Artificial Intelligence I

Machine learning using neural networks

Reading: AIMA, chapter 20.

Supervised learning with neural networks

1

We now consider how an agent might *learn* to solve a general problem by seeing *examples*:

- I present an outline of *supervised learning*.
- I introduce the classical *perceptron*.
- I introduce *multilayer perceptrons* and the *backpropagation algorithm* for training them.

To begin, a common source of problems in AI is *medical diagnosis*.

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call it D) by constructing a machine:

Could we do this by *explicitly writing a program* that examines the measurements and outputs a diagnosis? Experience suggests that this is unlikely.

Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer the following two questions:

1. Let

$$f(x_1,\ldots,x_n) = \sum_{i=1}^n a_i x_i$$

 $\frac{\partial f}{\partial x_j} = 2a_j x_j.$

2. Let $f(x_1, \ldots, x_n)$ be a function. Now assume $x_i = g_i(y_1, \ldots, y_m)$ for each x_i and some collection of functions g_i . Assuming all requirements for differentiability and so on are met, can you write down an expression for $\partial f / \partial y_j$ where $1 \le j \le m$?

Answer: this is just the chain rule for partial differentiation

 $\frac{\partial f}{\partial y_j} = \sum_{i=1}^n \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial y_j}$

An example, continued...

An alternative approach: each collection of measurements can be written as a vector,

$$\mathbf{x}^{T} = (x_1 \ x_2 \ \cdots \ x_n)$$

where,

 $x_1 =$ heart rate

- $x_2 = blood pressure$
- $x_3 = 1$ if the patient has green spots, and 0 otherwise

and so on.

(*Note*: it's a common convention that vectors are *column vectors* by default. This is why the above is written as a *transpose*.)

4

An example, continued... An example, continued... A vector of this kind contains all the measurements for a single patient and is Now imagine that we have a large collection of patient histories (*m* in total) and for each of these we know whether or not the patient suffered from D. called a *feature vector* or *instance*. The measurements are *attributes* or *features*. • The *i*th patient history gives us an instance \mathbf{x}_i . Attributes or features generally appear as one of three basic types: • This can be paired with a single bit-0 or 1-denoting whether or not the *i*th patient suffers from D. The resulting pair is called an *example* or a *labelled* • Continuous: $x_i \in [x_{\min}, x_{\max}]$ where $x_{\min}, x_{\max} \in \mathbb{R}$. example. • *Binary*: $x_i \in \{0, 1\}$ or $x_i \in \{-1, +1\}$. • Collecting all the examples together we obtain a *training sequence* • *Discrete*: x_i can take one of a finite number of values, say $x_i \in \{X_1, \ldots, X_n\}$. $\mathbf{s} = ((\mathbf{x}_1, 0), (\mathbf{x}_2, 1), \dots, (\mathbf{x}_m, 0)).$ 5 An example, continued... An example, continued... In supervised machine learning we aim to design a *learning algorithm* which In fact, a hypothesis is just a *function* that maps *instances* to *labels*. takes s and produces a *hypothesis h*. Classifier Label Attribute vector $h(\mathbf{x})$ x Learning Algorithm As *h* is a *function* it assigns a label to *any* x and *not just the ones that were in the* training sequence. Intuitively, a hypothesis is something that lets us diagnose *new* patients. What we mean by a *label* here depends on whether we're doing *classification* or regression. This is *IMPORTANT*: we want to diagnose patients that *the system has never seen*. The ability to do this successfully is called *generalisation*.

8

7

Supervised learning: classification and regression

In *classification* we're assigning x to one of a set $\{\omega_1, \ldots, \omega_c\}$ of *c* classes. For example, if x contains measurements taken from a patient then there might be three classes:

- $\omega_1 =$ patient has disease
- $\omega_2 =$ patient doesn't have disease
- $\omega_3 =$ don't ask me buddy, I'm just a computer!

The *binary* case above also fits into this framework, and we'll often specialise to the case of two classes, denoted C_1 and C_2 .

In *regression* we're assigning x to a *real number* $h(\mathbf{x}) \in \mathbb{R}$. For example, if x contains measurements taken regarding today's weather then we might have

 $h(\mathbf{x}) =$ estimate of amount of rainfall expected tomorrow.

For the *two-class classification problem* we will also refer to a situation somewhat between the two, where

$$h(\mathbf{x}) = \Pr(\mathbf{x} \text{ is in } C_1)$$

and so we would typically assign **x** to class C_1 if $h(\mathbf{x}) > 1/2$.

Neural networks

9

There is generally a set \mathcal{H} of hypotheses from which L is allowed to select h

 $L(\mathbf{s}) = h \in \mathcal{H}$

 \mathcal{H} is called the *hypothesis space*.

The learner can output a hypothesis explicitly or—as in the case of a *neural net-work*—it can output a vector

$$\mathbf{w}^T = \left(w_1 \ w_2 \ \cdots \ w_W \right)$$

of *weights* which in turn specify h

$$h(\mathbf{x}) = f(\mathbf{w}; \mathbf{x})$$

11

where $\mathbf{w} = L(\mathbf{s})$.

Summary

We don't want to design h explicitly.

So we use a *learner L* to infer it on the basis of a sequence s of *training examples*.

Types of learning

10

The form of machine learning described is called *supervised learning*. The literature also discusses *unsupervised learning*, *semisupervised learning*, learning using *membership queries* and *equivalence queries*, and *reinforcement learning*. (More about some of this next year...)

Supervised learning has multiple applications:

- Speech recognition.
- Deciding whether or not to give credit.
- Detecting *credit card fraud*.
- Deciding whether to *buy or sell a stock option*.
- Deciding whether a *tumour is benign*.
- *Data mining*: extracting interesting but hidden knowledge from existing, large databases. For example, databases containing *financial transactions* or *loan applications*.
- *Automatic driving*. (See Pomerleau, 1989, in which a car is driven for 90 miles at 70 miles per hour, on a public road with other cars present, but with no assistance from humans.)

This is very similar to curve fitting

Curve fitting

We can now use h' to obtain a training sequence s in the manner suggested.

This process is in fact very similar to *curve fitting*. Think of the process as follows:

- Nature picks an $h' \in \mathcal{H}$ but doesn't reveal it to us.
- Nature then shows us a training sequence s where each \mathbf{x}_i is labelled as $h'(\mathbf{x}_i) + \epsilon_i$ where ϵ_i is noise of some kind.

Our job is to try to infer what h' is *on the basis of* s *only. Example*: if \mathcal{H} is the set of all polynomials of degree 3 then nature might pick $h'(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x - \frac{1}{2}$.

13

Curve fitting

We'll use a *learning algorithm* L that operates in a reasonable-looking way: it picks an $h \in \mathcal{H}$ minimising the following quantity,

$$E = \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

In other words

$$h = L(\mathbf{s}) = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Why is this sensible?

- 1. Each term in the sum is 0 if $h(x_i)$ is *exactly* y_i .
- 2. Each term *increases* as the difference between $h(x_i)$ and y_i increases.
- 3. We add the terms for all examples.

Here we have,

$$\mathbf{s}^{T} = ((x_1, y_1), (x_2, y_2), \dots, (x_m, y_m))$$

where each x_i and y_i is a real number.

Curve fitting

14

If we pick h using this method then we get:

The chosen h is close to the target h', even though it was chosen using only a small number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new point \mathbf{x}' and asked to guess the value $h'(\mathbf{x}')$ then guessing $h(\mathbf{x}')$ might be expected to do quite well.

Curve fitting

Problem: we don't know *what* \mathcal{H} *nature is using*. What if the one we choose doesn't match? We can make *our* \mathcal{H} 'bigger' by defining it as

 $\mathcal{H} = \{h : h \text{ is a polynomial of degree at most } 5\}.$

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: h is again quite close to h', but not quite identical.

Curve fitting

17

So we have to make H huge, right? WRONG!!! With

 $\mathcal{H} = \{h : h \text{ is a polynomial of degree at most } 25\}$

we get:

BEWARE!!! This is known as *overfitting*.

Curve fitting

So what's the problem? Repeating the process with,

 $\mathcal{H} = \{h : h \text{ is a polynomial of degree at most } 1\}$

gives the following:

In effect, we have made $our \, \mathcal{H}$ too 'small'. It does not in fact contain any hypothesis similar to h'.

The perceptron

18

The example just given illustrates much of what we want to do. However in practice we deal with *more than a single dimension*, so

$\mathbf{x}^T = (x_1 \ x_2 \ \cdots \ x_n).$

The simplest form of hypothesis used is the *linear discriminant*, also known as the *perceptron*. Here

$$h(\mathbf{w};\mathbf{x}) = \sigma\left(w_0 + \sum_{i=1}^n w_i x_i\right) = \sigma\left(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n\right).$$

So: we have a *linear function* modified by the *activation function* σ .

The perceptron's influence continues to be felt in the recent and ongoing development of *support vector machines*, and forms the basis for most of the field of supervised learning.

The perceptron activation function I

There are three standard forms for the activation function:

1. *Linear*: for *regression problems* we often use

 $\sigma(z) = z$

2. Step: for two-class classification problems we often use

$$\sigma(z) = \begin{cases} C_1 & \text{if } z > 0\\ C_2 & \text{otherwise.} \end{cases}$$

3. Sigmoid/Logistic: for probabilistic classification we often use

$$\Pr(\mathbf{x} \text{ is in } C_1) = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

The *step function* is important but the algorithms involved are somewhat different to those we'll be seeing. We won't consider it further.

The *sigmoid/logistic function* plays a major role in what follows.

Gradient descent

A method for *training a basic perceptron* works as follows. Assume we're dealing with a *regression problem* and using $\sigma(z) = z$.

We define a measure of *error* for a given collection of weights. For example

$$E(\mathbf{w}) = \sum_{i=1}^{m} (y_i - h(\mathbf{w}; \mathbf{x}_i))^2.$$

Modifying our notation slightly so that

$$\mathbf{x}^T = (1 \ x_1 \ x_2 \ \cdots \ x_n)$$
$$\mathbf{w}^T = (w_0 \ w_1 \ w_2 \ \cdots \ w_n)$$

lets us write

$$E(\mathbf{w}) = \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2.$$

We want to *minimise* $E(\mathbf{w})$.

Gradient descent

With

$$E(\mathbf{w}) = \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)$$

we have

$$\frac{\mathbf{w}}{y_j} = \frac{\partial}{\partial w_j} \left(\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \right) \\ = \sum_{i=1}^m \left(\frac{\partial}{\partial w_j} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \right) \\ = \sum_{i=1}^m \left(2(y_i - \mathbf{w}^T \mathbf{x}_i) \frac{\partial}{\partial w_j} \left(-\mathbf{w}^T \mathbf{x}_i \right) \right) \\ = -2 \sum_{i=1}^m \mathbf{x}_i^{(j)} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)$$

where $\mathbf{x}_{i}^{(j)}$ is the *j*th element of \mathbf{x}_{i} .

Perceptrons aren't very powerful: the parity problem

25

There are many problems a perceptron can't solve.

We need a network that computes *more interesting functions*.

Gradient descent

The method therefore gives the algorithm

$$\mathbf{w}_{t+1} = \mathbf{w}_t + 2\eta \sum_{i=1}^m \left(y_i - \mathbf{w}_t^T \mathbf{x}_i \right) \mathbf{x}_i$$

Some things to note:

- In this case $E(\mathbf{w})$ is *parabolic* and has a *unique global minimum* and *no local minima* so this works well.
- *Gradient descent* in some form is a very common approach to this kind of problem.
- We can perform a similar calculation for *other activation functions* and for *other definitions for* $E(\mathbf{w})$.
- Such calculations lead to *different algorithms*.

The multilayer perceptron

26

Each *node* in the network is itself a perceptron:

Weights w_i connect nodes together, and a_j is the weighted sum or *activation* for node j. σ is the *activation function* and the *output* is $z_j = \sigma(a_j)$.

Reminder: we'll continue to use the notation

$$\mathbf{z}^T = (1 \ z_1 \ z_2 \ \cdots \ z_n)$$
$$\mathbf{w}^T = (w_0 \ w_1 \ w_2 \ \cdots \ w_n)$$

28

so that

$$w_i z_i = w_0 + \sum_{i=1}^n w_i z_i = \mathbf{w}^T \mathbf{z}.$$

Backpropagation: the general case

So we now need to calculate the values for δ_j . When j is the *output node*—that is, the one producing the output $y = h(\mathbf{w}; \mathbf{x}_p)$ of the network—this is easy as $z_j = y$ and

$$\begin{split} _{j} &= \frac{\partial E_{p}(\mathbf{w})}{\partial a_{j}} \\ &= \frac{\partial E_{p}(\mathbf{w})}{\partial y} \frac{\partial y}{\partial a_{j}} \\ &= \frac{\partial E_{p}(\mathbf{w})}{\partial u} \sigma'(a_{j}) \end{split}$$

using the fact that $y = \sigma(a_j)$. The first term is in general easy to calculate for a given E as the error is generally just a measure of the distance between y and the label y_p in the training sequence.

Example: when

$$E_p(\mathbf{w}) = (y - y_p)^2$$

we have

$$\frac{E_p(\mathbf{w})}{\partial y} = 2(y - y_p)$$
$$= 2(h(\mathbf{w}; \mathbf{x}_p) - y_p)$$

Backpropagation: the general case

We have

$$\delta_j = \frac{\partial E_p(\mathbf{w})}{\partial a_j} = \sum_{k \in \{k_1, k_2, \dots, k_q\}} \frac{\partial E_p(\mathbf{w})}{\partial a_k} \frac{\partial a_k}{\partial a_j} = \sum_{k \in \{k_1, k_2, \dots, k_q\}} \delta_k \frac{\partial a_k}{\partial a_j}$$

where k_1, k_2, \ldots, k_q are the nodes to which node j sends a connection.

Backpropagation: the general case

When *j* is *not an output node* we need something different:

We're interested in

$$=\frac{\partial E_p(\mathbf{w})}{\partial a_j}$$

Altering a_j can affect several other nodes k_1, k_2, \ldots, k_q each of which can in turn affect $E_p(\mathbf{w})$.

34

Because we know how to compute δ_j for the output node we can work backwards computing further δ values.

We will always know all the values δ_k for nodes ahead of where we are. Hence the term backpropagation.

Backpropagation: a specific example

For the output: the equation is

$$\frac{\partial E_p(\mathbf{w})}{w_{i \to \text{output}}} = z_i \delta_{\text{output}} = z_i \sigma'(a_{\text{output}}) \frac{\partial E_p(\mathbf{w})}{\partial y}$$

where $y = h(\mathbf{w}; \mathbf{x}_p)$. So as

$$\frac{\partial E_p(\mathbf{w})}{\partial y} = \frac{\partial}{\partial y} \left((y_p - y)^2 \right)$$
$$= 2(y - y_p)$$
$$= 2 \left[h(\mathbf{w}; \mathbf{x}_p) - y_p \right]$$

and $\sigma'(a) = 1$ so

$$\delta_{\text{output}} = 2 \left[h(\mathbf{w}; \mathbf{x}_p) - y_p \right]$$

and

$$\frac{\partial E_p(\mathbf{w})}{\partial w_{i \to \text{output}}} = 2z_i(h(\mathbf{w}; \mathbf{x}_p) - y_p)$$

Putting it all together

41

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \sum_{p=1}^{m} \frac{\partial E_p(\mathbf{w})}{\partial \mathbf{w}}$$

then

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \left. \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w}_t}.$$

Sequential: using just one pattern at once

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \left. \frac{\partial E_p(\mathbf{w})}{\partial \mathbf{w}} \right|_{\mathbf{w}}$$

43

selecting patterns in sequence or at random.

Backpropagation: a specific example

For the hidden nodes: the equation is

$$\frac{\partial E_p(\mathbf{w})}{\partial w_{i\to j}} = z_i \sigma'(a_j) \sum_k \delta_k w_{j\to k}.$$

However there is only one output so

$$\frac{\partial E_p(\mathbf{w})}{\partial w_{i \to j}} = z_i \sigma(a_j) \left[1 - \sigma(a_j)\right] \delta_{\text{output}} w_{j \to \text{output}}$$

and we know that

so

 $\delta_{\text{output}} = 2\left[h(\mathbf{w}; \mathbf{x}_p) - y_p\right]$

$$\frac{\partial E_p(\mathbf{w})}{\partial w_{i \to j}} = 2z_i \sigma(a_j) \left[1 - \sigma(a_j)\right] \left[h(\mathbf{w}; \mathbf{x}_p) - y_p\right] w_{j \to \text{output}}$$
$$= 2x_i z_j (1 - z_j) \left[h(\mathbf{w}; \mathbf{x}_p) - y_p\right] w_{j \to \text{output}}.$$

Example: the parity problem revisited

42

As an example we show the result of training a network with:

- Two inputs.
- One output.
- One hidden layer containing 5 units.
- $\eta = 0.01$.
- All other details as above.

The problem is the parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire training sequence.

44

