Artificial Intelligence I

Machine learning using neural networks

Reading: AIMA, chapter 20.



Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the fol-
lowing two questions:

1. Let

n
2
flxy,...,x,) = Zaz’%
i=1
where the a; are constants. Compute 0f/0x; where 1 < j < n?
Answer: As only one term in the sum depends on x;, all the other terms dif-
ferentiate to give 0 and

of )
—— = 20:7 .
axj J]
2. Let f(x1,...,x,) be a function. Now assume x; = ¢;(y1, . . ., y) for each x;

and some collection of functions g;. Assuming all requirements for differen-
tiability and so on are met, can you write down an expression for 0f /0y,
where 1 < 53 < m?

Answer: this is just the chain rule for partial differentiation

Af <~ 0f 0y,
Jy; = 0g;0y;
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Supervised learning with neural networks

We now consider how an agent might learn to solve a general problem by seeing
examples:

o I present an outline of supervised learning.

« I introduce the classical perceptron.

« lintroduce multilayer perceptrons and the backpropagation algorithmfor train-

ing them.

To begin, a common source of problems in Al is medical diagnosis.

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call
it D) by constructing a machine:

Measurements taken from the
patient: heart rate, blood pressure, —_— Machine
presence of green spots etc.

1 if the patient suffers from D
0 otherwise

Could we do this by explicitly writing a program that examines the measurements
and outputs a diagnosis? Experience suggests that this is unlikely:.
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An example, continued...

An alternative approach: each collection of measurements can be written as a
vector,

x!' = (x1 29 - )
where,
r1 = heart rate
x9 = blood pressure
x3 = 1 if the patient has green spots, and 0 otherwise
and so on.

(Note: it’s a common convention that vectors are column vectors by default. This
is why the above is written as a transpose.)



An example, continued...

A vector of this kind contains all the measurements for a single patient and is
called a feature vector or instance.

The measurements are attributes or features.

Attributes or features generally appear as one of three basic types:

o Continuous: T; € [Tmin, Tmax| Where Timin, Tmax € R.
e Binary: z; € {0,1} or z; € {—1,+1}.

« Discrete: x; can take one of a finite number of values, say x; € {X1,..., X, }.



An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and
for each of these we know whether or not the patient suffered from D.

« The ith patient history gives us an instance X;.

» This can be paired with a single bit—0 or 1—denoting whether or not the ¢th
patient suffers from D. The resulting pair is called an example or a labelled
example.

o Collecting all the examples together we obtain a training sequence

S — ((Xl, O), (XQ, 1), cee (Xm, O))



An example, continued...

In supervised machine learning we aim to design a learning algorithm which
takes s and produces a hypothesis h.

8 =————1 Learning Algorithm f—# h

Intuitively, a hypothesis is something that lets us diagnose new patients.
This is IMPORTANT: we want to diagnose patients that the system has never seen.

The ability to do this successfully is called generalisation.



An example, continued...

In fact, a hypothesis is just a function that maps instances to labels.

Classifier

Attribute vector =t h(x) & ] abel

X

As h is a function it assigns a label to any x and not just the ones that were in the
training sequence.

What we mean by a label here depends on whether we’re doing classification or
regression.



Supervised learning: classification and regression

In classification we’re assigning x to one of a set {wy,...,w.} of ¢ classes. For
example, if X contains measurements taken from a patient then there might be
three classes:

w1 = patient has disease

wy = patient doesn’t have disease

w3 = don’t ask me buddy, I'm just a computer!

The binary case above also fits into this framework, and we’ll often specialise to
the case of two classes, denoted C'; and (5.

In regression we're assigning x to a real number h(x) € R. For example, if x
contains measurements taken regarding today’s weather then we might have

h(x) = estimate of amount of rainfall expected tomorrow.

For the two-class classification problem we will also refer to a situation somewhat
between the two, where

h(x) = Pr(x isin C)
and so we would typically assign x to class C if h(x) > 1/2.



Summary

We don’t want to design h explicitly.

) Classifier
—> —>
Attribute vector h(x) Label

X

h = L(s)

Learner

L

Training sequence
s

So we use a learner L to infer it on the basis of a sequence s of training examples.
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Neural networks

There is generally a set H of hypotheses from which L is allowed to select A
L(s)=heH
‘H is called the hypothesis space.

The learner can output a hypothesis explicitly or—as in the case of a neural net-
work—it can output a vector

WTZ (’UJ1 wo - -- ww)
of weights which in turn specify h

h(x) = f(w;x)

where w = L(s).
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Types of learning

The form of machine learning described is called supervised learning. The litera-
ture also discusses unsupervised learning, semisupervised learning, learning using
membership queries and equivalence queries, and reinforcement learning. (More
about some of this next year...)

Supervised learning has multiple applications:

« Speech recognition.

« Deciding whether or not to give credit.

« Detecting credit card fraud.

» Deciding whether to buy or sell a stock option.
« Deciding whether a tumour is benign.

 Data mining: extracting interesting but hidden knowledge from existing, large
databases. For example, databases containing financial transactions or loan
applications.

 Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles
at 70 miles per hour, on a public road with other cars present, but with no
assistance from humans.)
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This is very similar to curve fitting

This process is in fact very similar to curve fitting. Think of the process as follows:

« Nature picks an b’ € H but doesn’t reveal it to us.

 Nature then shows us a training sequence s where each x; is labelled as
h/(x;) + €; where ¢; is noise of some kind.

Our job is to try to infer what &' is on the basis of s only. Example: if H is the set of
all polynomials of degree 3 then nature might pick //(z) = s2* — S2% 4 2z — 1.

The line is dashed to emphasise the fact that we don’t get to see it.

13



Curve fitting

We can now use h’ to obtain a training sequence s in the manner suggested..

Here we have,

s’ = ((w9), (T2, 92), -5 (T, Ym))

where each x; and y; is a real number.
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Curve fitting

We'll use a learning algorithm L that operates in a reasonable-looking way: it
picks an i € ‘H minimising the following quantity,

E =Y (h(x) -y

In other words

h = L(s) = argmin hix;) — ;)%
(s) em ;(( ) = yi)

Why is this sensible?

1. Each term in the sum is 0 if h(x;) is exactly y;.
2. Each term increases as the difference between h(x;) and y; increases.

3. We add the terms for all examples.
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Curve fitting

If we pick & using this method then we get:

The chosen £ is close to the target A/, even though it was chosen using only a
small number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new point X’ and asked to guess the value h'(x’)
then guessing h(x’) might be expected to do quite well.

16



Curve fitting

Problem: we don’t know what ‘H nature is using. What if the one we choose
doesn’t match? We can make our H ‘bigger’ by defining it as

H = {h : hisapolynomial of degree at most 5}.

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to A/,
but not quite identical.
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Curve fitting

So what’s the problem? Repeating the process with,
H = {h : his a polynomial of degree at most 1}

gives the following;:

In effect, we have made our H too ‘small’. It does not in fact contain any hypoth-
esis similar to h'.
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Curve fitting

So we have to make H huge, right? WRONG!!! With
H = {h : his a polynomial of degree at most 25}

we get:

BEWARE!!! 'This is known as overfitting.
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The perceptron

The example just given illustrates much of what we want to do. However in
practice we deal with more than a single dimension, so

XT:(£E1 To ++ Xy ).

The simplest form of hypothesis used is the linear discriminant, also known as

the perceptron. Here

n

h(w;x) =0 ’wo+ZwZ~xZ~ = 0 (wp + wixy + woTs + - -+ + WypTy,) -
i=1

So: we have a linear function modified by the activation function o.

The perceptron’s influence continues to be felt in the recent and ongoing devel-
opment of support vector machines, and forms the basis for most of the field of
supervised learning,.
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The perceptron activation function I

There are three standard forms for the activation function:

1. Linear: for regression problems we often use
o(z) = z.

2. Step: for two-class classification problems we often use

{ Cl if z >0
o(z) =

(5 otherwise.

3. Sigmoid/Logistic: for probabilistic classification we often use

1

Pr(xisin C) = o(z) = T oxp(—z)

The step function is important but the algorithms involved are somewhat different
to those we’ll be seeing. We won’t consider it further.

The sigmoid/logistic function plays a major role in what follows.

21



The sigmoid/logistic function

The logistic function o(z) = 1

1+exp(=)
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Gradient descent

A method for training a basic perceptron works as follows. Assume we're dealing
with a regression problem and using o(z) = z.

We define a measure of error for a given collection of weights. For example

m

Blw) = 3 (i — hiw;x))2

1=1

Moditying our notation slightly so that

x' = (1o 29 - w,)
WT:(wo wy wy - Wy )
lets us write
m

We want to minimise E(w).
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Gradient descent

One way to approach this is to start with a random w( and update it as follows:
OE(w)
ow

Wil = W — 1)

Wi

where

OE(w) <8E(w) OE(w)  OE(w) )T
aw T awo 811}1 awn

and 7 is some small positive number.

The vector
OE(w)

ow
tells us the direction of the steepest decrease in F/(w).
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With

we have

where X(

Gradient descent

= —2 Z XZ(] — W XZ)

is the jth element of x;.
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Gradient descent

The method therefore gives the algorithm

m
Wil = Wi+ 21 Z (y@ - WtTXz') X
i=1

Some things to note:

« In this case F/(w) is parabolic and has a unique global minimum and no local
minima so this works well.

o Gradient descent in some form is a very common approach to this kind of
problem.

« We can perform a similar calculation for other activation functions and for
other definitions for E(w).

e Such calculations lead to different algorithms.
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Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

We need a network that computes more interesting functions.
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The multilayer perceptron

Each node in the network is itself a perceptron:

20:1

Weights w; connect nodes together, and a; is the weighted sum or activation for
node j. o is the activation function and the output is z; = o(a;).

Reminder: we’ll continue to use the notation

2 = (12 2 - 2,)

T

W Wy wy Wy - Wy )

n n
g W;zZ; = Wy + g W;Z; = w!z.
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The multilayer perceptron

In the general case we have a completely unrestricted feedforward structure:

Feature vector x Node ¢

Output y = h(w; x)

Each node is a perceptron. No specific layering is assumed.

w;—,; connects node ¢ to node j. wy for node j is denoted wy_,;.

29



Backpropagation

As usual we have:

. Instances x! = (

L1y ,CE’n>.

« A training sequence s = ((X1,¥1); - - - (X, Ym) )-

We also define a measure of training error
E(w) = measure of the error of the network on s
where w is the vector of all the weights in the network.

Our aim is to find a set of weights that minimises F/(w) using gradient descent.
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Backpropagation: the general case

The central task is therefore to calculate
OE(w)
ow
To do that we need to calculate the individual quantities
OFE(w)
awz’—>j

for every weight w;_,; in the network.

Often E'(w) is the sum of separate components, one for each example in s

in which case
OE(W) < =0E,(w)
ow - ow

We can therefore consider examples individually.
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Backpropagation: the general case

Place example p at the input and calculate a; and z; for all nodes including the
output y. This is forward propagation.

We have
OLE,(w) OE,(w) Oa;

(9’11}@'_)]' (9@7' 8wHJ~

where a; = ), Wi, 2k

Here the sum is over all the nodes connected to node j. As

6aj 0
8ij = awi%j (; wk—mzk) = Zj

we can write

E
a p<W) _ 5322
aij
where we’ve defined
j = .

8@7
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Backpropagation: the general case

So we now need to calculate the values for ;. When j is the output node—that is,
the one producing the output y = h(w; x,) of the network—this is easy as z;, = y

and
- aEp(W>

5j B 8aj
- aEp(“’) 0y
B 8y (9@7-

_aEp(W> oo
Ty o'(a;)

using the fact that y = o(a;). The first term is in general easy to calculate for a
given E as the error is generally just a measure of the distance between y and
the label ¥, in the training sequence.

Example: when

we have




Backpropagation: the general case

When j is not an output node we need something different:

We’'re interested in

5 OFE,(w)
I 8&]'
Altering a; can affect several other nodes ki, ks, . . . , k, each of which can in turn

affect E,(w).
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Backpropagation: the general case

A,

=
=

We have

5, — OE,(w) _ Z OE,(w)0day _ Z 51@%

da,; Oay  Oa;
kE{kl,kQ ..... kq} kE{kl,k‘Q ..... kq}

where k1, ko, . . ., k, are the nodes to which node j sends a connection.
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Backpropagation: the general case

k1
A, E
O-

ks

) L

Because we know how to compute 0; for the output node we can work backwards
computing further 0 values.

We will always know all the values 0;, for nodes ahead of where we are.

Hence the term backpropagation.
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Backpropagation: the general case

and
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Backpropagation: the general case

Summary: to calculate —— for the pth pattern:

OFE,(w)
0

1. Forward propagation: apply x, and calculate outputs etc for all the nodes in
the network.

2. Backpropagation 1: for the output node
0Ly (w)

@wz’—>j

8Ep(w>
dy

= zz-éj = ZZ'O'/<CL]')

where y = h(w;x,).

3. Backpropagation 2: For other nodes

OF .
p(W) = 2;0'(a;) g OpWj_s
k

Ow;_, j

where the 0, were calculated at an earlier step.
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Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
T inputs from all hidden
nodes
T2
— y = h(W;X)
Ln
For the output: o(a) = a. For the hidden nodes o(a) = m.
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Backpropagation: a specific example

For the output: o(a) = a so o'(a) = 1.

For the hidden nodes: .

1+ exp(—a)

o(a)
SO
o'(a) =oc(a)[l —o(a)].
We’ll continue using the same definition for the error

m

E(w) = (y, — h(w;x,))’

Ey(w) = (g — h(w: x,))%
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Backpropagation: a specific example

For the output: the equation is
0Ly (W)

au}i%output

OL,(W)
dy

/
— Zi(goutput — <0 (aoutput>

where y = h(w;x,). So as

0L, (w 0 N
2 2 ()
= 2(y — yp)
=2 [h(w:xp) — yp]

and o'(a) = 1 so
5output =2 [h(W, Xp) o yp]
and

OE,(w)

aUJ@'—>0utput

= 22;(h(W; X)) — 1)
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Backpropagation: a specific example

For the hidden nodes: the equation is

OF ,
p<W) — 20 <CL]') Z 5kwj_>k.
k

ow;_, j

However there is only one output so
oL, (w

ap_() — ZZ'O'(CL]‘> [1 o O-(a])] 50utputwj—>output

Wi— j

and we know that
Ooutput = 2 [A(W; X)) — Y|
SO

OE,(w)

5’wi—>j

= 2zi0(a;) [1 — o(ay)] [h(W;x,) — | Wj—output

= 2,2i(1 — 2z;) [M(W; X)) — Yp] Wjoutput.
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Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)
OE(w) in: OE,(w)

ow ow
p=1
then
OE(w)
Wipl = Wy — 1)
ow |,
Sequential: using just one pattern at once
oL, (w
Wit1 = Wi —17) /W)
ow |,

selecting patterns in sequence or at random.
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Example: the parity problem revisited

As an example we show the result of training a network with:

« Two inputs.

 One output.

« One hidden layer containing 5 units.
« 1 = 0.01.

o All other details as above.

The problem is the parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire training
sequence.
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X2

Example: the parity problem revisited

Before training After training

2 2
1.5 1.5
1 ¥ 1
0.5 g 0.5
0 * 0
-0.5 -0.5
-1 -1

-1 0 1 2 -1 0 1

r I
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Example: the parity problem revisited

After training

Before training

1l

Network output
o
o

Network output

N o
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Example: the parity problem revisited

Error during training

1 0 T T T T T T T T T

0 i i i i i i i ; ‘
0 100 200 300 400 500 600 700 800 900 1000
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