Artificial Intelligence

Computer Laboratory, Room FC06
Telephone extension 63725
sbhllecl.cam.ac.uk

www.cl.cam.ac.uk/~sbhi11/

Copyright © Sean Holden 2002-2020.

Artificial Intelligence

Reading: AIMA chapters 1, 2, 26 and 27.

2

Introduction: what are our aims?

Artificial Intelligence (Al) is currently at the top of its

Much of this has been driven by and

Introduction: what are our aims?

What is the purpose of Artificial Intelligence (AI)? If you're a or a
then perhaps it’s:

e To

« To understand

Philosophers have worked on this for at least years. They’ve also wondered
about:

. we do Al? we do AI? What are the ?

e Is Al ? (Note: I didn’t write here, for a good reason...)

Despite years of work by philosophers, there’s essentially in the
way of results.

Introduction: what are our aims?

Luckily, we were sensible enough not to pursue degrees in philosophy—we’re
scientists/engineers, so while we might have interest in such pursuits, our
perspective is different:

« Brains are small (true) and apparently slow (not quite so clear-cut), but in-
credibly good at some tasks—we want to understand a specific form of

o It would be nice to be able to intelligent systems.

« It is also nice to

Historically speaking, this view
Al has been entering our lives for decades, almost without us being aware of it.

But be careful: brains are

Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got under way in 1956
with the

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

« This means we can actually <o things. It’s as if we were physicists before
anyone thought about atoms, or gravity, or....

» Also, we know what we’re trying to do is . (Unless we think humans
don’t exist. before

Perhaps I'm being too hard on them; there was some good groundwork: wanted an algorithm for ,
leading to . Ramon Lull’s and other attempts at mechanical calculators. Rene Descartes’
and the idea of mind as a . Wilhelm Leibnitz’s opposing position of . (The
intermediate position: mind is but .) The origin of : Francis Bacon’s , John
Locke: . David Hume: we obtain rules by repeated
exposure: . Further developed by Bertrand Russell and in the of Carnap and Hempel.
More recently: the connection between and ? How are actions ? If to achieve the end you

need to achieve something intermediate, consider how to achieve that, and so on. This approach was implemented
in Newell and Simon’s 1957

What has been achieved?

Artificial Intelligence (Al) is currently at the top of its

As a result, it’s important to maintain some sense of perspective.
Notable successes:
» Perception: vision, speech processing, inference of emotion from video, scene
labelling, touch sensing, artificial noses...

« Logical reasoning: prolog, expert systems, CYC, Bayesian reasoning, Wat-
son...

« Playing games: chess, backgammon, go, robot football...
« Diagnosis of illness in various contexts...

 Theorem proving: Robbin’s conjecture, formalization of the Kepler conjec-
ture...

« Literature and music: automated writing and composition...

« And many more... (most of which don’t include the word)]

What has been achieved?

Artificial Intelligence (Al) is currently at the top of its

As a result, it’s important to maintain some sense of perspective.

There are equally many areas in which we currently

is a line from Shakespeare’s Macbeth.

When Al has a success, the ideas in question tend to

Do you consider the fact that
of AI?

to be a form

The nature of the pursuit

This is not necessarily a straightforward question.
It depends on who you ask...

We can find many definitions and a rough categorisation can be made depending
on whether we are interested in:

« The way in which a system or the way in which it

« Whether we want it to do this in a way or a way.

Here, the word has a special meaning: it means

What is Al version one: acting like a human

proposed what is now known as the

« A human judge is allowed to interact with an Al program via a terminal.
e This is the method of interaction.
o If the judge can’t decide whether the interaction is produced by a machine or

another human then the program passes the test.

In the Turing test the Al program may also have a camera attached,

so that objects can be shown to it, and so on.

The Turing test is informative, and (very!) hard to pass. (See the)
o It requires many abilities that seem necessary for Al such as learning.

a human child would probably not pass the test.

« Sometimes an Al system needs human-like acting abilities—for example
often have to produce explanations—but

10

What is Al version two: thinking like a human

There is always the possibility that a machine like a human does not ac-
tually . The approach to Al has tried to:
 Deduce —for example by or

« Copy the process by mimicking it within a program.

An early example of this approach is the produced by
Newell and Simon in 1957. They were concerned with whether or not the pro-
gram reasoned in the same manner that a human did.

Computer Science Psychology

11

What is Al version three: thinking rationally and the “laws of thought”

The idea that intelligence reduces to is a very old one, going at
least as far back as Aristotle as we’ve already seen.

The general field of made major progress in the 19th and 20th centuries,
allowing it to be applied to AL
« We can and about many different things.

e The approach to AL
This is a very appealing idea, but there are obstacles. It is hard to:

« Represent

e Deal with

 Reason without being tripped up by

- Sometimes it’s necessary to act when there’s 0 logical course of action.
« Sometimes inference is (reflex actions).

These will be recurring themes in this course, and in
next year.

12

What is Al version four: acting rationally

Basing Al on the idea of means attempting to design systems
that act to given their
« Thinking about this in engineering terms, it seems to lead

us towards the usual subfields of AI. What might be needed?

« The concepts of : and can be defined precisely making the
field suitable for scientific study.

e This is important: if we try to model Al systems on humans, we can’t even
propose sensible definition of

« In addition, humans are a system that is still changing and adapted to a very
specific environment.

o All of the things needed to pass a Turing test seem necessary for rational

acting, so this seems preferable to the approach.
» The logicist approach can clearly form of what’s required to act ratio-
nally, so this seems preferable to the approach alone.

As a result, we will focus on the idea of designing systems that

13

Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Hermann von Helmholtz: visual system. Aristotle's material turned into mathematics by Boole L RGeS 1y
Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

Tarski: relationship between real and logical objects. Bernoulli: degree of belief.

al-Khowarazmi: concept of algorithm. Bayes: updating beliefs using evidence.

Watson and Thorndike: Behaviourism
Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.
Von Neumann and Morgenstern: combine uncertainty with

Intractability and complexity. i
action: decision theory.

Stimulus and response/objective measures.
Godel: incompleteness theorem.

\

Craik: "The Nature of Explanation"

Brain as an information processing device. Neuroscience

R ing, beliefs, goals etc. i
easoning, beliefs, goals etc Nasty bumps on the head - we know brains

System has a model of how the world works. Artificial Intelligence and consciousness are related.

<& paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory

Linguistics not really understood.
Recently: EEG, MRI etc.
Skinner's "Verbal Behaviour".
Noam Chomsky: behaviourisn can't account for understanding or

production of things not previously heard.

A central Al concept: "Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice

Cybernetics stuff in the future?

. AR : How do I measure the degree of niceness?
250BC: first machine able to modify its own behaviour.

| Probability + Utility = Decision Theory.
James Watt: governor for steam engines.

Small economies: game theory - sometimes it's rational to act (apparently)
Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markov decision processes. Future gains

Mo . i i resulting from a series of actions.
Minimisation of difference between current situation and goal.

. : HEU iR % S . Rational action is intractable. Herbert Simon: Satisficing is a better description
Stochastic optimal control: minimisation over time of an objective function. of what humans do.

----Al moves away from linear and continuous scenarios.

14

What’s in this course?

This course introduces some of the fundamental areas that make up Al:

 An outline of the background to the subject.

« An introduction to the idea of an

» Solving problems in an intelligent way by

« Solving problems represented as problems.
- Playing

. using

Strictly speaking, this course covers what is often referred to as
. (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed when the importance of was fully
appreciated. covers this more recent
material.

15

What’s not in this course?

« The classical Al programming languages and
« A great deal of all the areas on the last slide!

« Perception: : and : (force sensing, know-
ing where your limbs are, knowing when something is bad), :

- Natural language processing.

« Acting on and in the world: (effectors, locomotion, manipulation),

b pJ

o Areas such as , ,
and , for reasons that I will expand upon during
the lectures.

. and much further probabilistic material. (You’ll have to wait until
next year.)

16

Introductory reading that

« Francis Crick, , Nature (1989) is
still entirely relevant:

www.nature.com/nature/journal/v337/n6203/abs/337129a0.html
« The
aisb.org.uk/aisb-events/

provides a good illustration of how far we are from passing the Turing test.

« Marvin Minsky, , Al Magazine (1982) is
an excellent response to nay-saying philosophers.

http://web.media.mit.edu/~minsky/

e GO: www.nature.com/nature/journal/v529/n7587/full/nature16961.html
« The Cyc project: www.cyc.com

o Al at Nasa Ames:

www.nasa.gov/centers/ames/research/areas-of-ames-ingenuity-autonomy-

and-robotics

17

Introductory reading that

House of Lords, Select Committee on Artificial Intelligence

https://publications.parliament.uk/pa/1d201719/1dselect/1dai/100/100.pdf

The Royal Society

https://royalsociety.org/topics-policy/projects/machine-learning/

Brenden M. Lake et al, Behavioral and Brain Sciences, Cambridge University
Press, 2017.

18

Text book

The course is based on the relevant parts of:

, Third Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

and an alternative source is:

, Second Edition
(2017). David L. Poole and Alan K. Mackworth, Cambridge University Press.

For more depth on specific areas see:
Dechter, R. (2003). . Morgan Kaufmann.
Cawsey, A. (1998). . Prentice Hall.

Ghallab, M., Nau, D. and Traverso, P. (2004).
. Morgan Kaufmann.

Bishop, C.M. (2006). . Springer.

Brachman, R. J. and Levesque, H. J. (2004).
. Morgan Kaufmann.

19

Prerequisites

The prerequisites for the course are: first order logic, some algorithms and data
structures, discrete and continuous mathematics, and basic computational com-
plexity.

No doubt you want to know something about , given the recent
peek in interest.

In the lectures on I will be talking about

[will introduce the , which is the foundation for both
and the more fashionable methods.

This means you will need to be able to and also handle

If you've forgotten how to do this

20

Prerequisites

Self test:
1. Let
where the ¢, are constants. Can you compute where ?
2. Let be a function. Now assume for each

and some collection of functions .. Assuming all requirements for differen-
tiability and so on are met, can you write down an expression for
where ?

If the answer to either of these questions is “no” then it’s time for some revision.
(You have about three weeks notice, so I'll assume you know it!)

21

And finally...

There are some important points to be made regarding

First, you might well hear the term being used a lot. What does it
mean?

For example: high-quality automatic translation from one language to another.

To produce a genuinely good translation of from English to Cantonese
is likely to be Al-complete.

22

And finally...

More practically, you will often hear me make the claim that

There are two ways to interpret this:

1. The wrong way: “It’s all a waste of time.'” OK, so it’s a partly understandable
interpretation. the fact that Boolean satisfiability is intractable
mean we can't solve large instances in practice...

2. The right way: “It’s an opportunity to design nice approximation algorithms.”
In reality, the algorithms that are are ones that try to
find a but not necessarily solution, in a amount of
time and memory.

!In essence, a comment on a course assessment a couple of years back to the effect of: “Why do you teach us this stuff if it’s all futile?”

23

Agents

There are many different definitions for the term

Allow me to introduce EVIL ROBOT.

MUST ENSLAVE
EARTH!!! Dr Holden

will be our GLORIOUS
LEADER!!!

Environment

We will use the following simple definition:

24

within AL

Agents

This definition can be very widely applied: to humans, robots, pieces of software,

and so on.

We are taking quite an perspective. We want to
. So:

1. How can we judge an agent’s performance?
2. How can an agent’s affect its design?

3. Are there sensible ways in which to think about the

Recall that we are interested in devices that
doing the under

25

rather than

of an agent?

, where ‘rational’ means

Measuring performance

How can we judge an agent’s performance?

- Any measure of performance is likely to be
— Even a simple email filter is an agent—it can sense and act. Here the per-
formance measure is straightforward.

— For a self-driving car, it is more complicated!
« We're usually interested in

- performance because usually agents are not —they
don’t know the outcome of their actions.
(It is for you to enter this lecture theatre even if the roof falls in
today. An agent capable of detecting and protecting itself from a falling
roof might be more than you, but 70/ more

- because it tends to lead to better approximations
to what we’d consider rational behaviour.

26

Environments

How can an agent’s affect its design?

Some common attributes of an environment have a considerable influence on
agent design.

. do percepts tell you you need to know
about the world?

. does the future depend on the
present and your actions?

. is the agent run in independent episodes.

. can the world change while the agent is deciding what to do?

. an environment is discrete if the sets of allowable per-

cepts and actions are finite.

. whether the situation is or , and
whether is required.

27

Programming agents

Are there sensible ways in which to think about the of an agent?

A basic agent can be thought of as working according to a straightforward un-
derlying process. To achieve some

 Update to take account of them.
o On the basis of what’s in the working memory, to perform.
. the working memory to take account of this action.

« Do the chosen action.
Obviously, this hides a great deal of complexity:

» A percept might arrive

o The world may change

o Actions may affect the world in

« We might have , which with each other.
« And so on...

28

Keeping track of the environment, and having a goal

[t seems reasonable that an agent should maintain:

« A
« Knowledge of how the environment

« Knowledge of how the agent’s

This requires us to do and

It also seems reasonable that an agent should choose a rational course of action
depending on its

- If an agent has knowledge of how its actions affect the environment, then it
has a basis for choosing actions to achieve goals.

« To obtain a of actions we need to be able to and to

29

Goal-based agents

We now have a basic design that looks something like this:

Percept
Update
Y Update
Description: current environment y
T

Y

Description: effect of actions

Y

Description: behaviour of environment

Description of Goal

Infer

y
Action/Action sequence

30

Utility-based agents

Introducing goals is still not the end of the story.

o There may be sequences of actions that lead to a given goal, and

« We might need to trade-oft , for example speed and safety.

« An agent may have several goals, but not be certain of achieving any of them.
Can it trade-off the likelihood of reaching a goal against the desirability of
getting there?

A maps a state to a number representing the desirability of that

state.

over time forms a fundamental model for the design
of agents.

Unfortunately, there is insufficient time in this course to properly explore agents
based on utility:.

31

Learning agents

It seems reasonable that an agent should

Percept
Update
L Update
Description: current environment ~

Y

Description: effect of actions

Y

Feedback - Learner L . Description: behaviour of environment

Description of Goal

P

Action/Action sequence

What might this entail?

32

Learning agents

Learning mainly requires two additions:
1. The learner needs some form of on the agent’s performance. This
can come in several different forms.
2. The learner needs a means of in order to find out
about the world.
The second point leads to an important trade-oft:
1. Should the agent spend time what it’s learned so far, if it’s achieving
a level of success, or...

2. ...should the agent try new things, the environment on the basis

that it might learn something even if it performs
?

33

Artificial Intelligence

Reading: AIMA chapters 3 and 4.

34

Problem solving by search

We begin with what is perhaps the simplest collection of Al techniques: those al-

lowing an existing within an to fora
that
apply to a particularly simple class of problems—we need to
identify:
. from a set - of possible states.

This models the agent’s situation before anything else happens.

. , denoted

These are modelled by specitying what state will result on performing any
available action in any state.

We can model this using a function : if the agent is in
state < and performs action « then its new state is

. : we can tell whether or not the state we’re in corresponds to a

goal.

We can model this using a function

35

Problem solving by search

We also need the idea of

We need another function . This denotes the cost of
n

If the agent starts in state -, and takes a sequence of actions
it moves through a sequence of states

with . We then define the of this path as

We generally want a path to a that has

Note that you have problems like this...

36

then

Problem solving by search

You have problems like this...
. : talks about searching in
It covers ; and search.
. : talks about searching in
It also covers and search, from a more formal per-
spective.

This is all important stufl, but there’s a problem:
Essentially, the problem is that they are too naive in the way that they

at each step.

I’'m going to assume that you know this material and move on...

37

Problem solving by search

A simple example:

Start State
3 5
]' Y 4 2 ACtiOl’l 1 3 5
—
7 8 6
4 2 ACtiOl’l 1 3 5
— Goal State
7 8 6
4 2 Further actions 1 9
H “ e —>
7 8 6
4 5
7 8
From the . Christmas was grim...

38

Problem solving by search

Here we have:

. a randomly-selected configuration of the numbers | to - arranged
on a square grid, with one square empty.

. the numbers in ascending order with the bottom right square
empty.

. : , up, . We can move any square adjacent to the

empty square into the empty square. (It’s not always possible to choose from
all four actions.)

. per move.

The ~-puzzle is very simple. However general sliding block puzzles are a good
test case. The general problem is NP-complete. The version has about
states, and a random instance is in fact quite a challenge.

39

Problem solving by search

Problems of this kind are very simple, but a surprisingly large number of appli-
cations have appeared:

« Route-finding/tour-finding.

- Layout of VLSI systems.

- Navigation systems for robots.

« Sequencing for automatic assembly:.

- Searching the internet.

» Design of proteins.

and many others...

Problems of this kind continue to form an active research area.

40

Search trees versus search graphs

We need to make an important distinction between and

as opposed to

eIna only can lead to a given state.
eIna a can be reached via possibly

eIna we may also encounter

41

Search trees versus search graphs

Graphs can lead to

The for example suffers this way.

: we start by assuming the search is taking place on a

42

The basic tree-search algorithm

We need to define one more function: takes any . It applies all
that can be applied in - and returns the :

The algorithm for searching in a tree then looks like this:

1 fringe = [s¢];

2 while true do

3 | if fringe.empty() then
4+ | | return NONE;

5 | s=fringe.remove();
¢ | if goal(s)then
7 L return (SOME s);

8 | fringe.addAll(expand(s));

The is set by using a to implement the fringe.

The definition of then sets the way in which the tree is searched.

43

The basic tree-search algorithm

The process looks like this:

@ Expanded
O In the fringe, but not expanded
g p

@ Not yet investigated

A A
d N N
, N N
, N N
N N
.\ . .
7 N
7 N

At each iteration, one node from the fringe is expanded. In general, if the
is [then the at can have /" states.

The to depth </ can have states.

44

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

« Whether a solution is found.
« Whether the solution found is a good one in terms of path cost.

» The cost of the search in terms of time and memory.

So

If a problem is highly complex it may be worth settling for a
obtained in a

we are interested in:
does the strategy a solution is found?
does the strategy guarantee that the solution is found?

Once we start to consider these, things get a lot more interesting...

45

Basic search algorithms

We can immediately define some familiar tree search algorithms:

« New nodes are added to the . This is
« New nodes are added to the . This is
We will not dwell on these, as they are both in practice.

Why is breadth-first search hopeless?

« The procedure is : it is guaranteed to find a solution if one exists.
e The procedure is if the path cost is a non-decreasing function of node-
depth.

e The procedure has

In practice it is the requirement that is problematic.

46

Basic search methods

With depth-first search: for a given branching factor / and depth ' the memory
requirement is

L

This is because we need to store and
The time complexity is still (if you know you only have to go to depth /).
The search is , and may not be

combines the two, but

47

Uniform-cost search

How might we change tree search to try to get to an while lim-
iting the needed?
The key point: so far we only distinguish from !
What is a ?
« Well, at any point in the search we can work out the of whatever

state 5 we've got to.

« How about using the as the priority for the priority queue?

This is called

In practice it doesn’t work very well: we need

But it does suggest the idea of an : a function that attempts to
measure the

48

Heuristics

Why is not a good evaluation function? It is not in any sense

A , usually denoted , is one that the cost of the
best path from any state - to a goal. If - is a goal then

p(s) is known when we get to s.

This is a measure. We are required either to using
our , or by some other means.

The last point is critical:

49

Example: route-finding

for route finding a reasonable heuristic function is

So 1 S1 1 S92
& & .
N \\ |
|
~. I
T h(s1) = V2 |

\\\\ : h(Sg):l
RN I
S I
h(so) = V5 |
\\\\\\ :
NN

® Goal

Accuracy here obviously depends on what the roads are really like.

Can we use in choosing a state to explore? If it’s it can work
well, but !

50

A* search

is the classical

combines the good points of:

« Using to know how far we’ve come.

o Using to estimate how far we have to go.

It does this in a very simple manner: it uses path cost and also the heuristic
function by forming

is the of a path

By using this as a priority for exploring states we get a search algorithm that is
and under simple conditions, and can be to the
more naive approaches.

51

A* search

an is one that the cost of
the best path from - to a goal.

p(s) is known when we get to s.

S Seoal
Actual path to nearest goal.
h(s) must underestimate this. T R
So if denotes the distance from - to the goal we have

If is then

52

A* tree-search is optimal for admissible h(s)

To see that we reason as follows. Let be an
optimal goal state with (because).

At some point Goals is in the fringe.

Can it be selected before s?

Let be a suboptimal goal state with . We
need to demonstrate that

53

A* tree-search is optimal for admissible h(s)

Let - be a state in the fringe on an optimal path to . So

because /' is admissible.

Now say is chosen for expansion . This means that

so we’ve established that

But this means that is not optimal: a contradiction.

And that’s all that’s needed for trees.

54

Graph search

To search in we need a way to make sure no state gets visited

We need to add a , and add a state to it when the state is

closed = [|;

fringe = [so;

while true do

if fringe.empty() then
L return NONE;

s = fringe.remove();
7 | if goal(s) then

G R W N =

=)}

8 _ return (SOME s);

9 | if Iclosed.contains(s) then
10 closed.add(s);

11 _ fringe.addAll(expand(s));

55

Graph search

There are several points to note regarding graph search:

1. The contains all the expanded states.
2. The closed list can be implemented using a . So the time taken to
or can be managable.

3. Both worst case time and space are now
. (Which is BIG!!!!)

4, depth first and iterative deepening search are no longer linear space
as we need to store the closed list.

5. when a repeat is found we are
. We may need to check which solution is better
and if necessary modify path costs and depths for descendants of the repeated
state.

Unfortunately last point breaks the proof...

56

A* graph search

Unfortunately last point breaks the proof...

 Graph search can route if that route is not the first one
generated.
« We could keep . 'This means updating, which is
extra work, not to mention messy, but sufficient to insure optimality.
- Alternatively, we can impose a further condition on which
The required condition is called . As

this is an important property.

57

Monotonicity

Assume /1 is admissible. Remember that so if < follows

and we expect that although this does not have to be the case.

Here and SO

58

Monotonicity

o If it is always the case that then is called

. is monotonic if and only if it obeys the

where « is the action moving us from - to

If is monotonic we can make a simple alteration and use

This is called the equation.

59

The pathmax equation

Why does this make sense?

The fact that tells us the cost of a path through - is (because
is admissible).

But - is . So to say that makes no sense.

60

A* graph search is optimal for monotonic heuristics

The crucial fact from which optimality follows is that if is monotonic then
the values of along any path are non-decreasing.

We therefore have the following situation:

You can’t deal with s’ until everything with

f(s)
f(s") < f(s') has been dealt with.
&)
/ \ o / }; /N
AN h
/AR ~
Consequently everything with gets explored. Then one or more

things with get found (not necessarily all goals).

61

A* search is complete

A* search is provided:

1. The graph has
2. There is a such that has

Why is this? The search expands nodes according to increasing
only way it can fail to find a goal is if there are

There are two ways this can happen:

1. There is a node with an

2. There is a path with an but a

62

. So: the

Complexity

We won'’t be the following, but they are

« A* search has a further desirable property: it is

« This means that no other optimal algorithm that works by constructing paths
from the root can

. : despite its good properties we're not done yet...

e ...A* search unfortunately still has
unless satisfies a very stringent condition that is generally unrealistic:

where denotes the cost from - to the goal.

« As A* search also stores all the nodes it generates: once again it is generally

63

IDA* - iterative deepening A* search

How might we the way in which A* search uses ?
- [terative deepening search used depth-first search with a that
1s

. does the same thing

64

IDA* - iterative deepening A* search

The function searches from a specified state
[t returns either a path from - to a goal, or the value to try for the
limit on

1 function contour (s, fLimit, path)
2 nextF = oo;

3 | if f(s) > fLimit then

4 | return (1], f(s));

if goal(s) then

6 return (s :: path, fLimit)

7 | for s’ € expand(s) do

8 (newPath, newF) = contour(s, fLimit, s :: path);
9 if newPath ! = [| then

10 L return (newPath, fLimit);

11 | nextF = min(nextF, newF);

12 | return ([], nextF);

65

IDA* - iterative deepening A* search

S B N T T CR

N

function iterativeDeepeningAStar()
fLimit = f(so);
while true do

(path, fLimit) = contour (s, fLimit, []);
if path ! = [] then

L return path;

if fLimit == oo then

L return [[;

66

IDA* - iterative deepening A* search

This is a little tricky to unravel, so here is an example:

/I\O N
A . R B R
PAENTREN P P
. N N N
| 4 | ~ 4 | ~
s ~ s 7
N N

. ~
~ | ~ // | ~ // | ~
e | N - I S - | AN
- -
/ 5 \ / 5 \ / 5 \
- ~ (D/ \\%:) (D/ \\%)
0 2N 2N 20 0 2N 2N 20 0
VAN VAN VAN VAN VAN VAN VAN VAN VAN
VAL VAL VAL VAL VAL VAL VAL VAL VAL
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ | \ / | \ / | \ / | \ / I \ / | \ / | \ / | \ / I \

Initially, the algorithm looks ahead and finds the cost that is
its current | cost limit. The new limit is

67

IDA* - iterative deepening A* search

It now does the same again:

e ~
- ~

// \\ - ~

- ~ - ~

- ! ~ Pid | S~

- ~

/ CY) \ 10 O/ g) \D

/N N N N N /N /N

SRS R RS RS RN RS R R R

- 1

Anything with | cost equal to the current limit gets explored, and the
algorithm keeps track of the cost that is its current limit.
The new limit is

68

IDA* - iterative deepening A* search

And again:

- ~
- ~
- | ~
- ~
- ~
s 5 ~
/‘\ /‘\ /‘\

VAR VARE VARE //‘\\ //‘\\ VARE //‘\\ //‘\\
VAL VAL VAL VAL VAL VAL VAL VAL
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \

X

The new limit is /, so at the next iteration the three arrowed nodes will be ex-
plored.

69

IDA* - iterative deepening A* search

Properties of IDA™:

« It is complete and optimal under the same conditions as A*.
- It is often good if we have step costs equal to

« It does not require us to maintain a sorted queue of nodes.
o It only requires

o The time taken depends on the number of values /: can take.

If / takes enough values to be problematic we can increase the limit on / by a
fixed - at each stage, guaranteeing a solution at most « worse than the optimum.

70

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory limitations is

the

try to use /, but only use by doing a depth-first search with a
few modifications:

1. We remember the for the best alternative state - we’ve seen so far on
the way to the state - we’re currently considering.
2. If < has

« We go back and explore the best alternative...

. ...and as we retrace our steps we replace the / cost of every state we've
seen in the current path with

The replacement of | values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we can easily return to it
later.

71

Recursive best-first search (RBFS)

12
13
14
15
16

function rbfs (s, fLimit)

if goal(s) then

~ return (SOME s, fLimit);
f expand (s) = () then
_ return (NONE, c0);

for each s’ € expand(s) do
f(s") = maximum(f(s'), f(s));
while true do
best = ¢ € expand (s) with smallest f(s');
if f(best) > fLimit then
L return (NONE, f(best));

nextBest = s’ € expand (s) with second smallest f(s);
(result, f') = rbfs (best, minimum(fLimit, f(nextBest)));
f(best) = f";
if result ! = NONE then

L return (result, f');

o

72

Recursive best-first search (RBFS): an example

This function is called using rbfs(sg, c0) to begin the process.

Function call number

3

fLimit; = oo
7 4Y best; 5
A N . nextBest; =5
PR TN 7 ~ 7 ~
-7 I RN e I N . I AN
~ ~ - | ~

-
- ! ~ - | ~ - ~
- -
e ! N - | NN - | S
C / % \ : / % \ / % \
- ~ O/ \Y) Q/ \%
28 28 28 2N 2N 2N 2N 20 2N
7N 7N 7N /N /N /N VAN VAN 7N
VAR VAR VAR VAR VAR VAR VAR VAR VAR
/ [N / [N / [N s \ s \ s \ / ! \ / ! \ / [N
/ | \ / | \ / | \ / | A\ / | A\ / | A\ / | A\ / | A\ / | \

Now perform the recursive function call (results, f') = rbfs(best, 5)

so f(best;) takes the returned value f’

73

Recursive best-first search (RBFS): an example

Function call number

3 fLimit; = oo
fLimitQ =5

5
. nextBest; =5
[N

.
.

. N

. < R4 | N

s ~ ~

- ! N R | S

. <

. ! < 5 10 Q// ! \%

/‘\ /‘\ /‘\ /‘ /‘\ /‘\ /‘\ /‘\

/ \ / \ / \ / / \ / \ / \ / \

RS U RUPE EUE RN RN RS R R

) bests
\

Now perform the recursive function call (results, f’) = rbfs(bests, 5)

so f(bests) takes the returned value f’

74

Recursive best-first search (RBFS): an example

Function call number

fLimit; = oo
3 fLimity = 5
fLimits = 5

5
. nextBest; =5
! > ~

5 replaced by 1

R AR //// | N
Pid I AN - I \\\
o ! v 0 o } v
//:\\ //:\\ //:\\ //:\\ //:\\ //:\\ //:\\ //:\\
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \
JEVY LIV LAY B WL IV LEY LEDY LEV LY

nextBests = 11 bests

besty

Now so the function call returns into
and

75

Recursive best-first search (RBFS): an example

The while loop for function call * now repeats:

fLimits = 5
4 replaced by 9
7 best; 5
N . nextBest; = 5

PATRN PR N
e ! N e ! S
7 l . 5replacedby/ i \ e : s
- s best g T~
o o el 10 o ! 0
/‘\ /‘\ /‘\ /‘\ /‘\ /‘\ /‘\ /‘\

RS RS RET RTIE RS RO S R R

Now so the function call returns into
and

76

Recursive best-first search (RBFS): an example

The while loop for function call | now repeats:

4 replaced by 9

~_nextBest; = 7

//’/ 3 \\\\ 5replacedby/
A T ’ g

VAREEN VAREEN VAREEN VAREEN VAREEN //‘\\ //‘\\ //‘\\
VAR VAR VAR VAR VAR VAR VAR VAR
/ | \ / | \ / | \ / | \ / | \ / | \ / | \ / | \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \

We do a further function call to expand the new best node, and so on...

77

Recursive best-first search (RBFS)

Some nice properties:

o If // is admissible then RBFS is optimal.
« Memory requirement is

« Generally more efficient than IDA*.
And some less nice ones:

 Time complexity is hard to analyse, but can be exponential.

 Can spend a lot of time
To some extent IDA* and RBFS throw the baby out with the bathwater.

o They limit memory too harshly, so...

e ...we can try to use

MA* and SMA* will not be covered in this course...

78

Local search

Sometimes, it’s only the that we're interested in. The needed to get
there is irrelevant.

« For example: VLSI layout, factory design, automatic programming...
« We are now simply searching for a state that is in some sense

« This is also known as

This leads to the remarkably simple concept of

79

Local search

Instead of trying to find a path from start state to goal, we explore the
of the graph, meaning those states one edge away from the one we’re at:

We assume that we have a function such that indicates
preferable to

80

1S

The m-queens problem

You may be familiar with the

Find an arrangement of //» queens on an /» by /" board such that no queen is
attacking another.

In the Prolog course you may have been tempted to generate permutations of
row numbers and test for attacks.

This is a for large /1. (Imagine)

81

The m-queens problem

We might however consider the following:

- A state - for an 11/ by 1 board is a sequence of //» numbers drawn from the

set , possibly including repeats.

« We move from one state to another by moving a to alterna-
tive row.

« We define to be the number of pairs of queens attacking one-another in

the new position®. (Regardless of whether or not the attack is direct.)

?Note that we actually want to here. This is equivalent to maximizing — /, and I will generally use whichever seems more appropriate.

82

Here, we have
shown.

As we can choose which queen to move, each state in fact has

the graph.

The m-queens problem

and the

values for the undecided queen are

7|\

M

™

83

neighbours in

Hill-climbing search

is remarkably simple:

1 Generate a start state s;

2 while true do

3 | Generate the neighbours N = {s1,...,s,} of s;
o | Ny = {f(s)lsi € N}

5 | if max Ny < f(s) then

6 L return s;

7 s = s; € N with maximum f(s;);

In fact, that looks so simple that it’s amazing the algorithm is at all usetful.

In this version we stop when we get to a node with no better neighbour.

84

Hill-climbing search: the reality

We might alternatively allow by changing the stopping condi-
tion:

1 if max Ny < f(s) then
2 L return s;

Why would we consider doing this?

85

Hill-climbing search: the reality

In reality, nature has a number of ways of shaping |/ to complicate the search
process.

f(s) Global maximum

A /

Local maxima

DDDDD

Plateau

Y
w

moves allow us to move across

However, should we ever find a then we’ll return it: we won’t
keep searching to find a

86

Hill-climbing search: the reality

Of course, the fact that we’re dealing with a means we need to think
of something like the preceding figure, but in a :
and this makes the problem

There is a body of techniques for trying to overcome such problems. For example:

. Choose a neighbour at random, perhaps with a prob-
ability depending on its | value. For example: let denote the neighbours
of 5. Define

Then

87

Hill-climbing search: the reality

. Generate neighbours at random. Select the first one that is better
than the current one. (Particularly good if nodes have)
. Run a procedure /' times with a limit on the time allowed

for each run.
generating a start state at random may itself not be straightforward.
. Similar to stochastic hill-climbing, but start with lots of
random variation and
in some cases this is an effective procedure, although the time
taken may be excessive if we want the proof to hold.
. Maintain / states at any given time. At each search step, find
the successors of each, and retain the best /' from «// the successors.

this is the same as random restarts.

88

Gradient ascent and related methods

For some problems®—we do not have a search graph, but a

-30

Typically, we have a function and we want to find

3For the purposes of this course, the is a notable example.

89

Gradient ascent and related methods

In a single dimension we can clearly try to solve

to find the , and use
to find a global .In the equivalent is to solve
where

and the equivalent of the second derivative is the matrix

90

Gradient ascent and related methods

However this approach is usually regardless of dimen-
sionality.

The simplest way around this is to employ

» Start with a randomly chosen point

« Using a small , iterate using the equation

This can be understood as follows:

o At the current point ¢, the gradient tells us the and
of the slope at

 Adding therefore moves us a

This is perhaps more easily seen graphically...

91

Gradient ascent and related methods

Here we have a simple

50
0 |
E -2000
S
-4000 |
P /' /
50
50
7, 50 -50
With the procedure is clearly effective at finding the maximum.

Note however that

, and in a more realistic problem

92

Gradient ascent and related methods

Simply increasing the step size < can lead to a different problem:

50 50 P

T2

o

T2

o
\\

50 LA 50

.50 0 50 .50 0 50
X1
e=2.0
50 pooo
: 100
§ o s oF
,2; -100
.50 s,
.50 0 50
x1

We can easily jump too far...

93

Gradient ascent and related methods

There is a large collection of more sophisticated methods. For example:

. increase « until and maximise in the resulting interval.
Then choose a new direction to move in. , the
and methods etc.

« Use | | to exploit knowledge of the local shape of /. For example the
and methods etc.

94

