
Exercises for Arti�cial Intelligence I
Dr Sean B Holden, 2010-20

1 Introduction

�ese notes provide some extra exercises for Arti�cial Intelligence I and, depending on when you
download them, their solutions.

2 Introduction and Agents

It is notoriously di�cult to predict what will be possible in the future, so your answers might well
be amusing to you when you �nd them in twenty years time.

1. If you haven’t seen it already, watch the �lm A.I. Arti�cial Intelligence paying particular a�en-
tion to the character “Teddy”.

2. A large number of subjects are mentioned in the initial lectures in terms of how they’ve in�u-
enced AI: for example philosophy, mathematics, economics and so on. How do these show up
in Teddy’s design?

3. What aspects of Teddy are within our current capabilities to design?

4. What aspects of Teddy would you expect to be able to implement within the next ��een years.
How about the next ��y years?

5. Are there aspects of Teddy that you would expect to elude us for one hundred years or more?

6. To what extent does the “natural basic structure” for an agent, as described in the lectures,
form a useful basis for implementing Teddy’s internals? What is missing?

3 Search

1. Explain why breadth-�rst search is optimal if path-cost is a non-decreasing function of node-
depth.

2. In the graph search algorithm, assume a node is taken from the fringe and found not to be
a goal and not to be in closed. We then add it to closed and add its descendants to
fringe. Why do we not check the descendants �rst to see if they are in closed?

3. Iterative deepening depends on the fact that the vast majority of the nodes in a tree are in the
bo�om level.

• Denote by f1(b, d) the total number of nodes appearing in a tree with branching factor
b and depth d. Find a closed-form expression for f1(b, d).

• Denote by f2(b, d) the total number of nodes generated in a complete iterative deepening
search to depth d of a tree having branching factor b. Find a closed-form expression for
f2(b, d) in terms of f1(b, d).

• How do f1(b, d) and f2(b, d) compare when b is large?

1



4. �eA? algorithm does not perform a goal test on any state until it has selected it for expansion.
We might consider a slightly di�erent approach: namely, each time a node is expanded check
all of its descendants to see if they include a goal.
Give two reasons why this is a misguided idea, where possible illustrating your answer using
a speci�c example of a search tree for which it would be problematic.

5. �e f -cost is de�ned in the usual way as

f(n) = p(n) + h(n)

where n is any node, p denotes path cost and h denotes the heuristic. An admissible heuristic
is one for which, for any n

h(n) ≤ actual distance from n to the goal

and a heuristic is monotonic if for consecutive nodes n and n′ it is always the case that

f(n′) ≥ f(n).

• Prove that h is monotonic if and only if it obeys the triangle inequality, which states that
for any consecutive nodes n and n′

h(n) ≤ cn→n′ + h(n′)

where cn→n′ is the cost of moving from n to n′.
• Prove that if a heuristic is monotonic then it is also admissible.
• Is the converse true? (�at is, are all admissible heuristics also monotonic?) Either prove
that this is the case or provide a counterexample.

6. In RBFS we are replacing f values every time we backtrack to explore the current best alter-
native. �is seems to imply a need to remember the new f values for all the nodes in the path
we’re discarding, and this in turn suggests a potentially exponential memory requirement.
Why is this not the case?

7. In some problems we can simultaneously search:

• forward from the start state
• backward from the goal state

until the searches meet. �is seems like it might be a very good idea:

• If the search methods have complexity O(bd) then…
• …we are converting this to O(2bd/2) = O(bd/2).

(Here, we are assuming the branching factor is b in both directions.) Why might this not be
as e�ective as it seems?

8. Suggest a method for performing depth-�rst search using only O(d) space.

9. One modi�cation to the basic local search algorithm suggested in the lectures was to make
steps probabilistically, but only if the value of f is improved.

(a) Would it be a good idea to also allow steps that move to a state with a worse value for f?
(b) Suggest an algorithm for achieving this, such that you have some control over the balance

between steps that increase or decrease f .

2


