Artificial Intelligence I

Machine learning using neural networks

Reading: AIMA, chapter 20.

Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the following two questions:

1. Let

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}^{2}
$$

where the a_{i} are constants. Compute $\partial f / \partial x_{j}$ where $1 \leq j \leq n$?
Answer: As only one term in the sum depends on x_{j}, all the other terms differentiate to give 0 and

$$
\frac{\partial f}{\partial x_{j}}=2 a_{j} x_{j}
$$

2. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a function. Now assume $x_{i}=g_{i}\left(y_{1}, \ldots, y_{m}\right)$ for each x_{i} and some collection of functions g_{i}. Assuming all requirements for differentiability and so on are met, can you write down an expression for $\partial f / \partial y_{j}$ where $1 \leq j \leq m$?
Answer: this is just the chain rule for partial differentiation

$$
\frac{\partial f}{\partial y_{j}}=\sum_{i=1}^{n} \frac{\partial f}{\partial g_{i}} \frac{\partial g_{i}}{\partial y_{j}}
$$

We now consider how an agent might learn to solve a general problem by seeing examples:

- I present an outline of supervised learning.
- I introduce the classical perceptron.
- I introduce multilayer perceptrons and the backpropagation algorithm for training them.

To begin, a common source of problems in AI is medical diagnosis.
Imagine that we want to automate the diagnosis of an Embarrassing Disease (call it D) by constructing a machine:

Could we do this by explicitly writing a program that examines the measurements and outputs a diagnosis? Experience suggests that this is unlikely.

An example, continued...

An alternative approach: each collection of measurements can be written as a vector,

$$
\mathbf{x}^{T}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)
$$

where,

```
x}=\mathrm{ heart rate
x}=\mathrm{ blood pressure
x}=1\mathrm{ if the patient has green spots, and 0 otherwise
```

and so on.
(Note: it's a common convention that vectors are column vectors by default. This is why the above is written as a transpose.)

A vector of this kind contains all the measurements for a single patient and is called a feature vector or instance.

The measurements are attributes or features.
Attributes or features generally appear as one of three basic types:

- Continuous: $x_{i} \in\left[x_{\min }, x_{\max }\right]$ where $x_{\min }, x_{\max } \in \mathbb{R}$.
- Binary: $x_{i} \in\{0,1\}$ or $x_{i} \in\{-1,+1\}$.
- Discrete: x_{i} can take one of a finite number of values, say $x_{i} \in\left\{X_{1}, \ldots, X_{p}\right\}$.

An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and for each of these we know whether or not the patient suffered from D.

- The i th patient history gives us an instance x_{i}.
- This can be paired with a single bit-0 or 1 -denoting whether or not the i th patient suffers from D. The resulting pair is called an example or a labelled example.
- Collecting all the examples together we obtain a training sequence

$$
\mathbf{s}=\left(\left(\mathbf{x}_{1}, 0\right),\left(\mathbf{x}_{2}, 1\right), \ldots,\left(\mathbf{x}_{m}, 0\right)\right)
$$

An example, continued...

In supervised machine learning we aim to design a learning algorithm which takes s and produces a hypothesis h.

Intuitively, a hypothesis is something that lets us diagnose new patients.
This is IMPORTANT: we want to diagnose patients that the system has never seen.
The ability to do this successfully is called generalisation.

An example, continued...

In fact, a hypothesis is just a function that maps instances to labels.

As h is a function it assigns a label to any x and not just the ones that were in the training sequence.

What we mean by a label here depends on whether we're doing classification or regression.

In classification we're assigning x to one of a set $\left\{\omega_{1}, \ldots, \omega_{c}\right\}$ of c classes. For example, if x contains measurements taken from a patient then there might be three classes:

```
\omega
\omega
\omega}\mp@subsup{\omega}{3}{}=\mathrm{ don't ask me buddy, I'm just a computer!
```

The binary case above also fits into this framework, and we'll often specialise to the case of two classes, denoted C_{1} and C_{2}.

In regression we're assigning x to a real number $h(\mathrm{x}) \in \mathbb{R}$. For example, if x contains measurements taken regarding today's weather then we might have

$$
h(\mathbf{x})=\text { estimate of amount of rainfall expected tomorrow }
$$

For the two-class classification problem we will also refer to a situation somewhat between the two, where

$$
h(\mathbf{x})=\operatorname{Pr}\left(\mathbf{x} \text { is in } C_{1}\right)
$$

and so we would typically assign x to class C_{1} if $h(\mathrm{x})>1 / 2$.

Summary

We don't want to design h explicitly.

So we use a learner L to infer it on the basis of a sequence s of training examples.

Neural networks

There is generally a set \mathcal{H} of hypotheses from which L is allowed to select h

$$
L(\mathbf{s})=h \in \mathcal{H}
$$

\mathcal{H} is called the hypothesis space.
The learner can output a hypothesis explicitly or-as in the case of a neural net-work-it can output a vector

$$
\mathbf{w}^{T}=\left(\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{W}
\end{array}\right)
$$

of weights which in turn specify h

$$
h(\mathbf{x})=f(\mathbf{w} ; \mathbf{x})
$$

where $\mathrm{w}=L(\mathrm{~s})$.

Types of learning

The form of machine learning described is called supervised learning. The literature also discusses unsupervised learning, semisupervised learning, learning using membership queries and equivalence queries, and reinforcement learning. (More about some of this next year...)

Supervised learning has multiple applications:

- Speech recognition.
- Deciding whether or not to give credit.
- Detecting credit card fraud.
- Deciding whether to buy or sell a stock option.
- Deciding whether a tumour is benign.
- Data mining: extracting interesting but hidden knowledge from existing, large databases. For example, databases containing financial transactions or loan applications.
- Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles at 70 miles per hour, on a public road with other cars present, but with no assistance from humans.)

This process is in fact very similar to curve fitting. Think of the process as follows:

- Nature picks an $h^{\prime} \in \mathcal{H}$ but doesn't reveal it to us.
- Nature then shows us a training sequence s where each X_{i} is labelled as $h^{\prime}\left(\mathbf{x}_{i}\right)+\epsilon_{i}$ where ϵ_{i} is noise of some kind.

Our job is to try to infer what h^{\prime} is on the basis ofs only. Example: if \mathcal{H} is the set of all polynomials of degree 3 then nature might pick $h^{\prime}(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x-\frac{1}{2}$.

The line is dashed to emphasise the fact that we don't get to see it.

Curve fitting

We can now use h^{\prime} to obtain a training sequence s in the manner suggested..

Here we have,

$$
\mathbf{s}^{T}=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right)
$$

where each x_{i} and y_{i} is a real number.

Curve fitting

We'll use a learning algorithm L that operates in a reasonable-looking way: it picks an $h \in \mathcal{H}$ minimising the following quantity,

$$
E=\sum_{i=1}^{m}\left(h\left(x_{i}\right)-y_{i}\right)^{2} .
$$

In other words

$$
h=L(\mathbf{s})=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{m}\left(h\left(x_{i}\right)-y_{i}\right)^{2} .
$$

Why is this sensible?

1. Each term in the sum is 0 if $h\left(x_{i}\right)$ is exactly y_{i}.
2. Each term increases as the difference between $h\left(x_{i}\right)$ and y_{i} increases.
3. We add the terms for all examples.

Curve fitting

If we pick h using this method then we get:

The chosen h is close to the target h^{\prime}, even though it was chosen using only a small number of noisy examples.

It is not quite identical to the target concept.
However if we were given a new point x^{\prime} and asked to guess the value $h^{\prime}\left(\mathrm{x}^{\prime}\right)$ then guessing $h\left(\mathrm{x}^{\prime}\right)$ might be expected to do quite well.

Curve fitting

Problem: we don't know what \mathcal{H} nature is using. What if the one we choose doesn't match? We can make our \mathcal{H} 'bigger' by defining it as

$$
\mathcal{H}=\{h: h \text { is a polynomial of degree at most } 5\} .
$$

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to h^{\prime}, but not quite identical.

Curve fitting

So what's the problem? Repeating the process with,

$$
\mathcal{H}=\{h: h \text { is a polynomial of degree at most } 1\}
$$

gives the following:

In effect, we have made our \mathcal{H} too 'small'. It does not in fact contain any hypothesis similar to h^{\prime}.

Curve fitting

So we have to make \mathcal{H} huge, right? WRONG!!! With

$$
\mathcal{H}=\{h: h \text { is a polynomial of degree at most } 25\}
$$

we get:

BEWARE!!! This is known as overfitting.

The example just given illustrates much of what we want to do. However in practice we deal with more than a single dimension, so

$$
\mathbf{x}^{T}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) .
$$

The simplest form of hypothesis used is the linear discriminant, also known as the perceptron. Here

$$
h(\mathbf{w} ; \mathbf{x})=\sigma\left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)=\sigma\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}\right) .
$$

So: we have a linear function modified by the activation function σ.
The perceptron's influence continues to be felt in the recent and ongoing development of support vector machines, and forms the basis for most of the field of supervised learning.

There are three standard forms for the activation function:

1. Linear: for regression problems we often use

$$
\sigma(z)=z
$$

2. Step: for two-class classification problems we often use

$$
\sigma(z)= \begin{cases}C_{1} & \text { if } z>0 \\ C_{2} \text { otherwise }\end{cases}
$$

3. Sigmoid/Logistic: for probabilistic classification we often use

$$
\operatorname{Pr}\left(\mathbf{x} \text { is in } C_{1}\right)=\sigma(z)=\frac{1}{1+\exp (-z)} .
$$

The step function is important but the algorithms involved are somewhat different to those we'll be seeing. We won't consider it further.

The sigmoid/logistic function plays a major role in what follows.

The sigmoid/logistic function

Logistic $\sigma(z)$ applied to the output of a linear function

Gradient descent

A method for training a basic perceptron works as follows. Assume we're dealing with a regression problem and using $\sigma(z)=z$.

We define a measure of error for a given collection of weights. For example

$$
E(\mathbf{w})=\sum_{i=1}^{m}\left(y_{i}-h\left(\mathbf{w} ; \mathbf{x}_{i}\right)\right)^{2}
$$

Modifying our notation slightly so that

$$
\begin{aligned}
\mathbf{x}^{T} & =\left(\begin{array}{lllll}
1 & x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \\
\mathbf{w}^{T} & =\left(\begin{array}{lllll}
w_{0} & w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
\end{aligned}
$$

lets us write

$$
E(\mathbf{w})=\sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

We want to minimise $E(\mathrm{w})$.

Gradient descent

One way to approach this is to start with a random w_{0} and update it as follows:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\left.\eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{t}}
$$

where

$$
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}=\left(\frac{\partial E(\mathbf{w})}{\partial w_{0}} \frac{\partial E(\mathbf{w})}{\partial w_{1}} \cdots \frac{\partial E(\mathbf{w})}{\partial w_{n}}\right)^{T}
$$

and η is some small positive number.
The vector

$$
-\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}
$$

tells us the direction of the steepest decrease in $E(\mathrm{w})$.

With

$$
E(\mathbf{w})=\sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

we have

$$
\begin{aligned}
\frac{\partial E(\mathbf{w})}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left(\sum_{i=1}^{m}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}\right) \\
& =\sum_{i=1}^{m}\left(\frac{\partial}{\partial w_{j}}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}\right) \\
& =\sum_{i=1}^{m}\left(2\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right) \frac{\partial}{\partial w_{j}}\left(-\mathbf{w}^{T} \mathbf{x}_{i}\right)\right) \\
& =-2 \sum_{i=1}^{m} \mathbf{x}_{i}^{(j)}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)
\end{aligned}
$$

where $\mathrm{x}_{i}^{(j)}$ is the j th element of x_{i}.

Gradient descent

The method therefore gives the algorithm

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}+2 \eta \sum_{i=1}^{m}\left(y_{i}-\mathbf{w}_{t}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}
$$

Some things to note:

- In this case $E(\mathrm{w})$ is parabolic and has a unique global minimum and no local minima so this works well.
- Gradient descent in some form is a very common approach to this kind of problem.
- We can perform a similar calculation for other activation functions and for other definitions for $E(w)$.
- Such calculations lead to different algorithms.

There are many problems a perceptron can't solve.

We need a network that computes more interesting functions.

The multilayer perceptron

Each node in the network is itself a perceptron:

Weights w_{i} connect nodes together, and a_{j} is the weighted sum or activation for node $j . \sigma$ is the activation function and the output is $z_{j}=\sigma\left(a_{j}\right)$.

Reminder: we'll continue to use the notation

$$
\begin{aligned}
\mathbf{z}^{T} & =\left(\begin{array}{lllll}
1 & z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right) \\
\mathbf{w}^{T} & =\left(\begin{array}{lllll}
w_{0} & w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
\end{aligned}
$$

so that

$$
\sum_{i=0}^{n} w_{i} z_{i}=w_{0}+\sum_{i=1}^{n} w_{i} z_{i}=\mathbf{w}^{T} \mathbf{z}
$$

The multilayer perceptron

In the general case we have a completely unrestricted feedforward structure:

Each node is a perceptron. No specific layering is assumed.
$w_{i \rightarrow j}$ connects node i to node $j . w_{0}$ for node j is denoted $w_{0 \rightarrow j}$.

As usual we have:

- Instances $\mathbf{x}^{T}=\left(x_{1}, \ldots, x_{n}\right)$.
- A training sequence $\mathrm{s}=\left(\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{m}, y_{m}\right)\right)$.

We also define a measure of training error
$E(\mathrm{w})=$ measure of the error of the network on s
where w is the vector of all the weights in the network.
Our aim is to find a set of weights that minimises $E(\mathrm{w})$ using gradient descent.
$\underline{\text { Backpropagation: the general case }}$
The central task is therefore to calculate

$$
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}
$$

To do that we need to calculate the individual quantities

$$
\frac{\partial E(\mathbf{w})}{\partial w_{i \rightarrow j}}
$$

for every weight $w_{i \rightarrow j}$ in the network.
Often $E(\mathrm{w})$ is the sum of separate components, one for each example in s

$$
E(\mathbf{w})=\sum_{p=1}^{m} E_{p}(\mathbf{w})
$$

in which case

$$
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}=\sum_{p=1}^{m} \frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}}
$$

We can therefore consider examples individually.
$\underline{\text { Backpropagation: the general case }}$
Place example p at the input and calculate a_{j} and z_{j} for all nodes including the output y. This is forward propagation.

We have

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{i \rightarrow j}}
$$

where $a_{j}=\sum_{k} w_{k \rightarrow j} z_{k}$.
Here the sum is over all the nodes connected to node j. As

$$
\frac{\partial a_{j}}{\partial w_{i \rightarrow j}}=\frac{\partial}{\partial w_{i \rightarrow j}}\left(\sum_{k} w_{k \rightarrow j} z_{k}\right)=z_{i}
$$

we can write

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=\delta_{j} z_{i}
$$

where we've defined

$$
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}} .
$$

Backpropagation: the general case
So we now need to calculate the values for δ_{j}. When j is the output node-that is, the one producing the output $y=h\left(\mathbf{w} ; \mathbf{x}_{p}\right)$ of the network-this is easy as $z_{j}=y$ and

$$
\begin{aligned}
\delta_{j} & =\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}} \\
& =\frac{\partial E_{p}(\mathbf{w})}{\partial y} \frac{\partial y}{\partial a_{j}} \\
& =\frac{\partial E_{p}(\mathbf{w})}{\partial y} \sigma^{\prime}\left(a_{j}\right)
\end{aligned}
$$

using the fact that $y=\sigma\left(a_{j}\right)$. The first term is in general easy to calculate for a given E as the error is generally just a measure of the distance between y and the label y_{p} in the training sequence.

Example: when

$$
E_{p}(\mathbf{w})=\left(y-y_{p}\right)^{2}
$$

we have

$$
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial y} & =2\left(y-y_{p}\right) \\
& =2\left(h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right) .
\end{aligned}
$$

Backpropagation: the general case
When j is not a output node we need something different:

We're interested in

$$
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}
$$

Altering a_{j} can affect several other nodes $k_{1}, k_{2}, \ldots, k_{q}$ each of which can in turn affect $E_{p}(\mathrm{w})$.
$\underline{\text { Backpropagation: the general case }}$

We have

$$
\delta_{j}=\frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \frac{\partial E_{p}(\mathbf{w})}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} \frac{\partial a_{k}}{\partial a_{j}}
$$

where $k_{1}, k_{2}, \ldots, k_{q}$ are the nodes to which node j sends a connection.

Backpropagation: the general case

Because we know how to compute δ_{j} for the output node we can work backwards computing further δ values.

We will always know all the values δ_{k} for nodes ahead of where we are.
Hence the term backpropagation.
$\underline{\text { Backpropagation: the general case }}$

$$
\frac{\partial a_{k}}{\partial a_{j}}=\frac{\partial}{\partial a_{j}}\left(\sum_{i} w_{i \rightarrow k} \sigma\left(a_{i}\right)\right)=w_{j \rightarrow k} \sigma^{\prime}\left(a_{j}\right)
$$

and

$$
\delta_{j}=\sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{j \rightarrow k} \sigma^{\prime}\left(a_{j}\right)=\sigma^{\prime}\left(a_{j}\right) \sum_{k \in\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}} \delta_{k} w_{j \rightarrow k} .
$$

Summary: to calculate $\frac{\partial E_{p}(\mathrm{w})}{\partial \mathrm{w}}$ for the p th pattern:

1. Forward propagation: apply x_{p} and calculate outputs etc for all the nodes in the network.
2. Backpropagation 1: for the output node

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \delta_{j}=z_{i} \sigma^{\prime}\left(a_{j}\right) \frac{\partial E_{p}(\mathbf{w})}{\partial y}
$$

where $y=h\left(\mathbf{w} ; \mathbf{x}_{p}\right)$.
3. Backpropagation 2: For other nodes

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \sigma^{\prime}\left(a_{j}\right) \sum_{k} \delta_{k} w_{j \rightarrow k}
$$

where the δ_{k} were calculated at an earlier step.

Backpropagation: a specific example

For the output: $\sigma(a)=a$. For the hidden nodes $\sigma(a)=\frac{1}{1+\exp (-a)}$.

Backpropagation: a specific example

For the output: $\sigma(a)=a$ so $\sigma^{\prime}(a)=1$.
For the hidden nodes:

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

so

$$
\sigma^{\prime}(a)=\sigma(a)[1-\sigma(a)]
$$

We'll continue using the same definition for the error

$$
\begin{aligned}
E(\mathbf{w}) & =\sum_{p=1}^{m}\left(y_{p}-h\left(\mathbf{w} ; \mathbf{x}_{p}\right)\right)^{2} \\
E_{p}(\mathbf{w}) & =\left(y_{p}-h\left(\mathbf{w} ; \mathbf{x}_{p}\right)\right)^{2}
\end{aligned}
$$

Backpropagation: a specific example

For the output: the equation is

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow \text { output }}}=z_{i} \delta_{\text {output }}=z_{i} \sigma^{\prime}\left(a_{\text {output }}\right) \frac{\partial E_{p}(\mathbf{w})}{\partial y}
$$

where $y=h\left(\mathbf{w} ; \mathbf{x}_{p}\right)$. So as

$$
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial y} & =\frac{\partial}{\partial y}\left(\left(y_{p}-y\right)^{2}\right) \\
& =2\left(y-y_{p}\right) \\
& =2\left[h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right]
\end{aligned}
$$

and $\sigma^{\prime}(a)=1$ so

$$
\delta_{\text {output }}=2\left[h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right]
$$

and

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow \text { output }}}=2 z_{i}\left(h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right)
$$

Backpropagation: a specific example

For the hidden nodes: the equation is

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \sigma^{\prime}\left(a_{j}\right) \sum_{k} \delta_{k} w_{j \rightarrow k}
$$

However there is only one output so

$$
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}}=z_{i} \sigma\left(a_{j}\right)\left[1-\sigma\left(a_{j}\right)\right] \delta_{\text {output }} w_{j \rightarrow \text { output }}
$$

and we know that

$$
\delta_{\text {output }}=2\left[h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right]
$$

so

$$
\begin{aligned}
\frac{\partial E_{p}(\mathbf{w})}{\partial w_{i \rightarrow j}} & =2 z_{i} \sigma\left(a_{j}\right)\left[1-\sigma\left(a_{j}\right)\right]\left[h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right] w_{j \rightarrow \mathrm{output}} \\
& =2 x_{i} z_{j}\left(1-z_{j}\right)\left[h\left(\mathbf{w} ; \mathbf{x}_{p}\right)-y_{p}\right] w_{j \rightarrow \text { output }}
\end{aligned}
$$

Putting it all together
We can then use the derivatives in one of two basic ways:
Batch: (as described previously)

$$
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}=\sum_{p=1}^{m} \frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}}
$$

then

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\left.\eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{t}}
$$

Sequential: using just one pattern at once

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\left.\eta \frac{\partial E_{p}(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{t}}
$$

selecting patterns in sequence or at random.

As an example we show the result of training a network with:

- Two inputs.
- One output.
- One hidden layer containing 5 units.
- $\eta=0.01$.
- All other details as above.

The problem is the parity problem. There are 40 noisy examples.
The sequential approach is used, with 1000 repetitions through the entire training sequence.

Example: the parity problem revisited

Example: the parity problem revisited

Example: the parity problem revisited

