Planning III: planning using propositional logic

We’ve seen that plans might be extracted from a knowledge base via
, using and

: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing in
, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the form

We attempt to construct this sentence such that:
 If '/ is a model of the sentence then |/ assigns to a proposition if and
only if it is in the plan.

« Any assignment denoting an incorrect plan will not be a model as the goal
description will not be

- The sentence is unsatisfiable if no plan exists.

1

Propositional logic for planning

Two roof-climbers want to

Remember that an expression such as is a . The super-
scripted number now denotes time.

Propositional logic for planning

: can be introduced using the equivalent of successor-state axioms

Denote by | the collection of all such axioms.

(1)

Propositional logic for planning

We will now find that has a model in which
and are while all remaining actions are

In more realistic planning problems we will clearly not know in advance at what
time the goal might expect to be achieved.

We therefore:

« Loop through possible final times
« Generate a goal for time / and actions up to time
» Try to find a model and extract a plan.

« Until a plan is obtained or we hit some maximum time.

Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied,
also be able to obtain less sensible plans.

In the current example

is a model, because the successor-state axiom (1) does not in fact preclude the
application of

We need a

and so on.

Propositional logic for planning

Life becomes more complicated still if a third location is added:

is perfectly valid and so we need to specify that he can’t move to two places
simultaneously

and so on.
These are axioms.
Unfortunately they will tend to produce rather than

plans.

Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the effect or precondition
of the other.

2. Or, specify that something can’t be in two places simultaneously

for all combinations of , » and
This is an example of a

Clearly this process can become very complex, but there are techniques to help
deal with this.

Review of constraint satisfaction problems (CSPs)

Recall that in a CSP we have:

« A set of
« Foreach | a specifying the values that | can take.

« A set of

Each constraint (| involves a set of variables and specifies an

« A is an assignment of specific values to some or all of the variables.
« An assignment is if it violates no constraints.
 An assignment is if it gives a value to every variable.

A is a consistent and complete assignment.

The state-variable representation

Another planning language: the

Things of interest such as people, places, objects etc are divided into

Part of the specification of a planning problem involves stating which domain a
particular item is in. For example

and so on.

Relations and functions have arguments chosen from unions of these domains.

is a relation. The are unions of one or more

is used for domains in the state-variable representation. /' is used for
domains in CSPs.

The state-variable representation

The relation is in fact a , as it is unchanging: it does not
depend upon . (Remember in situation calculus?)

Similarly, we have

Here, is a . The domain and range are unions of
one or more /. In general these can have multiple parameters

A state-variable denotes assertions such as

where - denotes a and the set - of all states will be defined later.

The state variable allows things such as locations to change—again, much like
in the situation calculus.

Variables appearing in relations and functions are considered to be

10

The state-variable representation

« For properties such as a a function might be considerably more suit-
able than a relation.

« For locations, everything has to be and it can only be in

So a function is perfect and immediately solves some of the problems seen earlier.

11

The state-variable representation

as usual, have a , a and a
. are unique, and followed by a list of variables involved in the action.
. are expressions involving state variables and relations.
. are assignments to state variables.

For example:

Preconditions

Effects

12

The state-variable representation

are sets of involving

For example:

Goal:

From now on we will generally suppress the state - when writing state variables.

13

The state-variable representation

A as just a statement of what values the state variables take at a given time.

s={ has(gorilla) = jokeShop
has(firstAidKit) = climber?2

has(rope) = climber?2

at(climberl) = jokeShop

at(climber2) = spire

}

« For each state variable = consider all ground instances, such as

with arguments with the

Define = to be the set of all such ground instances.

o A state - is then just a set

where ¢ is in the range of

This allows us to define the

A planning problem also needs a

14

, which can be defined in this way.

The state-variable representation

Considering all the

has(gorilla) = jokeShop
has(firstAidKit) = climber2 uy(climberl, gorilla, jokeShop)

has(rope) = climber2

In the definition of buy(z, y,[):

at(climberl) = jokeShop r = climberl

at(climber2) = spire y = gorilla
[= jokeShop
sells(jokeShop, gorilla)
« An action is if all expressions appearing in the set of
preconditions also appear in
« As there is no rigid relation (jokeShop, fruitBats) we would 0/ con-

sider an action such as —it is not

15

The state-variable representation

Finally, there is a function - that maps a state and an action to a new state

‘ has(gorilla) = climberl ‘
has(firstAidKit) = climber2

has(rope) = climber2

‘has(gorilla) = jokeShop ‘ o =1
has(firstAidKit) = climber2

has(rope) = climber2

5=

TN

~(buy(climberl, gorilla, jokeShop), s)

N

at(climberl) = jokeShop at(climberl) = jokeShop

at(climber2) = spire at(climber2) = spire

Specifically, we have

where either ¢ is specified in an effect of /, or otherwise is a member of .

the definition of - implicitly solves the

16

The state-variable representation

A to a planning problem is a sequence of actions such
that...

e (1, is applicable in -, and for each /, ¢, is applicable in

» For each goal we have

What we need now is a method for a problem described in this
language into a CSP.

We’'ll once again do this for a fixed upper limit /| on the number of steps in the
plan.

17

Converting to a CSP

encode as

For each time step / where , the CSP has a variable

with domain

at some point in searching for a plan we might attempt to find the
solution to the corresponding CSP involving

be careful in what follows to distinguish between
in the planning problem and in the CSP.

18

Converting to a CSP

encode as , with a complete copy of
all the state variables

So, for each / where we have a CSP variable

with domain . (That is, the of the CSP variable is the of
the state variable.)

at some point in searching for a plan we might attempt to find the
solution to the corresponding CSP involving

19

Converting to a CSP

encode the as

For each time step / and for each ground action with arguments

For a precondition of the form include constraint pairs

consider the action introduced above, and having the pre-
conditions ; and

Assume is only true for

and

so we only consider these values for / and /. Then for each time step / we have
the constraints...

20

Converting to a CSP

paired with

paired with

paired with

paired with

and so on...

21

Converting to a CSP

encode the as
For each time step / and for each ground action with arguments
For an effect of the form include constraint pairs

continuing with the previous example, we will include constraints

paired with

paired with

and so on...

22

Converting to a CSP

encode the as
An action must not change things not appearing in its effects. So:

For:

1. Each time step .

2. Each ground action with arguments

3. Each that , and each

include in the CSP the ternary constraint

23

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.
The scheme has the following property:

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to the
variables in the solution of the CSP.

It is also the case that:

For a proof see:

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

24

