
Arti�cial Intelligence I

Machine learning using neural networks

Reading: AIMA, chapter 20.
1

Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the fol-
lowing two questions:

1. Let
f (x1, . . . , xn) =

n∑

i=1

aix
2
i

where the ai are constants. Compute ∂f/∂xj where 1 ≤ j ≤ n?
Answer: As only one term in the sum depends on xj, all the other terms dif-
ferentiate to give 0 and

∂f

∂xj
= 2ajxj.

2. Let f (x1, . . . , xn) be a function. Now assume xi = gi(y1, . . . , ym) for each xi
and some collection of functions gi. Assuming all requirements for di�eren-
tiability and so on are met, can you write down an expression for ∂f/∂yj
where 1 ≤ j ≤ m?
Answer: this is just the chain rule for partial di�erentiation

∂f

∂yj
=

n∑

i=1

∂f

∂gi

∂gi
∂yj

.

2

Supervised learning with neural networks

We now consider how an agent might learn to solve a general problem by seeing
examples:

• I present an outline of supervised learning.
• I introduce the classical perceptron.
• I introducemultilayer perceptrons and the backpropagation algorithm for train-
ing them.

To begin, a common source of problems in AI is medical diagnosis.

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call
it D) by constructing a machine:

0 otherwise
1 if the patient su�ers from DMeasurements taken from the

patient: heart rate, blood pressure,
presence of green spots etc.

Machine

Could we do this by explicitly writing a program that examines the measurements
and outputs a diagnosis? Experience suggests that this is unlikely.

3

An example, continued…

An alternative approach: each collection of measurements can be wri�en as a
vector,

xT = (x1 x2 · · · xn)
where,

x1 = heart rate
x2 = blood pressure
x3 = 1 if the patient has green spots, and 0 otherwise
...

and so on.

(Note: it’s a common convention that vectors are column vectors by default. �is
is why the above is wri�en as a transpose.)

4

An example, continued…

A vector of this kind contains all the measurements for a single patient and is
called a feature vector or instance.

�e measurements are a�ributes or features.

A�ributes or features generally appear as one of three basic types:

• Continuous: xi ∈ [xmin, xmax] where xmin, xmax ∈ R.
• Binary: xi ∈ {0, 1} or xi ∈ {−1,+1}.
• Discrete: xi can take one of a �nite number of values, say xi ∈ {X1, . . . , Xp}.

5

An example, continued…

Now imagine that we have a large collection of patient histories (m in total) and
for each of these we know whether or not the patient su�ered from D.

• �e ith patient history gives us an instance xi.
• �is can be paired with a single bit—0 or 1—denoting whether or not the ith
patient su�ers from D. �e resulting pair is called an example or a labelled
example.

• Collecting all the examples together we obtain a training sequence

s = ((x1, 0), (x2, 1), . . . , (xm, 0)).

6

An example, continued…

In supervised machine learning we aim to design a learning algorithm which
takes s and produces a hypothesis h.

Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new patients.

�is is IMPORTANT : we want to diagnose patients that the system has never seen.

�e ability to do this successfully is called generalisation.

7

An example, continued…

In fact, a hypothesis is just a function that maps instances to labels.

x

Classi�er
h(x) LabelA�ribute vector

As h is a function it assigns a label to any x and not just the ones that were in the
training sequence.

What we mean by a label here depends on whether we’re doing classi�cation or
regression.

8

Supervised learning: classi�cation and regression

In classi�cation we’re assigning x to one of a set {ω1, . . . , ωc} of c classes. For
example, if x contains measurements taken from a patient then there might be
three classes:

ω1 = patient has disease
ω2 = patient doesn’t have disease
ω3 = don’t ask me buddy, I’m just a computer!

�e binary case above also �ts into this framework, and we’ll o�en specialise to
the case of two classes, denoted C1 and C2.

In regression we’re assigning x to a real number h(x) ∈ R. For example, if x
contains measurements taken regarding today’s weather then we might have

h(x) = estimate of amount of rainfall expected tomorrow.

For the two-class classi�cation problemwe will also refer to a situation somewhat
between the two, where

h(x) = Pr(x is in C1)

and so we would typically assign x to class C1 if h(x) > 1/2.

9

Summary

We don’t want to design h explicitly.

Training sequence

h = L(s)

Labelh(x)

s

Learner
L

Classi�er
A�ribute vector

x

So we use a learner L to infer it on the basis of a sequence s of training examples.

10

Neural networks

�ere is generally a setH of hypotheses from which L is allowed to select h

L(s) = h ∈ H
H is called the hypothesis space.

�e learner can output a hypothesis explicitly or—as in the case of a neural net-
work—it can output a vector

wT =
(
w1 w2 · · · wW

)

of weights which in turn specify h

h(x) = f (w;x)

where w = L(s).

11

Types of learning

�e form of machine learning described is called supervised learning. �e litera-
ture also discusses unsupervised learning, semisupervised learning, learning using
membership queries and equivalence queries, and reinforcement learning. (More
about some of this next year…)

Supervised learning has multiple applications:

• Speech recognition.
• Deciding whether or not to give credit.
• Detecting credit card fraud.
• Deciding whether to buy or sell a stock option.
• Deciding whether a tumour is benign.
• Datamining: extracting interesting but hidden knowledge from existing, large
databases. For example, databases containing �nancial transactions or loan
applications.

• Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90 miles
at 70 miles per hour, on a public road with other cars present, but with no
assistance from humans.)

12

�is is very similar to curve ��ing

�is process is in fact very similar to curve ��ing. �ink of the process as follows:

• Nature picks an h′ ∈ H but doesn’t reveal it to us.
• Nature then shows us a training sequence s where each xi is labelled as
h′(xi) + εi where εi is noise of some kind.

Our job is to try to infer what h′ is on the basis of s only. Example: ifH is the set of
all polynomials of degree 3 then nature might pick h′(x) = 1

3x
3 − 3

2x
2 + 2x− 1

2.

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

�e line is dashed to emphasise the fact that we don’t get to see it.
13

Curve ��ing

We can now use h′ to obtain a training sequence s in the manner suggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,
sT = ((x1, y1), (x2, y2), . . . , (xm, ym))

where each xi and yi is a real number.

14

Curve ��ing

We’ll use a learning algorithm L that operates in a reasonable-looking way: it
picks an h ∈ H minimising the following quantity,

E =

m∑

i=1

(h(xi)− yi)2.

In other words
h = L(s) = argmin

h∈H

m∑

i=1

(h(xi)− yi)2.

Why is this sensible?

1. Each term in the sum is 0 if h(xi) is exactly yi.
2. Each term increases as the di�erence between h(xi) and yi increases.
3. We add the terms for all examples.

15

Curve ��ing

If we pick h using this method then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

�e chosen h is close to the target h′, even though it was chosen using only a
small number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new point x′ and asked to guess the value h′(x′)
then guessing h(x′) might be expected to do quite well.

16

Curve ��ing

Problem: we don’t know what H nature is using. What if the one we choose
doesn’t match? We can make our H ‘bigger’ by de�ning it as

H = {h : h is a polynomial of degree at most 5}.
If we use the same learning algorithm then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

�e result in this case is similar to the previous one: h is again quite close to h′,
but not quite identical.

17

Curve ��ing

So what’s the problem? Repeating the process with,

H = {h : h is a polynomial of degree at most 1}
gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In e�ect, we have made our H too ‘small’. It does not in fact contain any hypoth-
esis similar to h′.

18

Curve ��ing

So we have to makeH huge, right? WRONG‼! With

H = {h : h is a polynomial of degree at most 25}
we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE‼! �is is known as over��ing.

19

�e perceptron

�e example just given illustrates much of what we want to do. However in
practice we deal with more than a single dimension, so

xT = (x1 x2 · · · xn).
�e simplest form of hypothesis used is the linear discriminant, also known as
the perceptron. Here

h(w;x) = σ

(
w0 +

n∑

i=1

wixi

)
= σ (w0 + w1x1 + w2x2 + · · · + wnxn) .

So: we have a linear function modi�ed by the activation function σ.

�e perceptron’s in�uence continues to be felt in the recent and ongoing devel-
opment of support vector machines, and forms the basis for most of the �eld of
supervised learning.

20

�e perceptron activation function I

�ere are three standard forms for the activation function:

1. Linear : for regression problems we o�en use

σ(z) = z.

2. Step: for two-class classi�cation problems we o�en use

σ(z) =

{
C1 if z > 0
C2 otherwise.

3. Sigmoid/Logistic: for probabilistic classi�cation we o�en use

Pr(x is in C1) = σ(z) =
1

1 + exp(−z).

�e step function is important but the algorithms involved are somewhat di�erent
to those we’ll be seeing. We won’t consider it further.

�e sigmoid/logistic function plays a major role in what follows.

21

�e sigmoid/logistic function

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The logistic function σ(z) = 1
1+exp(−z)

z

σ
(z
)

−10

−5

0

5

10

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x
is

in
C

1
)

22

Gradient descent

A method for training a basic perceptronworks as follows. Assume we’re dealing
with a regression problem and using σ(z) = z.

We de�ne a measure of error for a given collection of weights. For example

E(w) =

m∑

i=1

(yi − h(w;xi))
2.

Modifying our notation slightly so that

xT = (1 x1 x2 · · · xn)
wT = (w0 w1 w2 · · · wn)

lets us write
E(w) =

m∑

i=1

(yi −wTxi)
2.

We want to minimise E(w).

23

Gradient descent

One way to approach this is to start with a random w0 and update it as follows:

wt+1 = wt − η
∂E(w)

∂w

∣∣∣∣
wt

where
∂E(w)

∂w
=
(

∂E(w)
∂w0

∂E(w)
∂w1

· · · ∂E(w)
∂wn

)T

and η is some small positive number.

�e vector
−∂E(w)

∂w
tells us the direction of the steepest decrease in E(w).

24

Gradient descent

With
E(w) =

m∑

i=1

(yi −wTxi)
2

we have
∂E(w)

∂wj
=

∂

∂wj

(
m∑

i=1

(yi −wTxi)
2

)

=

m∑

i=1

(
∂

∂wj
(yi −wTxi)

2

)

=

m∑

i=1

(
2(yi −wTxi)

∂

∂wj

(
−wTxi

))

= −2
m∑

i=1

x
(j)
i

(
yi −wTxi

)

where x(j)
i is the jth element of xi.

25

Gradient descent

�e method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(
yi −wT

t xi
)
xi

Some things to note:

• In this case E(w) is parabolic and has a unique global minimum and no local
minima so this works well.

• Gradient descent in some form is a very common approach to this kind of
problem.

• We can perform a similar calculation for other activation functions and for
other de�nitions for E(w).

• Such calculations lead to di�erent algorithms.

26

Perceptrons aren’t very powerful: the parity problem

�ere are many problems a perceptron can’t solve.

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

x1

x
2

−1 0 1 2
−1

0

1

2

0

0.2

0.4

0.6

0.8

1

x2

x1

N
et
w
o
rk

o
u
tp
u
t

We need a network that computes more interesting functions.

27

�e multilayer perceptron

Each node in the network is itself a perceptron:

aj zj
σ(aj)

w0

w1

w2

wn

...

Node j
z1

z2

zn

∑n
i=0wizi

z0 = 1

Weights wi connect nodes together, and aj is the weighted sum or activation for
node j. σ is the activation function and the output is zj = σ(aj).

Reminder : we’ll continue to use the notation
zT = (1 z1 z2 · · · zn)
wT = (w0 w1 w2 · · · wn)

so that
n∑

i=0

wizi = w0 +

n∑

i=1

wizi = wTz.

28

�e multilayer perceptron

In the general case we have a completely unrestricted feedforward structure:

Feature vector x Node i
Node j

wi→j

Output y = h(w;x)

x1

x2

xn

...

Each node is a perceptron. No speci�c layering is assumed.

wi→j connects node i to node j. w0 for node j is denoted w0→j.

29

Backpropagation

As usual we have:

• Instances xT = (x1, . . . , xn).
• A training sequence s = ((x1, y1), . . . , (xm, ym)).

We also de�ne a measure of training error

E(w) = measure of the error of the network on s

where w is the vector of all the weights in the network.

Our aim is to �nd a set of weights that minimises E(w) using gradient descent.

30

Backpropagation: the general case

�e central task is therefore to calculate
∂E(w)

∂w

To do that we need to calculate the individual quantities
∂E(w)

∂wi→j

for every weight wi→j in the network.

O�en E(w) is the sum of separate components, one for each example in s

E(w) =

m∑

p=1

Ep(w)

in which case
∂E(w)

∂w
=

m∑

p=1

∂Ep(w)

∂w

We can therefore consider examples individually.

31

Backpropagation: the general case

Place example p at the input and calculate aj and zj for all nodes including the
output y. �is is forward propagation.

We have
∂Ep(w)

∂wi→j
=
∂Ep(w)

∂aj

∂aj
∂wi→j

where aj =
∑

k wk→jzk.

Here the sum is over all the nodes connected to node j. As

∂aj
∂wi→j

=
∂

∂wi→j

(∑

k

wk→jzk

)
= zi

we can write
∂Ep(w)

∂wi→j
= δjzi

where we’ve de�ned
δj =

∂Ep(w)

∂aj
.

32

Backpropagation: the general case

So we now need to calculate the values for δj. When j is the output node—that is,
the one producing the output y = h(w;xp) of the network—this is easy as zj = y
and

δj =
∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ′(aj)

using the fact that y = σ(aj). �e �rst term is in general easy to calculate for a
given E as the error is generally just a measure of the distance between y and
the label yp in the training sequence.

Example: when
Ep(w) = (y − yp)2

we have
∂Ep(w)

∂y
= 2(y − yp)
= 2(h(w;xp)− yp).

33

Backpropagation: the general case

When j is not an output node we need something di�erent:

j

... ...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We’re interested in
δj =

∂Ep(w)

∂aj
Altering aj can a�ect several other nodes k1, k2, . . . , kq each of which can in turn
a�ect Ep(w).

34

Backpropagation: the general case

j

... ...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj
=

∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak
∂aj

=
∑

k∈{k1,k2,...,kq}
δk
∂ak
∂aj

where k1, k2, . . . , kq are the nodes to which node j sends a connection.

35

Backpropagation: the general case

j

... ...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Because we know how to compute δj for the output node we can work backwards
computing further δ values.

We will always know all the values δk for nodes ahead of where we are.

Hence the term backpropagation.

36

Backpropagation: the general case

j

... ...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak
∂aj

=
∂

∂aj

(∑

i

wi→kσ(ai)

)
= wj→kσ

′(aj)

and
δj =

∑

k∈{k1,k2,...,kq}
δkwj→kσ

′(aj) = σ′(aj)
∑

k∈{k1,k2,...,kq}
δkwj→k.

37

Backpropagation: the general case

Summary: to calculate ∂Ep(w)

∂w for the pth pa�ern:

1. Forward propagation: apply xp and calculate outputs etc for all the nodes in
the network.

2. Backpropagation 1: for the output node
∂Ep(w)

∂wi→j
= ziδj = ziσ

′(aj)
∂Ep(w)

∂y

where y = h(w;xp).
3. Backpropagation 2: For other nodes

∂Ep(w)

∂wi→j
= ziσ

′(aj)
∑

k

δkwj→k

where the δk were calculated at an earlier step.

38

Backpropagation: a speci�c example

Hidden nodes receive
inputs from all features

Output node receives
inputs from all hidden
nodes

y = h(w;x)

...

...

x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a).

39

Backpropagation: a speci�c example

For the output: σ(a) = a so σ′(a) = 1.

For the hidden nodes:
σ(a) =

1

1 + exp(−a)
so

σ′(a) = σ(a) [1− σ(a)] .
We’ll continue using the same de�nition for the error

E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2.

40

Backpropagation: a speci�c example

For the output: the equation is
∂Ep(w)

∂wi→output
= ziδoutput = ziσ

′(aoutput)
∂Ep(w)

∂y

where y = h(w;xp). So as
∂Ep(w)

∂y
=

∂

∂y

(
(yp − y)2

)

= 2(y − yp)
= 2 [h(w;xp)− yp]

and σ′(a) = 1 so
δoutput = 2 [h(w;xp)− yp]

and
∂Ep(w)

∂wi→output
= 2zi(h(w;xp)− yp)

41

Backpropagation: a speci�c example

For the hidden nodes: the equation is
∂Ep(w)

∂wi→j
= ziσ

′(aj)
∑

k

δkwj→k.

However there is only one output so
∂Ep(w)

∂wi→j
= ziσ(aj) [1− σ(aj)] δoutputwj→output

and we know that
δoutput = 2 [h(w;xp)− yp]

so
∂Ep(w)

∂wi→j
= 2ziσ(aj) [1− σ(aj)] [h(w;xp)− yp]wj→output

= 2xizj(1− zj) [h(w;xp)− yp]wj→output.

42

Pu�ing it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)

∂E(w)

∂w
=

m∑

p=1

∂Ep(w)

∂w

then
wt+1 = wt − η

∂E(w)

∂w

∣∣∣∣
wt

.

Sequential: using just one pa�ern at once

wt+1 = wt − η
∂Ep(w)

∂w

∣∣∣∣
wt

selecting pa�erns in sequence or at random.

43

Example: the parity problem revisited

As an example we show the result of training a network with:

• Two inputs.
• One output.
• One hidden layer containing 5 units.
• η = 0.01.
• All other details as above.

�e problem is the parity problem. �ere are 40 noisy examples.

�e sequential approach is used, with 1000 repetitions through the entire training
sequence.

44

Example: the parity problem revisited

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

Before training

x1

x
2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

After training

x1

x
2

45

Example: the parity problem revisited

−1

0

1

2

−1

0

1

2

0

0.5

1

x1

Before training

x2

N
et
w
o
rk

o
u
tp
u
t

−1

0

1

2 −1

0

1

2

0

0.5

1

x2

After training

x1

N
et
w
o
rk

o
u
tp
u
t

46

Example: the parity problem revisited

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Error during training

47

