Artificial Intelligence I

Machine learning using neural networks

Reading: AIMA, chapter 20.

Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the fol-
lowing two questions:

1. Let

n
2
flxy,...,x,) = Zaz’%
i=1
where the a; are constants. Compute 0f/0x; where 1 < j < n?
Answer: As only one term in the sum depends on x;, all the other terms dif-
ferentiate to give 0 and

of)
—— = 20:7 .
axj J]
2. Let f(x1,...,x,) be a function. Now assume x; = ¢;(y1, . . ., y) for each x;

and some collection of functions g;. Assuming all requirements for differen-
tiability and so on are met, can you write down an expression for 0f /0y,
where 1 < 53 < m?

Answer: this is just the chain rule for partial differentiation

Af <~ 0f 0y,
Jy; = 0g;0y;

2

Supervised learning with neural networks

We now consider how an agent might learn to solve a general problem by seeing
examples:

o I present an outline of supervised learning.

« I introduce the classical perceptron.

« lintroduce multilayer perceptrons and the backpropagation algorithmfor train-

ing them.

To begin, a common source of problems in Al is medical diagnosis.

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call
it D) by constructing a machine:

Measurements taken from the
patient: heart rate, blood pressure, —_— Machine
presence of green spots etc.

1 if the patient suffers from D
0 otherwise

Could we do this by explicitly writing a program that examines the measurements
and outputs a diagnosis? Experience suggests that this is unlikely:.

3

An example, continued...

An alternative approach: each collection of measurements can be written as a
vector,

x!' = (x1 29 -)
where,
r1 = heart rate
x9 = blood pressure
x3 = 1 if the patient has green spots, and 0 otherwise
and so on.

(Note: it’s a common convention that vectors are column vectors by default. This
is why the above is written as a transpose.)

An example, continued...

A vector of this kind contains all the measurements for a single patient and is
called a feature vector or instance.

The measurements are attributes or features.

Attributes or features generally appear as one of three basic types:

o Continuous: T; € [Tmin, Tmax| Where Timin, Tmax € R.
e Binary: z; € {0,1} or z; € {—1,+1}.

« Discrete: x; can take one of a finite number of values, say x; € {X1,..., X, }.

An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and
for each of these we know whether or not the patient suffered from D.

« The ith patient history gives us an instance X;.

» This can be paired with a single bit—0 or 1—denoting whether or not the ¢th
patient suffers from D. The resulting pair is called an example or a labelled
example.

o Collecting all the examples together we obtain a training sequence

S — ((Xl, O), (XQ, 1), cee (Xm, O))

An example, continued...

In supervised machine learning we aim to design a learning algorithm which
takes s and produces a hypothesis h.

8 =————1 Learning Algorithm f—# h

Intuitively, a hypothesis is something that lets us diagnose new patients.
This is IMPORTANT: we want to diagnose patients that the system has never seen.

The ability to do this successfully is called generalisation.

An example, continued...

In fact, a hypothesis is just a function that maps instances to labels.

Classifier

Attribute vector =t h(x) &] abel

X

As h is a function it assigns a label to any x and not just the ones that were in the
training sequence.

What we mean by a label here depends on whether we’re doing classification or
regression.

Supervised learning: classification and regression

In classification we’re assigning x to one of a set {wy,...,w.} of ¢ classes. For
example, if X contains measurements taken from a patient then there might be
three classes:

w1 = patient has disease

wy = patient doesn’t have disease

w3 = don’t ask me buddy, I'm just a computer!

The binary case above also fits into this framework, and we’ll often specialise to
the case of two classes, denoted C'; and (5.

In regression we're assigning x to a real number h(x) € R. For example, if x
contains measurements taken regarding today’s weather then we might have

h(x) = estimate of amount of rainfall expected tomorrow.

For the two-class classification problem we will also refer to a situation somewhat
between the two, where

h(x) = Pr(x isin C)
and so we would typically assign x to class C if h(x) > 1/2.

Summary

We don’t want to design h explicitly.

) Classifier
—> —>
Attribute vector h(x) Label

X

h = L(s)

Learner

L

Training sequence
s

So we use a learner L to infer it on the basis of a sequence s of training examples.

10

Neural networks

There is generally a set H of hypotheses from which L is allowed to select A
L(s)=heH
‘H is called the hypothesis space.

The learner can output a hypothesis explicitly or—as in the case of a neural net-
work—it can output a vector

WTZ (’UJ1 wo - -- ww)
of weights which in turn specify h

h(x) = f(w;x)

where w = L(s).

11

Types of learning

The form of machine learning described is called supervised learning. The litera-
ture also discusses unsupervised learning, semisupervised learning, learning using
membership queries and equivalence queries, and reinforcement learning. (More
about some of this next year...)

Supervised learning has multiple applications:

« Speech recognition.

« Deciding whether or not to give credit.

« Detecting credit card fraud.

» Deciding whether to buy or sell a stock option.
« Deciding whether a tumour is benign.

 Data mining: extracting interesting but hidden knowledge from existing, large
databases. For example, databases containing financial transactions or loan
applications.

 Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles
at 70 miles per hour, on a public road with other cars present, but with no
assistance from humans.)

12

This is very similar to curve fitting

This process is in fact very similar to curve fitting. Think of the process as follows:

« Nature picks an b’ € H but doesn’t reveal it to us.

 Nature then shows us a training sequence s where each x; is labelled as
h/(x;) + €; where ¢; is noise of some kind.

Our job is to try to infer what &' is on the basis of s only. Example: if H is the set of
all polynomials of degree 3 then nature might pick //(z) = s2* — S2% 4 2z — 1.

The line is dashed to emphasise the fact that we don’t get to see it.

13

Curve fitting

We can now use h’ to obtain a training sequence s in the manner suggested..

Here we have,

s’ = ((w9), (T2, 92), -5 (T, Ym))

where each x; and y; is a real number.

14

Curve fitting

We'll use a learning algorithm L that operates in a reasonable-looking way: it
picks an i € ‘H minimising the following quantity,

E =Y (h(x) -y

In other words

h = L(s) = argmin hix;) — ;)%
(s) em ;(() = yi)

Why is this sensible?

1. Each term in the sum is 0 if h(x;) is exactly y;.
2. Each term increases as the difference between h(x;) and y; increases.

3. We add the terms for all examples.

15

Curve fitting

If we pick & using this method then we get:

The chosen £ is close to the target A/, even though it was chosen using only a
small number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new point X’ and asked to guess the value h'(x’)
then guessing h(x’) might be expected to do quite well.

16

Curve fitting

Problem: we don’t know what ‘H nature is using. What if the one we choose
doesn’t match? We can make our H ‘bigger’ by defining it as

H = {h : hisapolynomial of degree at most 5}.

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to A/,
but not quite identical.

17

Curve fitting

So what’s the problem? Repeating the process with,
H = {h : his a polynomial of degree at most 1}

gives the following;:

In effect, we have made our H too ‘small’. It does not in fact contain any hypoth-
esis similar to h'.

18

Curve fitting

So we have to make H huge, right? WRONG!!! With
H = {h : his a polynomial of degree at most 25}

we get:

BEWARE!!! 'This is known as overfitting.

19

The perceptron

The example just given illustrates much of what we want to do. However in
practice we deal with more than a single dimension, so

XT:(£E1 To ++ Xy).

The simplest form of hypothesis used is the linear discriminant, also known as

the perceptron. Here

n

h(w;x) =0 ’wo+ZwZ~xZ~ = 0 (wp + wixy + woTs + - -+ + WypTy,) -
i=1

So: we have a linear function modified by the activation function o.

The perceptron’s influence continues to be felt in the recent and ongoing devel-
opment of support vector machines, and forms the basis for most of the field of
supervised learning,.

20

The perceptron activation function I

There are three standard forms for the activation function:

1. Linear: for regression problems we often use
o(z) = z.

2. Step: for two-class classification problems we often use

{ Cl if z >0
o(z) =

(5 otherwise.

3. Sigmoid/Logistic: for probabilistic classification we often use

1

Pr(xisin C) = o(z) = T oxp(—z)

The step function is important but the algorithms involved are somewhat different
to those we’ll be seeing. We won’t consider it further.

The sigmoid/logistic function plays a major role in what follows.

21

The sigmoid/logistic function

The logistic function o(z) = 1

1+exp(=)

0.9t
0.8f
0.7t
0.6f
= 0.5f
0.4f
0.3f
0.2f

011

10

Logistic o(z) applied to the output of a linear function

9%
LA ALY

10

_ 0.8 Nm%%%”m%'
E 0.6
iﬁ/ 0.4 " ’
= oal A
e
LB

22

Gradient descent

A method for training a basic perceptron works as follows. Assume we're dealing
with a regression problem and using o(z) = z.

We define a measure of error for a given collection of weights. For example

m

Blw) = 3 (i — hiw;x))2

1=1

Moditying our notation slightly so that

x' = (1o 29 - w,)
WT:(wo wy wy - Wy)
lets us write
m

We want to minimise E(w).

23

Gradient descent

One way to approach this is to start with a random w(and update it as follows:
OE(w)
ow

Wil = W — 1)

Wi

where

OE(w) <8E(w) OE(w) OE(w))T
aw T awo 811}1 awn

and 7 is some small positive number.

The vector
OE(w)

ow
tells us the direction of the steepest decrease in F/(w).

24

With

we have

where X(

Gradient descent

= —2 Z XZ(] — W XZ)

is the jth element of x;.

25

Gradient descent

The method therefore gives the algorithm

m
Wil = Wi+ 21 Z (y@ - WtTXz') X
i=1

Some things to note:

« In this case F/(w) is parabolic and has a unique global minimum and no local
minima so this works well.

o Gradient descent in some form is a very common approach to this kind of
problem.

« We can perform a similar calculation for other activation functions and for
other definitions for E(w).

e Such calculations lead to different algorithms.

26

Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

We need a network that computes more interesting functions.

27

The multilayer perceptron

Each node in the network is itself a perceptron:

20:1

Weights w; connect nodes together, and a; is the weighted sum or activation for
node j. o is the activation function and the output is z; = o(a;).

Reminder: we’ll continue to use the notation

2 = (12 2 - 2,)

T

W Wy wy Wy - Wy)

n n
g W;zZ; = Wy + g W;Z; = w!z.

28

so that

The multilayer perceptron

In the general case we have a completely unrestricted feedforward structure:

Feature vector x Node ¢

Output y = h(w; x)

Each node is a perceptron. No specific layering is assumed.

w;—,; connects node ¢ to node j. wy for node j is denoted wy_,;.

29

Backpropagation

As usual we have:

. Instances x! = (

L1y ,CE’n>.

« A training sequence s = ((X1,¥1); - - - (X, Ym))-

We also define a measure of training error
E(w) = measure of the error of the network on s
where w is the vector of all the weights in the network.

Our aim is to find a set of weights that minimises F/(w) using gradient descent.

30

Backpropagation: the general case

The central task is therefore to calculate
OE(w)
ow
To do that we need to calculate the individual quantities
OFE(w)
awz’—>j

for every weight w;_,; in the network.

Often E'(w) is the sum of separate components, one for each example in s

in which case
OE(W) < =0E,(w)
ow - ow

We can therefore consider examples individually.

31

Backpropagation: the general case

Place example p at the input and calculate a; and z; for all nodes including the
output y. This is forward propagation.

We have
OLE,(w) OE,(w) Oa;

(9’11}@'_)]' (9@7' 8wHJ~

where a; =), Wi, 2k

Here the sum is over all the nodes connected to node j. As

6aj 0
8ij = awi%j (; wk—mzk) = Zj

we can write

E
a p<W) _ 5322
aij
where we’ve defined
j = .

8@7

32

Backpropagation: the general case

So we now need to calculate the values for ;. When j is the output node—that is,
the one producing the output y = h(w; x,) of the network—this is easy as z;, = y

and
- aEp(W>

5j B 8aj
- aEp(“’) 0y
B 8y (9@7-

_aEp(W> oo
Ty o'(a;)

using the fact that y = o(a;). The first term is in general easy to calculate for a
given E as the error is generally just a measure of the distance between y and
the label ¥, in the training sequence.

Example: when

we have

Backpropagation: the general case

When j is not an output node we need something different:

We’'re interested in

5 OFE,(w)
I 8&]'
Altering a; can affect several other nodes ki, ks, . . . , k, each of which can in turn

affect E,(w).

34

Backpropagation: the general case

A,

=
=

We have

5, — OE,(w) _ Z OE,(w)0day _ Z 51@%

da,; Oay Oa;
kE{kl,kQ kq} kE{kl,k‘Q kq}

where k1, ko, . . ., k, are the nodes to which node j sends a connection.

35

Backpropagation: the general case

k1
A, E
O-

ks

) L

Because we know how to compute 0; for the output node we can work backwards
computing further 0 values.

We will always know all the values 0;, for nodes ahead of where we are.

Hence the term backpropagation.

36

Backpropagation: the general case

and

37

Backpropagation: the general case

Summary: to calculate —— for the pth pattern:

OFE,(w)
0

1. Forward propagation: apply x, and calculate outputs etc for all the nodes in
the network.

2. Backpropagation 1: for the output node
0Ly (w)

@wz’—>j

8Ep(w>
dy

= zz-éj = ZZ'O'/<CL]')

where y = h(w;x,).

3. Backpropagation 2: For other nodes

OF .
p(W) = 2;0'(a;) g OpWj_s
k

Ow;_, j

where the 0, were calculated at an earlier step.

38

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
T inputs from all hidden
nodes
T2
— y = h(W;X)
Ln
For the output: o(a) = a. For the hidden nodes o(a) = m.

39

Backpropagation: a specific example

For the output: o(a) = a so o'(a) = 1.

For the hidden nodes: .

1+ exp(—a)

o(a)
SO
o'(a) =oc(a)[l —o(a)].
We’ll continue using the same definition for the error

m

E(w) = (y, — h(w;x,))’

Ey(w) = (g — h(w: x,))%

40

Backpropagation: a specific example

For the output: the equation is
0Ly (W)

au}i%output

OL,(W)
dy

/
— Zi(goutput — <0 (aoutput>

where y = h(w;x,). So as

0L, (w 0 N
2 2 ()
= 2(y — yp)
=2 [h(w:xp) — yp]

and o'(a) = 1 so
5output =2 [h(W, Xp) o yp]
and

OE,(w)

aUJ@'—>0utput

= 22;(h(W; X)) — 1)

41

Backpropagation: a specific example

For the hidden nodes: the equation is

OF ,
p<W) — 20 <CL]') Z 5kwj_>k.
k

ow;_, j

However there is only one output so
oL, (w

ap_() — ZZ'O'(CL]‘> [1 o O-(a])] 50utputwj—>output

Wi— j

and we know that
Ooutput = 2 [A(W; X)) — Y|
SO

OE,(w)

5’wi—>j

= 2zi0(a;) [1 — o(ay)] [h(W;x,) — | Wj—output

= 2,2i(1 — 2z;) [M(W; X)) — Yp] Wjoutput.

42

Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)
OE(w) in: OE,(w)

ow ow
p=1
then
OE(w)
Wipl = Wy — 1)
ow |,
Sequential: using just one pattern at once
oL, (w
Wit1 = Wi —17) /W)
ow |,

selecting patterns in sequence or at random.

43

Example: the parity problem revisited

As an example we show the result of training a network with:

« Two inputs.

 One output.

« One hidden layer containing 5 units.
« 1 = 0.01.

o All other details as above.

The problem is the parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire training
sequence.

44

X2

Example: the parity problem revisited

Before training After training

2 2
1.5 1.5
1 ¥ 1
0.5 g 0.5
0 * 0
-0.5 -0.5
-1 -1

-1 0 1 2 -1 0 1

r I

45

Example: the parity problem revisited

After training

Before training

1l

Network output
o
o

Network output

N o

46

Example: the parity problem revisited

Error during training

1 0 T T T T T T T T T

0 i i i i i i i ; ‘
0 100 200 300 400 500 600 700 800 900 1000

47

