
Arti�cial Intelligence

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Copyright © Sean Holden 2002-2020.

1

Arti�cial Intelligence

Introduction: aims, history, rational action, and agents

Reading: AIMA chapters 1, 2, 26 and 27.
2

Introduction: what are our aims?

Arti�cial Intelligence (AI) is currently at the top of its periodic hype-cycle.

Much of this has been driven by philosophers and people with something to sell.

3

Introduction: what are our aims?

What is the purpose of Arti�cial Intelligence (AI)? If you’re a philosopher or a
psychologist then perhaps it’s:

• To understand intelligence.
• To understand ourselves.

Philosophers have worked on this for at least 2000 years. �ey’ve also wondered
about:

• Can we do AI? Should we do AI? What are the ethical implications?
• Is AI impossible? (Note: I didn’t write possible here, for a good reason…)

Despite 2000 years of work by philosophers, there’s essentially nothing in the
way of results.

4

Introduction: what are our aims?

Luckily, we were sensible enough not to pursue degrees in philosophy—we’re
scientists/engineers, so while we might have some interest in such pursuits, our
perspective is di�erent:

• Brains are small (true) and apparently slow (not quite so clear-cut), but in-
credibly good at some tasks—we want to understand a speci�c form of com-
putation.

• It would be nice to be able to construct intelligent systems.
• It is also nice to make and sell cool stu� .

Historically speaking, this view seems to be the more successful. . .

AI has been entering our lives for decades, almost without us being aware of it.

But be careful: brains are much more complex than you think.

5

Introduction: now is a fantastic time to investigate AI

In many ways this is a young �eld, having only really got under way in 1956
with the Dartmouth Conference.

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

• �is means we can actually do things. It’s as if we were physicists before
anyone thought about atoms, or gravity, or. . . .

• Also, we know what we’re trying to do is possible. (Unless we think humans
don’t exist. NOW STEP AWAY FROM THE PHILOSOPHY before SOMEONE
GETS HURT‼‼)

Perhaps I’m being too hard on them; there was some good groundwork: Socrates wanted an algorithm for “piety” ,
leading to Syllogisms. Ramon Lull’s concept wheels and other a�empts at mechanical calculators. Rene Descartes’
Dualism and the idea of mind as a physical system. Wilhelm Leibnitz’s opposing position of Materialism. (�e
intermediate position: mind is physical but unknowable.) �e origin of knowledge: Francis Bacon’s Empiricism, John
Locke: “Nothing is in the understanding, which was not �rst in the senses” . David Hume: we obtain rules by repeated
exposure: Induction. Further developed by Bertrand Russell and in the Con�rmation �eory of Carnap and Hempel.

More recently: the connection between knowledge and action? How are actions justi�ed? If to achieve the end you
need to achieve something intermediate, consider how to achieve that, and so on. �is approach was implemented
in Newell and Simon’s 1957 General Problem Solver (GPS).

6

What has been achieved?

Arti�cial Intelligence (AI) is currently at the top of its periodic hype-cycle.

As a result, it’s important to maintain some sense of perspective.

Notable successes:

• Perception: vision, speech processing, inference of emotion from video, scene
labelling, touch sensing, arti�cial noses…

• Logical reasoning: prolog, expert systems, CYC, Bayesian reasoning, Wat-
son…

• Playing games: chess, backgammon, go, robot football…
• Diagnosis of illness in various contexts…
• �eorem proving: Robbin’s conjecture, formalization of the Kepler conjec-

ture…
• Literature and music: automated writing and composition…
• And many more… (most of which don’t include the word ‘DEEP’!)

7

What has been achieved?

Arti�cial Intelligence (AI) is currently at the top of its periodic hype-cycle.

As a result, it’s important to maintain some sense of perspective.

�ere are equally many areas in which we currently can’t do things very well:

“Sleep that knits up the ragged sleeve of care”

is a line from Shakespeare’s Macbeth.

On the other hand…

When AI has a success, the ideas in question tend to stop being called AI .

Do you consider the fact that your phone can do speech recognition to be a form
of AI?

8

�e nature of the pursuit

What is AI? �is is not necessarily a straightforward question.

It depends on who you ask…

We can �nd many de�nitions and a rough categorisation can be made depending
on whether we are interested in:

• �e way in which a system acts or the way in which it thinks.
• Whether we want it to do this in a human way or a rational way.

Here, the word rational has a special meaning: it means doing the correct thing
in given circumstances.

9

What is AI, version one: acting like a human

Alan Turing proposed what is now known as the Turing Test.

• A human judge is allowed to interact with an AI program via a terminal.
• �is is the only method of interaction.
• If the judge can’t decide whether the interaction is produced by a machine or

another human then the program passes the test.

In the unrestricted Turing test the AI program may also have a camera a�ached,
so that objects can be shown to it, and so on.

�e Turing test is informative, and (very!) hard to pass. (See the Loebner Prize…)

• It requires many abilities that seem necessary for AI, such as learning. BUT :
a human child would probably not pass the test.

• Sometimes an AI system needs human-like acting abilities—for example ex-
pert systems o�en have to produce explanations—but not always.

10

What is AI, version two: thinking like a human

�ere is always the possibility that a machine acting like a human does not ac-
tually think. �e cognitive modelling approach to AI has tried to:

• Deduce how humans think—for example by introspection or psychological ex-
periments.

• Copy the process by mimicking it within a program.

An early example of this approach is the General Problem Solver produced by
Newell and Simon in 1957. �ey were concerned with whether or not the pro-
gram reasoned in the same manner that a human did.

Computer Science + Psychology = Cognitive Science

11

What is AI, version three: thinking rationally and the “laws of thought”

�e idea that intelligence reduces to rational thinking is a very old one, going at
least as far back as Aristotle as we’ve already seen.

�e general �eld of logic made major progress in the 19th and 20th centuries,
allowing it to be applied to AI.

• We can represent and reason about many di�erent things.
• �e logicist approach to AI.

�is is a very appealing idea, but there are obstacles. It is hard to:

• Represent commonsense knowledge.
• Deal with uncertainty.
• Reason without being tripped up by computational complexity.
• Sometimes it’s necessary to act when there’s no logical course of action.
• Sometimes inference is unnecessary (re�ex actions).

�ese will be recurring themes in this course, and inMachine Learning and Bayesian
Inference next year.

12

What is AI, version four: acting rationally

Basing AI on the idea of acting rationally means a�empting to design systems
that act to achieve their goals given their beliefs.

• �inking about this in engineering terms, it seems almost inevitably to lead
us towards the usual sub�elds of AI. What might be needed?

• �e concepts of action, goal and belief can be de�ned precisely making the
�eld suitable for scienti�c study.

• �is is important: if we try to model AI systems on humans, we can’t even
propose any sensible de�nition of what a belief or goal is.

• In addition, humans are a system that is still changing and adapted to a very
speci�c environment.

• All of the things needed to pass a Turing test seem necessary for rational
acting, so this seems preferable to the acting like a human approach.

• �e logicist approach can clearly form part of what’s required to act ratio-
nally, so this seems preferable to the thinking rationally approach alone.

As a result, we will focus on the idea of designing systems that act rationally.
13

Other �elds that have contributed to AI

14

What’s in this course?

�is course introduces some of the fundamental areas that make up AI:

• An outline of the background to the subject.
• An introduction to the idea of an agent.
• Solving problems in an intelligent way by search.
• Solving problems represented as constraint satisfaction problems.
• Playing games.
• Knowledge representation, and reasoning.
• Planning.
• Learning using neural networks.

Strictly speaking, this course covers what is o�en referred to as “GoodOld-Fashioned
AI” . (Although “Old-Fashioned” is a misleading term.)

�e nature of the subject changed when the importance of uncertainty was fully
appreciated. Machine Learning and Bayesian Inference covers this more recent
material.

15

What’s not in this course?

• �e classical AI programming languages Prolog and Lisp.
• A great deal of all the areas on the last slide!
• Perception: vision, hearing and speech processing, touch (force sensing, know-

ing where your limbs are, knowing when something is bad), taste, smell.
• Natural language processing.
• Acting on and in the world: robotics (e�ectors, locomotion, manipulation),
control engineering, mechanical engineering, navigation.

• Areas such as genetic algorithms/programming, swarm intelligence, arti�cial
immune systems and fuzzy logic, for reasons that I will expand upon during
the lectures.

• Uncertainty and much further probabilistic material. (You’ll have to wait until
next year.)

16

Introductory reading that isn’t nonsense

• Francis Crick, “�e recent excitement about neural networks” , Nature (1989) is
still entirely relevant:

www.nature.com/nature/journal/v337/n6203/abs/337129a0.html

• �e Loebner Prize in Arti�cial Intelligence:

aisb.org.uk/aisb-events/

provides a good illustration of how far we are from passing the Turing test.
• Marvin Minsky, “Why people think computers can’t” , AI Magazine (1982) is

an excellent response to nay-saying philosophers.

http://web.media.mit.edu/∼minsky/

• Go: www.nature.com/nature/journal/v529/n7587/full/nature16961.html

• �e Cyc project: www.cyc.com

• AI at Nasa Ames:

www.nasa.gov/centers/ames/research/areas-of-ames-ingenuity-autonomy-

and-robotics

17

Introductory reading that isn’t nonsense

• AI in the UK: ready, willing and able?
House of Lords, Select Commi�ee on Arti�cial Intelligence

https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf

• Machine learning: the power and promise of computers that learn by example
�e Royal Society

https://royalsociety.org/topics-policy/projects/machine-learning/

• Building machines that learn and think like people
Brenden M. Lake et al, Behavioral and Brain Sciences, Cambridge University
Press, 2017.

18

Text book

�e course is based on the relevant parts of:

Arti�cial Intelligence: A Modern Approach, �ird Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

and an alternative source is:

Arti�cial Intelligence: Foundations of Computational Agents, Second Edition
(2017). David L. Poole and Alan K. Mackworth, Cambridge University Press.

For more depth on speci�c areas see:

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.

Cawsey, A. (1998). �e essence of arti�cial intelligence. Prentice Hall.

Ghallab, M., Nau, D. and Traverso, P. (2004). Automated planning: theory and
practice. Morgan Kaufmann.

Bishop, C.M. (2006). Pa�ern recognition and machine learning. Springer.

Brachman, R. J. and Levesque, H. J. (2004). Knowledge Representation and Reason-
ing. Morgan Kaufmann.

19

Prerequisites

�e prerequisites for the course are: �rst order logic, some algorithms and data
structures, discrete and continuous mathematics, and basic computational com-
plexity.

DIRE WARNING:

No doubt you want to know something about machine learning, given the recent
peek in interest.

In the lectures on machine learning I will be talking about neural networks.

I will introduce the backpropagation algorithm, which is the foundation for both
classical neural networks and the more fashionable deep learning methods.

�is means you will need to be able to di�erentiate and also handle vectors and
matrices.

If you’ve forgo�en how to do this you WILL get lost—I guarantee it‼!

20

Prerequisites

Self test:

1. Let
f (x1, . . . , xn) =

n∑
i=1

aix
2
i

where the ai are constants. Can you compute ∂f/∂xj where 1 ≤ j ≤ n?
2. Let f (x1, . . . , xn) be a function. Now assume xi = gi(y1, . . . , ym) for each xi

and some collection of functions gi. Assuming all requirements for di�eren-
tiability and so on are met, can you write down an expression for ∂f/∂yj
where 1 ≤ j ≤ m?

If the answer to either of these questions is “no” then it’s time for some revision.
(You have about three weeks notice, so I’ll assume you know it!)

21

And �nally. . .

�ere are some important points to be made regarding computational complexity.

First, you might well hear the term AI-complete being used a lot. What does it
mean?

AI-complete: only solvable if you can solve AI in its entirety.

For example: high-quality automatic translation from one language to another.

To produce a genuinely good translation ofMoby Dick from English to Cantonese
is likely to be AI-complete.

22

And �nally. . .

More practically, you will o�en hear me make the claim that everything that’s at
all interesting in AI is at least NP-complete.

�ere are two ways to interpret this:

1. �e wrong way: “It’s all a waste of time.1” OK, so it’s a partly understandable
interpretation. BUT the fact that Boolean satis�ability is intractable does not
mean we can’t solve large instances in practice. . .

2. �e right way: “It’s an opportunity to design nice approximation algorithms.”
In reality, the algorithms that are good in practice are ones that try to o�en
�nd a good but not necessarily optimal solution, in a reasonable amount of
time and memory.

1In essence, a comment on a course assessment a couple of years back to the e�ect of: “Why do you teach us this stu� if it’s all futile?”

23

Agents

�ere are many di�erent de�nitions for the term agent within AI.

Allow me to introduce EVIL ROBOT.

MUST ENSLAVE
EARTH!!! Dr Holden
will be our GLORIOUS
LEADER!!!

Environment

Sense

Act

We will use the following simple de�nition: an agent is any device that can sense
and act upon its environment.

24

Agents

�is de�nition can be very widely applied: to humans, robots, pieces of so�ware,
and so on.

We are taking quite an applied perspective. We want to make things rather than
copy humans. So:

1. How can we judge an agent’s performance?
2. How can an agent’s environment a�ect its design?
3. Are there sensible ways in which to think about the structure of an agent?

Recall that we are interested in devices that act rationally, where ‘rational’ means
doing the correct thing under given circumstances.

25

Measuring performance

Item 1: How can we judge an agent’s performance?

• Any measure of performance is likely to be problem-speci�c.
– Even a simple email �lter is an agent—it can sense and act. Here the per-

formance measure is straightforward.
– For a self-driving car, it is more complicated!

• We’re usually interested in expected, long-term performance.
– Expected performance because usually agents are not omniscient—they

don’t infallibly know the outcome of their actions.
(It is rational for you to enter this lecture theatre even if the roof falls in
today. An agent capable of detecting and protecting itself from a falling
roof might be more successful than you, but not more rational.

– Long-term performance because it tends to lead to be�er approximations
to what we’d consider rational behaviour.

26

Environments

Item 2: How can an agent’s environment a�ect its design?

Some common a�ributes of an environment have a considerable in�uence on
agent design.

• Accessible/inaccessible: do percepts tell you everything you need to know
about the world?

• Deterministic/non-deterministic: does the future depend predictably on the
present and your actions?

• Episodic/non-episodic is the agent run in independent episodes.
• Static/dynamic: can the world change while the agent is deciding what to do?
• Discrete/continuous: an environment is discrete if the sets of allowable per-

cepts and actions are �nite.
• For multiple agents: whether the situation is competitive or cooperative, and

whether communication is required.

27

Programming agents

Item 3: Are there sensible ways in which to think about the structure of an agent?

A basic agent can be thought of as working according to a straightforward un-
derlying process. To achieve some goal:

• Gather perceptions.
• Update working memory to take account of them.
• On the basis of what’s in the working memory, choose an action to perform.
• Update the working memory to take account of this action.
• Do the chosen action.

Obviously, this hides a great deal of complexity:

• A percept might arrive while an action is being chosen.
• �e world may change while an action is being chosen.
• Actions may a�ect the world in unexpected ways.
• We might have multiple goals, which interact with each other.
• And so on…

28

Keeping track of the environment, and having a goal

It seems reasonable that an agent should maintain:

• A description of the current state of its environment.
• Knowledge of how the environment changes independently of the agent.
• Knowledge of how the agent’s actions a�ect its environment.

�is requires us to do knowledge representation and reasoning .

It also seems reasonable that an agent should choose a rational course of action
depending on its goal.

• If an agent has knowledge of how its actions a�ect the environment, then it
has a basis for choosing actions to achieve goals.

• To obtain a sequence of actions we need to be able to search and to plan .

29

Goal-based agents

We now have a basic design that looks something like this:

Description of Goal

Infer

Update

Percept

Description: current environment

Description: e�ect of actions

Description: behaviour of environment

Update

Action/Action sequence

30

Utility-based agents

Introducing goals is still not the end of the story.

• �ere may be many sequences of actions that lead to a given goal, and some
may be preferable to others.

• We might need to trade-o� con�icting goals, for example speed and safety.
• An agent may have several goals, but not be certain of achieving any of them.

Can it trade-o� the likelihood of reaching a goal against the desirability of
ge�ing there?

A utility function maps a state to a number representing the desirability of that
state.

Maximising expected utility over time forms a fundamental model for the design
of agents.

Unfortunately, there is insu�cient time in this course to properly explore agents
based on utility.

31

Learning agents

It seems reasonable that an agent should learn from experience :

Learner

Description of Goal

Feedback

Infer

Update

Percept

Description: current environment

Description: e�ect of actions

Description: behaviour of environment

Update

Action/Action sequence

Update

What might this entail?

32

Learning agents

Learning mainly requires two additions:

1. �e learner needs some form of feedback on the agent’s performance. �is
can come in several di�erent forms.

2. �e learner needs a means of generating new behaviour in order to �nd out
about the world.

�e second point leads to an important trade-o�:

1. Should the agent spend time exploiting what it’s learned so far, if it’s achieving
a level of success, or…

2. …should the agent try new things, exploring the environment on the basis
that it might learn something really useful even if it performs worse in the
short term?

33

Arti�cial Intelligence

Problem solving by search

Reading: AIMA chapters 3 and 4.
34

Problem solving by search

We begin with what is perhaps the simplest collection of AI techniques: those al-
lowing an agent existing within an environment to search for a sequence of actions
that achieves a goal.

Search algorithms apply to a particularly simple class of problems—we need to
identify:

• An initial state s0 from a set S of possible states.
�is models the agent’s situation before anything else happens.

• A set of actions, denoted A.
�ese are modelled by specifying what state will result on performing any
available action in any state.
We can model this using a function action : A× S → S: if the agent is in
state s and performs action a then its new state is action(a, s).

• A goal test: we can tell whether or not the state we’re in corresponds to a
goal.
We can model this using a function goal : S → {true, false}.

35

Problem solving by search

We also need the idea of path cost.

We need another function cost : A× S → R. �is denotes the cost of perform-
ing an action a in state s.

If the agent starts in state s0 and takes a sequence of actions a0, a1, . . . , an then
it moves through a sequence of states

s0
cost(a0,s0)−−−−−−→ s1

cost(a1,s1)−−−−−−→ s2
cost(a2,s2)−−−−−−→ · · · cost(an,sn)−−−−−−→ sn+1

with si+1 = action(ai, si). We then de�ne the path cost of this path as

p(sn+1) =

n∑
i=0

cost(ai, si).

We generally want a path to a goal that has minimim path cost.

Note that you have already seen problems like this…

36

Problem solving by search

You have already seen problems like this…

• Foundations of Computer Science: talks about searching in trees.
It covers depth-�rst, breadth-�rst and iterative deepening search.

• Algorithms: talks about searching in graphs.
It also covers depth-�rst and breadth-�rst search, from a more formal per-
spective.

�is is all important stu�, but there’s a problem: none of these methods works in
practice for typical AI problems!

Essentially, the problem is that they are too naı̈ve in the way that they choose a
state to explore at each step.

I’m going to assume that you know this material and move on…

37

Problem solving by search

A simple example: the 8-puzzle.

3 5

1 4 2

7 8 6

3 5

4 2

7 8 6

1

3 5

2

7 8 6

1

4

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

Action

Action

Start State

Goal State

Further actions

From the pre-PC dark ages. Christmas was grim…

38

Problem solving by search

Here we have:

• Start state: a randomly-selected con�guration of the numbers 1 to 8 arranged
on a 3× 3 square grid, with one square empty.

• Goal state: the numbers in ascending order with the bo�om right square
empty.

• Actions: left, right, up, down. We can move any square adjacent to the
empty square into the empty square. (It’s not always possible to choose from
all four actions.)

• Path cost: 1 per move.

�e 8-puzzle is very simple. However general sliding block puzzles are a good
test case. �e general problem is NP-complete. �e 5× 5 version has about 1025
states, and a random instance is in fact quite a challenge.

39

Problem solving by search

Problems of this kind are very simple, but a surprisingly large number of appli-
cations have appeared:

• Route-�nding/tour-�nding.
• Layout of VLSI systems.
• Navigation systems for robots.
• Sequencing for automatic assembly.
• Searching the internet.
• Design of proteins.

and many others…

Problems of this kind continue to form an active research area.

40

Search trees versus search graphs

We need to make an important distinction between search trees and search graphs.

as opposed to

• In a tree only one path can lead to a given state.
• In a graph a state can be reached via possibly multiple paths.
• In a graph we may also encounter cycles.

41

Search trees versus search graphs

Graphs can lead to problems:

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

B

C

D

A

B B

C C C

.

�e sliding blocks puzzle for example su�ers this way.

So: we start by assuming the search is taking place on a tree.

42

�e basic tree-search algorithm

We need to de�ne one more function: expand takes any state s. It applies all
actions that can be applied in s and returns the set of the resulting states:

expand(s) = {s′|s′ = action(a, s) where a is an action possible in s}.

�e algorithm for searching in a tree then looks like this:

1 fringe = [s0];
2 while true do
3 if fringe.empty() then
4 return NONE;
5 s = fringe.remove();
6 if goal(s) then
7 return (SOME s);
8 fringe.addAll(expand(s));

�e search strategy is set by using a priority queue to implement the fringe.

�e de�nition of priority then sets the way in which the tree is searched.

43

�e basic tree-search algorithm

�e process looks like this:

Not yet investigated

In the fringe, but not expanded

Expanded

At each iteration, one node from the fringe is expanded. In general, if the branch-
ing factor is b then the layer at depth d can have bd states.

�e entire tree to depth d can have
∑d

i=0 b
d = bd+1−1

b−1 states.

44

�e performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

• Whether a solution is found.
• Whether the solution found is a good one in terms of path cost.
• �e cost of the search in terms of time and memory.

So
the total cost = path cost + search cost

If a problem is highly complex it may be worth se�ling for a sub-optimal solution
obtained in a short time.

And we are interested in:

Completeness: does the strategy guarantee a solution is found?

Optimality: does the strategy guarantee that the best solution is found?

Once we start to consider these, things get a lot more interesting…

45

Basic search algorithms

We can immediately de�ne some familiar tree search algorithms:

• New nodes are added to the head of the queue. �is is depth-�rst search.
• New nodes are added to the tail of the queue. �is is breadth-�rst search.

We will not dwell on these, as they are both completely hopeless in practice.

Why is breadth-�rst search hopeless?

• �e procedure is complete: it is guaranteed to �nd a solution if one exists.
• �e procedure is optimal if the path cost is a non-decreasing function of node-

depth.
• �e procedure has exponential complexity for both memory and time.

In practice it is the memory requirement that is problematic.

46

Basic search methods

With depth-�rst search: for a given branching factor b and depth d the memory
requirement is O(bd).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

�is is because we need to store nodes on the current path and the other unex-
panded nodes.

�e time complexity is still O(bd) (if you know you only have to go to depth d).

�e search is no longer optimal, and may not be complete.

Iterative-deepening combines the two, but we can do be�er .

47

Uniform-cost search

How might we change tree search to try to get to an optimal solution while lim-
iting the time and memory needed?

�e key point: so far we only distinguish goal states from non-goal states!

None of the searches you’ve seen so far tries to prioritize the exploration of good
states‼!

What is a good state?

• Well, at any point in the search we can work out the path cost p(s) of whatever
state s we’ve got to.

• How about using the p(s) as the priority for the priority queue?

�is is called Uniform-Cost Search.

In practice it doesn’t work very well: we need something more subtle.

But it does suggest the idea of an evaluation function: a function that a�empts to
measure the desirability of each state.

48

Heuristics

Why is path cost not a good evaluation function? It is not directed in any sense
toward the goal.

A heuristic function, usually denoted h(s), is one that estimates the cost of the
best path from any state s to a goal. If s is a goal then h(s) = 0.

· · ·

h(s) estimates cost to nearest goal.

p(s) is known when we get to s.

s0 s1 s2 s

sgoal

�is is a problem-dependent measure. We are required either to design it using
our knowledge of the problem, or by some other means.

�e last point is critical: AI is a long way from being independent of human inge-
nuity.

49

Example: route-�nding

Example: for route �nding a reasonable heuristic function is

h(s) = straight line distance from s to the nearest goal

s2s2

Goal

s0 s11 1

h(s2) = 1

h(s0) =
√
5

h(s1) =
√
2

Goal

s0 s1

Accuracy here obviously depends on what the roads are really like.

Can we use h(s) in choosing a state to explore? If it’s really good it can work
well, but we can still do be�er!

50

A? search

A? search is the classical AI-oriented search algorithm.

A? search combines the good points of:

• Using p(s) to know how far we’ve come.
• Using h(s) to estimate how far we have to go.

It does this in a very simple manner: it uses path cost p(s) and also the heuristic
function h(s) by forming

f (s) = p(s) + h(s).

So: f (s) is the estimated cost of a path through s.

By using this as a priority for exploring states we get a search algorithm that is
optimal and complete under simple conditions, and can be vastly superior to the
more naı̈ve approaches.

51

A? search

De�nition: an admissible heuristic h(s) is one that never overestimates the cost of
the best path from s to a goal.

Actual path to nearest goal.

h(s) estimates cost to nearest goal.

p(s) is known when we get to s.

· · ·

h(s) must underestimate this.

s2 s

sgoal

s0 s1

So if h′(s) denotes the actual distance from s to the goal we have

∀s.h(s) ≤ h′(s).

If h(s) is admissible then tree-search A? is optimal.

52

A? tree-search is optimal for admissible h(s)

To see that tree-search A? is optimal we reason as follows. Let Goalopt be an
optimal goal state with f (Goalopt) = p(Goalopt) = fopt (because h(Goalopt) = 0).

Goalopt

At some point Goal2 is in the fringe.

Can it be selected before s?
Goal2

s

Let Goal2 be a suboptimal goal state with f (Goal2) = p(Goal2) = f2 > fopt. We
need to demonstrate that the search can never select Goal2.

53

A? tree-search is optimal for admissible h(s)

Let s be a state in the fringe on an optimal path to Goalopt. So

fopt ≥ p(s) + h(s) = f (s)

because h is admissible.

Now say Goal2 is chosen for expansion before s. �is means that

f (s) ≥ f2

so we’ve established that

fopt ≥ f2 = p(Goal2).

But this means that Goalopt is not optimal: a contradiction.

And that’s all that’s needed for trees. But for searching on graphs we need a li�le
more…

54

Graph search

To search in graphs we need a way to make sure no state gets visited more than
once.

We need to add a closed list, and add a state to it when the state is �rst seen:

1 closed = [];
2 fringe = [s0];
3 while true do
4 if fringe.empty() then
5 return NONE;
6 s = fringe.remove();
7 if goal(s) then
8 return (SOME s);
9 if !closed.contains(s) then
10 closed.add(s);
11 fringe.addAll(expand(s));

55

Graph search

�ere are several points to note regarding graph search:

1. �e closed list contains all the expanded states.
2. �e closed list can be implemented using a hash table. So the time taken to
add or check membership can be managable.

3. Both worst case time and space are now proportional to the size of the state
space. (Which is BIG‼‼)

4. Memory: depth �rst and iterative deepening search are no longer linear space
as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new possibility even
if it is be�er than the �rst one. We may need to check which solution is be�er
and if necessary modify path costs and depths for descendants of the repeated
state.

Unfortunately last point breaks the proof…

56

A? graph search

Unfortunately last point breaks the proof…

• Graph search can discard an optimal route if that route is not the �rst one
generated.

• We could keep only the least expensive path. �is means updating, which is
extra work, not to mention messy, but su�cient to insure optimality.

• Alternatively, we can impose a further condition on h(s) which forces the best
path to a repeated state to be generated �rst.

�e required condition is called monotonicity. As

monotonicity −→ admissibility

this is an important property.

57

Monotonicity

Assume h is admissible. Remember that f (s) = p(s) + h(s) so if s′ follows s

p(s′) ≥ p(s)

and we expect that h(s′) ≤ h(s) although this does not have to be the case.

h(s′) = 1

s′

s
p(s) = 5

h(s) = 4

p(s′) = 6

Here f (s) = 9 and f (s′) = 7 so f (s′) < f (s).

58

Monotonicity

Monotonicity:

• If it is always the case that f (s′) ≥ f (s) then h(s) is called monotonic.
• h(s) is monotonic if and only if it obeys the triangle inequality.

h(s) ≤ cost(a, s) + h(s′)

where a is the action moving us from s to s′.

If h(s) is not monotonic we can make a simple alteration and use

f (s′) = max{f (s), p(s′) + h(s′)}

�is is called the pathmax equation.

59

�e pathmax equation

Why does this make sense?

h(s′) = 1

s′

s
p(s) = 5

h(s) = 4

p(s′) = 6

�e fact that f (s) = 9 tells us the cost of a path through s is at least 9 (because
h(s) is admissible).

But s′ is on a path through s. So to say that f (s′) = 7 makes no sense.

60

A? graph search is optimal for monotonic heuristics

�e crucial fact from which optimality follows is that if h(s) is monotonic then
the values of f (s) along any path are non-decreasing.

We therefore have the following situation:

f(s′′) < f(s′) has been dealt with.

f(s′)

f(s)
You can’t deal with s′ until everything with

Consequently everything with f (s′′) < fopt gets explored. �en one or more
things with fopt get found (not necessarily all goals).

61

A? search is complete

A? search is complete provided:

1. �e graph has �nite branching factor .
2. �ere is a �nite, positive constant c such that each action has cost at least c.

Why is this? �e search expands nodes according to increasing f (s). So: the
only way it can fail to �nd a goal is if there are in�nitely many nodes with
f (s) < f (Goal).

�ere are two ways this can happen:

1. �ere is a node with an in�nite number of descendants.
2. �ere is a path with an in�nite number of nodes but a �nite path cost.

62

Complexity

We won’t be proving the following, but they are good things to know:

• A? search has a further desirable property: it is optimally e�cient.
• �is means that no other optimal algorithm that works by constructing paths

from the root can guarantee to examine fewer nodes.
• BUT : despite its good properties we’re not done yet…
• …A? search unfortunately still has exponential time complexity in most cases

unless h(s) satis�es a very stringent condition that is generally unrealistic:

|h(s)− h′(s)| ≤ O(log h′(s))

where h′(s) denotes the real cost from s to the goal.
• As A? search also stores all the nodes it generates: once again it is generally
memory that becomes a problem before time.

63

IDA? - iterative deepening A? search

How might we improve the way in which A? search uses memory?

• Iterative deepening search used depth-�rst search with a limit on depth that
is gradually increased.

• IDA? does the same thing with a limit on f cost.

64

IDA? - iterative deepening A? search

�e function contour searches from a speci�ed state s as far as a speci�ed limit
fLimit on f .

It returns either a path from s to a goal, or the next biggest value to try for the
limit on f .

1 function contour(s, fLimit, path)
2 nextF =∞;
3 if f(s) > fLimit then
4 return ([], f(s));
5 if goal(s) then
6 return (s :: path, fLimit)

7 for s′ ∈ expand(s) do
8 (newPath, newF) = contour(s′, fLimit, s :: path);
9 if newPath ! = [] then
10 return (newPath, fLimit);
11 nextF = min(nextF, newF);
12 return ([], nextF);

65

IDA? - iterative deepening A? search

1 function iterativeDeepeningAStar()
2 fLimit = f(s0);
3 while true do
4 (path, fLimit) = contour(s0, fLimit, []);
5 if path ! = [] then
6 return path;
7 if fLimit ==∞ then
8 return [];

66

IDA? - iterative deepening A? search

�is is a li�le tricky to unravel, so here is an example:

4 5

3

7

Initially, the algorithm looks ahead and �nds the smallest f cost that is greater
than its current f cost limit. �e new limit is 4.

67

IDA? - iterative deepening A? search

It now does the same again:

9

3

10

7 4 5

5

Anything with f cost at most equal to the current limit gets explored, and the
algorithm keeps track of the smallest f cost that is greater than its current limit.
�e new limit is 5.

68

IDA? - iterative deepening A? search

And again:

7

3

7 4 5

5 9 10 19 12 7

8 12

�e new limit is 7, so at the next iteration the three arrowed nodes will be ex-
plored.

69

IDA? - iterative deepening A? search

Properties of IDA?:

• It is complete and optimal under the same conditions as A?.
• It is o�en good if we have step costs equal to 1.
• It does not require us to maintain a sorted queue of nodes.
• It only requires space proportional to the longest path.
• �e time taken depends on the number of values h can take.

If h takes enough values to be problematic we can increase the limit on f by a
�xed ε at each stage, guaranteeing a solution at most ε worse than the optimum.

70

Recursive best-�rst search (RBFS)

Another method by which we can a�empt to overcome memory limitations is
the Recursive Best-First Search (RBFS).

Idea: try to use f , but only use linear space by doing a depth-�rst search with a
few modi�cations:

1. We remember the f (s′) for the best alternative state s′ we’ve seen so far on
the way to the state s we’re currently considering.

2. If s has f (s) > f (s′):
• We go back and explore the best alternative…
• …and as we retrace our steps we replace the f cost of every state we’ve

seen in the current path with f (s).

�e replacement of f values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we can easily return to it
later.

71

Recursive best-�rst search (RBFS)

1 function rbfs(s, fLimit)
2 if goal(s) then
3 return (SOME s, fLimit);
4 if expand(s) = ∅ then
5 return (NONE,∞);
6 for each s′ ∈ expand(s) do
7 f(s′) = maximum(f(s′), f(s));
8 while true do
9 best = s′ ∈ expand(s) with smallest f(s′);

10 if f(best) > fLimit then
11 return (NONE, f(best));
12 nextBest = s′ ∈ expand(s) with second smallest f(s′);
13 (result, f ′) = rbfs (best, minimum(fLimit, f(nextBest)));
14 f(best) = f ′;
15 if result ! = NONE then
16 return (result, f ′);

72

Recursive best-�rst search (RBFS): an example

�is function is called using rbfs(s0,∞) to begin the process.

Function call number 1:

3

7 4 5best1

fLimit1 =∞

nextBest1 = 5

so f(best1) takes the returned value f ′

Now perform the recursive function call (result2, f ′) = rbfs(best1, 5)

73

Recursive best-�rst search (RBFS): an example

Function call number 2:

Now perform the recursive function call (result3, f ′) = rbfs(best2, 5)

fLimit1 =∞

5 9 10
best2

so f(best2) takes the returned value f ′

nextBest2 = 9

3

7 4 5best1 nextBest1 = 5

fLimit2 = 5

74

Recursive best-�rst search (RBFS): an example

Function call number 3 :

nextBest2 = 9

11 12 10

best3

5 replaced by 10

nextBest3 = 11

best2

fLimit1 =∞
fLimit2 = 5
fLimit3 = 5

3

7 4 5best1 nextBest1 = 5

5 9 10

Now f (best3) > fLimit3 so the function call returns (NONE, 10) into (result3, f ′)
and f (best2) = 10.

75

Recursive best-�rst search (RBFS): an example

�e while loop for function call 2 now repeats:

best2

fLimit2 = 5
fLimit1 =∞

5 9 10

11 12 10

5 replaced by 10

4 replaced by 9

3

7 4 5best1 nextBest1 = 5

Now f (best2) > fLimit2 so the function call returns (NONE, 9) into (result2, f ′)
and f (best1) = 9.

76

Recursive best-�rst search (RBFS): an example

�e while loop for function call 1 now repeats:

nextBest1 = 7
7 4 5

fLimit1 =∞

5 9 10

11 12 10

5 replaced by 10

4 replaced by 9

best1

3

We do a further function call to expand the new best node, and so on…

77

Recursive best-�rst search (RBFS)

Some nice properties:

• If h is admissible then RBFS is optimal.
• Memory requirement is O(bd)
• Generally more e�cient than IDA?.

And some less nice ones:

• Time complexity is hard to analyse, but can be exponential.
• Can spend a lot of time re-generating nodes.

To some extent IDA? and RBFS throw the baby out with the bathwater.

• �ey limit memory too harshly, so…
• …we can try to use all available memory.

MA? and SMA? will not be covered in this course…

78

Local search

Sometimes, it’s only the goal that we’re interested in. �e path needed to get
there is irrelevant.

• For example: VLSI layout, factory design, automatic programming…
• We are now simply searching for a state that is in some sense the best.
• �is is also known as optimisation.

�is leads to the remarkably simple concept of local search.

79

Local search

Instead of trying to �nd a path from start state to goal, we explore the local area
of the graph, meaning those states one edge away from the one we’re at:

f(s) = 52

f(s) = 1

f(s) = 29

f(s) = 24

f(s) = 24

We assume that we have a function f (s) such that f (s′) > f (s) indicates s′ is
preferable to s.

80

�e m-queens problem

You may be familiar with the m-queens problem.

Find an arrangement of m queens on an m by m board such that no queen is
a�acking another.

In the Prolog course you may have been tempted to generate permutations of
row numbers and test for a�acks.

�is is a hopeless strategy for large m. (Imagine m ' 1, 000, 000.)

81

�e m-queens problem

We might however consider the following:

• A state s for an m by m board is a sequence of m numbers drawn from the
set {1, . . . ,m}, possibly including repeats.

• We move from one state to another by moving a single queen to any alterna-
tive row.

• We de�ne f (s) to be the number of pairs of queens a�acking one-another in
the new position2. (Regardless of whether or not the a�ack is direct.)

2Note that we actually want to minimize f here. �is is equivalent to maximizing −f , and I will generally use whichever seems more appropriate.

82

�e m-queens problem

Here, we have {4, 3, ?, 8, 6, 2, 4, 1} and the f values for the undecided queen are
shown.

7

5

7

5

8

5

7

5

As we can choose which queen to move, each state in fact has 56 neighbours in
the graph.

83

Hill-climbing search

Hill-climbing search is remarkably simple:

1 Generate a start state s;
2 while true do
3 Generate the neighbours N = {s1, . . . , sp} of s;
4 Nf = {f(si)|si ∈ N};
5 if maxNf ≤ f(s) then
6 return s;
7 s = si ∈ N with maximum f(si);

In fact, that looks so simple that it’s amazing the algorithm is at all useful.

In this version we stop when we get to a node with no be�er neighbour.

84

Hill-climbing search: the reality

We might alternatively allow sideways moves by changing the stopping condi-
tion:

1 if maxNf < f(s) then
2 return s;

Why would we consider doing this?

85

Hill-climbing search: the reality

In reality, nature has a number of ways of shaping f to complicate the search
process.

Global maximum
Local maxima

Plateau

f(s)

s

Sideways moves allow us to move across plateaus.

However, should we ever �nd a local maximum then we’ll return it: we won’t
keep searching to �nd a global maximum.

86

Hill-climbing search: the reality

Of course, the fact that we’re dealing with a general graphmeans we need to think
of something like the preceding �gure, but in a very large number of dimensions,
and this makes the problem much harder .

�ere is a body of techniques for trying to overcome such problems. For example:

• Stochastic hill-climbing: Choose a neighbour at random, perhaps with a prob-
ability depending on its f value. For example: letN(s) denote the neighbours
of s. De�ne

N+(s) = {s′ ∈ N(s)|f (s′) ≥ f (s)}
N−(s) = {s′ ∈ N(s)|f (s′) < f (s)}.

�en
Pr(s′) =

{
0 if s′ ∈ N−(s)
1
Z (f (s

′)− f (s)) otherwise.

87

Hill-climbing search: the reality

• First choice: Generate neighbours at random. Select the �rst one that is be�er
than the current one. (Particularly good if nodes have many neighbours.)

• Random restarts: Run a procedure k times with a limit on the time allowed
for each run.
Note: generating a start state at random may itself not be straightforward.

• Simulated annealing: Similar to stochastic hill-climbing, but start with lots of
random variation and reduce it over time.
Note: in some cases this is provably an e�ective procedure, although the time
taken may be excessive if we want the proof to hold.

• Beam search: Maintain k states at any given time. At each search step, �nd
the successors of each, and retain the best k from all the successors.
Note: this is not the same as random restarts.

88

Gradient ascent and related methods

For some problems3—we do not have a search graph, but a continuous search
space.

0 1 2 3 4 5 6

-30

-20

-10

0

10

20

30

Typically, we have a function f (x) : Rn → R and we want to �nd

xopt = argmax
x

f (x)

3For the purposes of this course, the training of neural networks is a notable example.

89

Gradient ascent and related methods

In a single dimension we can clearly try to solve
df (x)

dx
= 0

to �nd the stationary points, and use
d2f (x)

dx2

to �nd a global maximum. In multiple dimensions the equivalent is to solve

∇f (x) = ∂f (x)

∂x
= 0

where
∂f (x)

∂x
=
[
∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

]
.

and the equivalent of the second derivative is the Hessian matrix

H =


∂f2(x)

∂x21

∂f2(x)
∂x1∂x2

· · · ∂f2(x)
∂x1∂xn

∂f2(x)
∂x2∂x1

∂f2(x)

∂x22
· · · ∂f2(x)

∂x2∂xn...
∂f2(x)
∂xn∂x1

∂f2(x)
∂xn∂x2

· · · ∂f2(x)
∂x2n

 .
90

Gradient ascent and related methods

However this approach is usually not analytically tractable regardless of dimen-
sionality.

�e simplest way around this is to employ gradient ascent:

• Start with a randomly chosen point x0.
• Using a small step size ε, iterate using the equation

xi+1 = xi + ε∇f (xi).

�is can be understood as follows:

• At the current point xi the gradient ∇f (xi) tells us the direction and magni-
tude of the slope at xi.

• Adding ε∇f (xi) therefore moves us a small distance upward.

�is is perhaps more easily seen graphically. . .

91

Gradient ascent and related methods

Here we have a simple parabolic surface:

-4000

50

-2000

50
0

0

0

-50 -50
-50 0 50

-50

0

50

With ε = 0.1 the procedure is clearly e�ective at �nding the maximum.

Note however that the steps are small, and in a more realistic problem it might
take some time. . .

92

Gradient ascent and related methods

Simply increasing the step size ε can lead to a di�erent problem:

-50 0 50

-50

0

50

-50 0 50

-50

0

50

-50 0 50

-50

0

50

-50 0 50

-100

0

100

We can easily jump too far. . .

93

Gradient ascent and related methods

�ere is a large collection of more sophisticated methods. For example:

• Line search: increase ε until f decreases and maximise in the resulting interval.
�en choose a new direction to move in. Conjugate gradients, the Fletcher-
Reeves and Polak-Ribiere methods etc.

• Use H to exploit knowledge of the local shape of f . For example the Newton-
Raphson and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods etc.

94

