

Planning III: planning using propositional logic

We've seen that plans might be extracted from a knowledge base via *theorem proving*, using *first order logic (FOL)* and *situation calculus*.

BUT: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing *satisfiability* in *propositional logic*, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the form

description of start state
 \wedge descriptions of the possible actions
 \wedge description of goal

We attempt to construct this sentence such that:

- If M is a model of the sentence then M assigns *true* to a proposition if and only if it is in the plan.
- Any assignment denoting an incorrect plan will not be a model as the goal description will not be *true*.
- The sentence is unsatisfiable if no plan exists.

Propositional logic for planning

Two roof-climbers want to *swap places*:

Start state:

$$S = \text{At}^0(a, \text{spire}) \wedge \text{At}^0(b, \text{ground}) \\ \wedge \neg \text{At}^0(a, \text{ground}) \wedge \neg \text{At}^0(b, \text{spire})$$

Remember that an expression such as $\text{At}^0(a, \text{spire})$ is a *proposition*. The super-scripted number now denotes time.

Propositional logic for planning

Goal:

$$G = \text{At}^i(a, \text{ground}) \wedge \text{At}^i(b, \text{spire}) \\ \wedge \neg \text{At}^i(a, \text{spire}) \wedge \neg \text{At}^i(b, \text{ground})$$

Actions: can be introduced using the equivalent of successor-state axioms

$$\text{At}^1(a, \text{ground}) \leftrightarrow \\ (\text{At}^0(a, \text{ground}) \wedge \neg \text{Move}^0(a, \text{ground}, \text{spire})) \\ \vee (\text{At}^0(a, \text{spire}) \wedge \text{Move}^0(a, \text{spire}, \text{ground})) \quad (1)$$

Denote by A the collection of all such axioms.

Propositional logic for planning

We will now find that $S \wedge A \wedge G$ has a model in which $\text{Move}^0(\text{a}, \text{spire}, \text{ground})$ and $\text{Move}^0(\text{b}, \text{ground}, \text{spire})$ are **true** while all remaining actions are **false**.

In more realistic planning problems we will clearly not know in advance at what time the goal might expect to be achieved.

We therefore:

- Loop through possible final times T .
- Generate a goal for time T and actions up to time T .
- Try to find a model and extract a plan.
- Until a plan is obtained or we hit some maximum time.

Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied, also be able to obtain less sensible plans.

In the current example

$$\text{Move}^0(b, \text{ground}, \text{spire}) = \text{true}$$

$$\text{Move}^0(a, \text{spire}, \text{ground}) = \text{true}$$

$$\boxed{\text{Move}^0(a, \text{ground}, \text{spire}) = \text{true}}$$

is a model, because the successor-state axiom (1) does not in fact preclude the application of $\text{Move}^0(a, \text{ground}, \text{spire})$.

We need a *precondition axiom*

$$\text{Move}^i(a, \text{ground}, \text{spire}) \rightarrow \text{At}^i(a, \text{ground})$$

and so on.

Propositional logic for planning

Life becomes more complicated still if a third location is added: `hospital`.

$$\text{Move}^0(a, \text{spire}, \text{ground}) \wedge \text{Move}^0(a, \text{spire}, \text{hospital})$$

is perfectly valid and so we need to specify that he can't move to two places simultaneously

$$\begin{aligned} & \neg(\text{Move}^i(a, \text{spire}, \text{ground}) \wedge \text{Move}^i(a, \text{spire}, \text{hospital})) \\ & \neg(\text{Move}^i(a, \text{ground}, \text{spire}) \wedge \text{Move}^i(a, \text{ground}, \text{hospital})) \\ & \quad \vdots \end{aligned}$$

and so on.

These are *action-exclusion* axioms.

Unfortunately they will tend to produce *totally-ordered* rather than *partially-ordered* plans.

Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the effect or precondition of the other.
2. Or, specify that something can't be in two places simultaneously

$$\neg(\text{At}^i(x, 11) \wedge \text{At}^i(x, 12))$$

for all combinations of x , i and $11 \neq 12$.

This is an example of a *state constraint*.

Clearly this process can become very complex, but there are techniques to help deal with this.

Review of constraint satisfaction problems (CSPs)

Recall that in a CSP we have:

- A set of n *variables* V_1, V_2, \dots, V_n .
- For each V_i a *domain* D_i specifying the values that V_i can take.
- A set of m *constraints* C_1, C_2, \dots, C_m .

Each constraint C_i involves a set of variables and specifies an *allowable collection of values*.

- A *state* is an assignment of specific values to some or all of the variables.
- An assignment is *consistent* if it violates no constraints.
- An assignment is *complete* if it gives a value to every variable.

A *solution* is a consistent and complete assignment.

The state-variable representation

Another planning language: the *state-variable representation*.

Things of interest such as people, places, objects *etc* are divided into *domains*:

$$\mathcal{D}_1 = \{\text{climber1, climber2}\}$$

$$\mathcal{D}_2 = \{\text{home, jokeShop, hardwareStore, pavement, spire, hospital}\}$$

$$\mathcal{D}_3 = \{\text{rope, gorilla}\}$$

Part of the specification of a planning problem involves stating which domain a particular item is in. For example

$$\mathcal{D}_1(\text{climber1})$$

and so on.

Relations and functions have arguments chosen from unions of these domains.

$$\text{above} \subseteq \mathcal{D}_1^{\text{above}} \times \mathcal{D}_2^{\text{above}}$$

is a relation. The $\mathcal{D}_i^{\text{above}}$ are unions of one or more \mathcal{D}_i .

Note: \mathcal{D} is used for domains in the state-variable representation. D is used for domains in CSPs.

The state-variable representation

The relation *above* is in fact a *rigid relation (RR)*, as it is unchanging: it does not depend upon *state*. (Remember *fluents* in situation calculus?)

Similarly, we have *functions*

$$\text{at}(x_1, s) : \mathcal{D}_1^{\text{at}} \times S \rightarrow \mathcal{D}^{\text{at}}.$$

Here, $\text{at}(x, s)$ is a *state-variable*. The domain $\mathcal{D}_1^{\text{at}}$ and range \mathcal{D}^{at} are unions of one or more \mathcal{D}_i . In general these can have multiple parameters

$$\text{sv}(x_1, \dots, x_n, s) : \mathcal{D}_1^{\text{sv}} \times \dots \times \mathcal{D}_n^{\text{sv}} \times S \rightarrow \mathcal{D}^{\text{sv}}.$$

A state-variable denotes assertions such as

$$\text{at(gorilla, } s) = \text{jokeShop}$$

where s denotes a *state* and the set S of all states will be defined later.

The state variable allows things such as locations to change—again, much like *fluents* in the situation calculus.

Variables appearing in relations and functions are considered to be *typed*.

The state-variable representation

Note:

- For properties such as a *location* a function might be considerably more suitable than a relation.
- For locations, everything has to be *somewhere* and it can only be in *one place at a time*.

So a function is perfect and immediately solves some of the problems seen earlier.

The state-variable representation

Actions as usual, have a *name*, a *set of preconditions* and a *set of effects*.

- *Names* are unique, and followed by a list of variables involved in the action.
- *Preconditions* are expressions involving state variables and relations.
- *Effects* are assignments to state variables.

For example:

buy(x, y, l)	
Preconditions	$at(x, s) = l$ $sells(l, y)$ $has(y, s) = l$
Effects	$has(y, s) = x$

The state-variable representation

Goals are sets of *expressions* involving *state variables*.

For example:

Goal:
$\text{at}(\text{climber}, s) = \text{home}$
$\text{has}(\text{rope}, s) = \text{climber}$
$\text{at}(\text{gorilla}, s) = \text{spire}$

From now on we will generally suppress the state s when writing state variables.

The state-variable representation

A *state* as just a statement of what values the state variables take at a given time.

```
s = {      has(gorilla) = jokeShop
            has(firstAidKit) = climber2
            has(rope) = climber2
            :
            at(climber1) = jokeShop
            at(climber2) = spire
            :
        }
```

- For each state variable *sv* consider all ground instances, such as *sv(climber, rope)*, with arguments *consistent* with the *rigid relations*.
Define *X* to be the set of all such ground instances.
- A state *s* is then just a set

$$s = \{(v = c) | v \in X\}$$

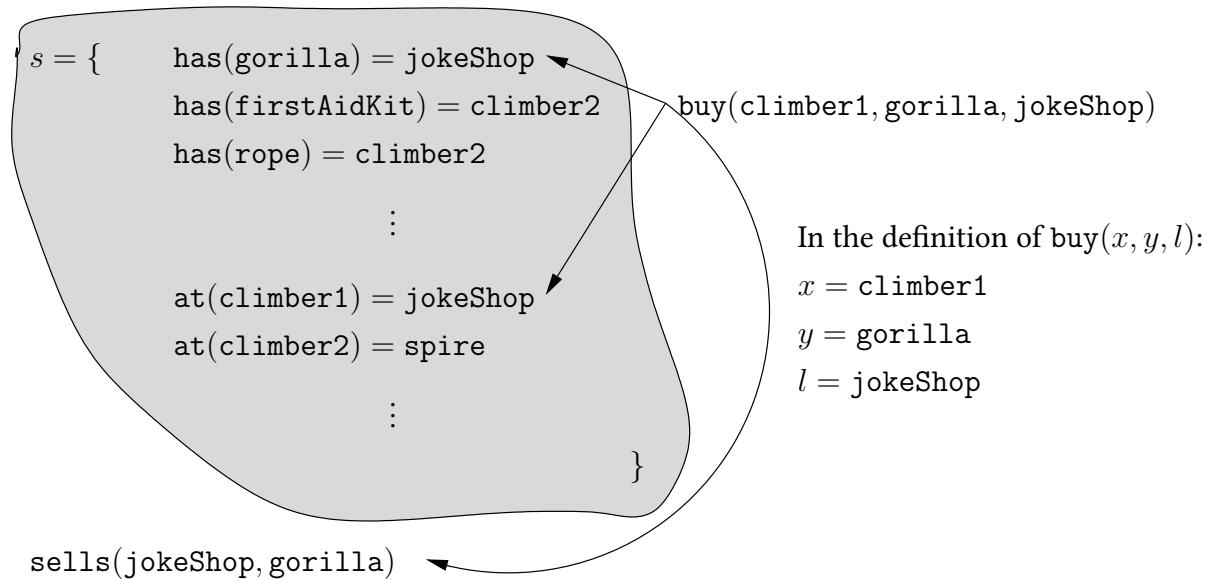
where *c* is in the range of *v*.

This allows us to define the *effect of an action*.

A planning problem also needs a *start state* *s₀*, which can be defined in this way.

The state-variable representation

Considering all the *ground actions consistent with the rigid relations*:

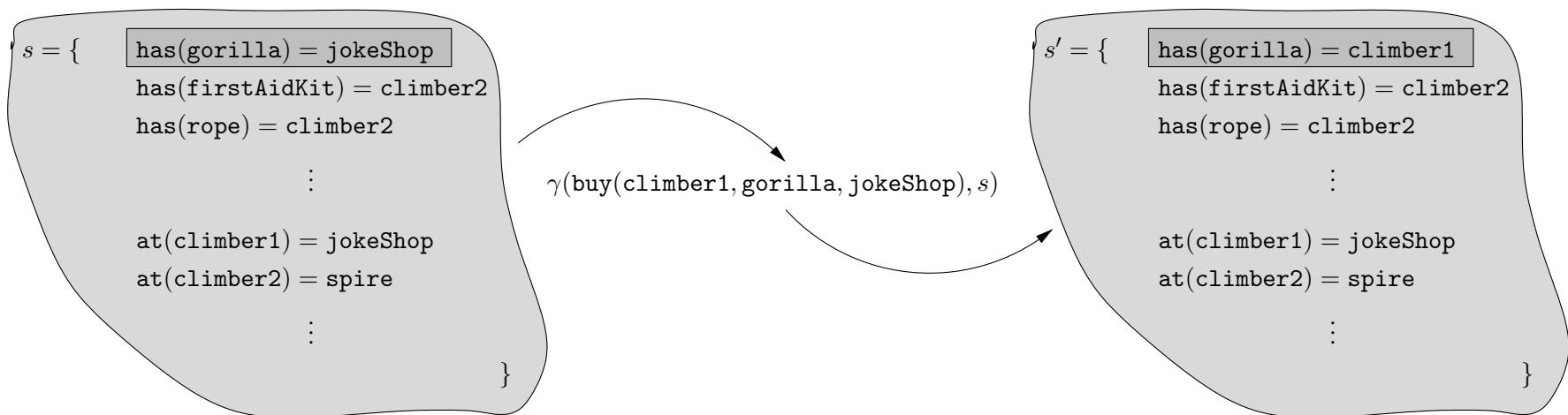


- An action is *applicable in s* if all expressions $v = c$ appearing in the set of preconditions also appear in s .
- As there is no rigid relation $\text{sells(jokeShop, fruitBats)}$ we would *not* consider an action such as $\text{buy(climber1, fruitBats, jokeShop)}$ —it is not *consistent with the rigid relations*.

The state-variable representation

Finally, there is a function γ that maps a state and an action to a new state

$$\gamma(s, a) = s'$$



Specifically, we have

$$\gamma(s, a) = \{(v = c) | v \in X\}$$

where either c is specified in an effect of a , or otherwise $v = c$ is a member of s .

Note: the definition of γ implicitly solves the *frame problem*.

The state-variable representation

A *solution* to a planning problem is a sequence (a_0, a_1, \dots, a_n) of actions such that...

- a_0 is applicable in s_0 and for each i , a_i is applicable in $s_i = \gamma(s_{i-1}, a_{i-1})$.
- For each goal g we have

$$g \in \gamma(s_n, a_n).$$

What we need now is a method for *transforming* a problem described in this language into a CSP.

We'll once again do this for a fixed upper limit T on the number of steps in the plan.

Converting to a CSP

Step 1: encode *actions* as *CSP variables*.

For each time step t where $0 \leq t \leq T - 1$, the CSP has a variable

action^t

with domain

$$D^{\text{action}^t} = \{\text{a} \mid \text{a is the ground instance of an action}\} \cup \{\text{none}\}$$

Example: at some point in searching for a plan we might attempt to find the solution to the corresponding CSP involving

$\text{action}^5 = \text{attach(gorilla, spire)}$

WARNING: be careful in what follows to distinguish between *state variables, actions etc* in the planning problem and *variables* in the CSP.

Converting to a CSP

Step 2: encode *ground state variables* as *CSP variables*, with a complete copy of all the state variables *for each time step*.

So, for each t where $0 \leq t \leq T$ we have a CSP variable

$$\text{sv}_i^t(c_1, \dots, c_n)$$

with domain $D = \mathcal{D}^{\text{sv}_i}$. (That is, the *domain* of the CSP variable is the *range* of the state variable.)

Example: at some point in searching for a plan we might attempt to find the solution to the corresponding CSP involving

$$\text{location}^9(\text{climber1}) = \text{hospital}.$$

Converting to a CSP

Step 3: encode the *preconditions for actions in the planning problem* as *constraints in the CSP problem*.

For each time step t and for each ground action $a(c_1, \dots, c_n)$ with arguments *consistent with the rigid relations in its preconditions*:

For a precondition of the form $sv_i = v$ include constraint pairs

$$\begin{aligned} & (action^t = a(c_1, \dots, c_n), \\ & \quad sv_i^t = v) \end{aligned}$$

Example: consider the action $buy(x, y, l)$ introduced above, and having the pre-conditions $at(x) = l$, $sells(l, y)$ and $has(y) = l$.

Assume $sells(y, l)$ is only true for

$$l = \text{jokeShop}$$

and

$$y = \text{gorilla}$$

so we only consider these values for l and y . Then for each time step t we have the constraints...

Converting to a CSP

$\text{action}^t = \text{buy}(\text{climber1}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{at}^t(\text{climber1}) = \text{jokeShop}$

$\text{action}^t = \text{buy}(\text{climber1}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{has}^t(\text{gorilla}) = \text{jokeShop}$

$\text{action}^t = \text{buy}(\text{climber2}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{at}^t(\text{climber2}) = \text{jokeShop}$

$\text{action}^t = \text{buy}(\text{climber2}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{has}^t(\text{gorilla}) = \text{jokeShop}$

and so on...

Converting to a CSP

Step 4: encode the *effects of actions in the planning problem* as *constraints in the CSP problem*.

For each time step t and for each ground action $a(c_1, \dots, c_n)$ with arguments *consistent with the rigid relations in its preconditions*:

For an effect of the form $sv_i = v$ include constraint pairs

$$(\text{action}^t = a(c_1, \dots, c_n), \\ sv_i^{t+1} = v)$$

Example: continuing with the previous example, we will include constraints

$\text{action}^t = \text{buy}(\text{climber1}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{has}^{t+1}(\text{gorilla}) = \text{climber1}$

$\text{action}^t = \text{buy}(\text{climber2}, \text{gorilla}, \text{jokeShop})$

paired with

$\text{has}^{t+1}(\text{gorilla}) = \text{climber2}$

and so on...

Converting to a CSP

Step 5: encode the *frame axioms* as *constraints in the CSP problem*.

An action must not change things not appearing in its effects. So:

For:

1. Each time step t .
2. Each ground action $a(c_1, \dots, c_n)$ with arguments *consistent with the rigid relations in its preconditions*.
3. Each sv_i that *does not appear in the effects of a*, and each $v \in \mathcal{D}^{sv_i}$

include in the CSP the ternary constraint

$$\begin{aligned} & (\text{action}^t = a(c_1, \dots, c_n), \\ & \quad sv_i^t = v, \\ & \quad sv_i^{t+1} = v). \end{aligned}$$

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.

The scheme has the following property:

A solution to the planning problem with at most T steps exists if and only if there is a solution to the corresponding CSP.

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to the *action^t* variables in the solution of the CSP.

It is also the case that:

There is a solution to the planning problem with at most T steps if and only if there is a solution to the corresponding CSP from which the solution can be extracted in this way.

For a proof see:

Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.