3D(1}3 ay 3¢ {1}

1 1 1

At this point, backjump to the for 7, which is

57

{1,3,5)

{1,3,4,8}

Backjumping and forward checking

If we use : say we're assigning to by making
« Forward checking removes ¢/ from the /), of connected to by a
constraint.

» When doing graph-based backjumping, we’d also add to the ancestors
of

In fact, use of forward checking can make some forms of backjumping

there are in fact many ways of combining with
, and we will not explore them in further detail here.

58

Backjumping and forward checking

Ancestors

Start | BRC | BRC | BRC | BRC' | BRC | BRC' | BRC | BRC
1=B| =B | RC | RC |BRC|BRC|BRC| RC |BRC

3=R| =B C =R | BRC| BC |BRC| C |BRC
5=C| = C = BR | =C | BR BRC
4=B| = C = BR | =C | BR BRC

Forward checking finds the problem

59

Graph-based backjumping

We’re not quite done yet though. What happens when
?

Vi Vi

v v

v Vi

Backjumping from | to | is fine. However we shouldn’t then just backjump to
, because changing |, could fix the problem at

60

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variable V7

Leaf dead-end
Ig.

Given an instantiation /, and , if there is no consistent we call
a and a

61

Graph-based backjumping

Also

Leaf dead-end variable V7

Internal dead-end) R
;07?2 | Internal dead-end variable V,

Leaf dead-end
I,

If ' was backtracked to from a later leaf dead-end and there are no more values
to try for | then we refer to it as an and call an

62

Graph-based backjumping

To keep track of exactly where to jump to we also need the definitions:

« The of a variable | begins when the search algorithm visits it and
ends when it backtracks through it to an earlier variable.

« The of a variable | is the set of all variables visiting during its
session.

« In particular, the current session for any | contains
« The for a variable | are:

1. is initialized to when | is first visited.
2.If I is a leaf dead-end variable then .
3. If " was backtracked to from a dead-end |’ then

And we’re not done yet...

63

Graph-based backjumping

Session of V7 = {V7}. ~
RV = (V) N

Session starts

Session of Vj = {V4, V5, Vs, V7 }.

Session starts% R(Viy) = {Vi, v}

As expected, the relevant dead-ends for || are and

64

Graph-based backjumping

One more bunch of definitions before the pain stops. Say |, is a dead-end:

. The of ', are defined as

« The for | is the most recent

Note that these definitions depend on
graph-based backjumping

65

Graph-based backjumping

Backjump from V7
to V.

Ny Session of Vj = {Vj, V5, Vs, V7 }.
Nothing left to try! R(V) = {Vi, V4}
ind(Vy) = {V5, V3}

As expected, we back jump to | instead of .. Hooray!

Gaschnig’s algorithm and graph-based backjumping can be

We will not explore conflict-directed backjumping in this course.

to produce

Varieties of CSP

We have only looked at CSPs with . These are the simplest.
We could also consider:

1. Discrete CSPs with

» We need a . For example

» Algorithms are available for integer variables and linear constraints.

« There is for integer variables and nonlinear constraints.
2. Continuous domains—using linear constraints defining convex regions we
have . This is solvable in polynomial time in
3. We can introduce in addition to ,and

in some cases an

67

