
Planning III: planning using propositional logic

We’ve seen that plans might be extracted from a knowledge base via theorem
proving, using �rst order logic (FOL) and situation calculus.

BUT : this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing satis�ability in propositional
logic, and these have also been applied to planning.

�e basic idea is to a�empt to �nd a model of a sentence having the form
description of start state

∧ descriptions of the possible actions
∧ description of goal

We a�empt to construct this sentence such that:

• IfM is a model of the sentence thenM assigns true to a proposition if and
only if it is in the plan.

• Any assignment denoting an incorrect plan will not be a model as the goal
description will not be true.

• �e sentence is unsatis�able if no plan exists.

1



Propositional logic for planning

Two roof-climbers want to swap places:

Start state:
S = At0(a, spire) ∧ At0(b, ground)

∧ ¬At0(a, ground) ∧ ¬At0(b, spire)

Remember that an expression such as At0(a, spire) is a proposition. �e super-
scripted number now denotes time.

2



Propositional logic for planning

Goal:
G = Ati(a, ground) ∧ Ati(b, spire)

∧ ¬Ati(a, spire) ∧ ¬Ati(b, ground)
Actions: can be introduced using the equivalent of successor-state axioms

At1(a,ground)↔
(At0(a, ground) ∧ ¬Move0(a, ground, spire))
∨ (At0(a, spire) ∧ Move0(a, spire, ground))

(1)

Denote by A the collection of all such axioms.

3



Propositional logic for planning

We will now �nd that S ∧ A ∧G has a model in which Move0(a, spire, ground)
and Move0(b, ground, spire) are true while all remaining actions are false.

In more realistic planning problems we will clearly not know in advance at what
time the goal might expect to be achieved.

We therefore:

• Loop through possible �nal times T .
• Generate a goal for time T and actions up to time T .
• Try to �nd a model and extract a plan.
• Until a plan is obtained or we hit some maximum time.

4



Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied,
also be able to obtain less sensible plans.

In the current example
Move0(b, ground, spire) = true

Move0(a, spire, ground) = true

Move0(a, ground, spire) = true

is a model, because the successor-state axiom (1) does not in fact preclude the
application of Move0(a, ground, spire).

We need a precondition axiom

Movei(a, ground, spire)→ Ati(a, ground)

and so on.

5



Propositional logic for planning

Life becomes more complicated still if a third location is added: hospital.

Move0(a, spire, ground) ∧ Move0(a, spire, hospital)

is perfectly valid and so we need to specify that he can’t move to two places
simultaneously

¬(Movei(a, spire, ground) ∧ Movei(a, spire, hospital))
¬(Movei(a, ground, spire) ∧ Movei(a, ground, hospital))

...
and so on.

�ese are action-exclusion axioms.

Unfortunately they will tend to produce totally-ordered rather than partially-
ordered plans.

6



Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the e�ect or precondition
of the other.

2. Or, specify that something can’t be in two places simultaneously

¬(Ati(x, l1) ∧ Ati(x, l2))

for all combinations of x, i and l1 6= l2.

�is is an example of a state constraint.

Clearly this process can become very complex, but there are techniques to help
deal with this.

7



Review of constraint satisfaction problems (CSPs)

Recall that in a CSP we have:

• A set of n variables V1, V2, . . . , Vn.
• For each Vi a domain Di specifying the values that Vi can take.
• A set ofm constraints C1, C2, . . . , Cm.

Each constraintCi involves a set of variables and speci�es an allowable collection
of values.

• A state is an assignment of speci�c values to some or all of the variables.
• An assignment is consistent if it violates no constraints.
• An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.

8



�e state-variable representation

Another planning language: the state-variable representation.

�ings of interest such as people, places, objects etc are divided into domains:
D1 = {climber1, climber2}
D2 = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, gorilla}

Part of the speci�cation of a planning problem involves stating which domain a
particular item is in. For example

D1(climber1)

and so on.

Relations and functions have arguments chosen from unions of these domains.

above ⊆ Dabove
1 ×Dabove

2

is a relation. �e Dabove
i are unions of one or more Di.

Note: D is used for domains in the state-variable representation. D is used for
domains in CSPs.

9



�e state-variable representation

�e relation above is in fact a rigid relation (RR), as it is unchanging: it does not
depend upon state. (Remember �uents in situation calculus?)

Similarly, we have functions

at(x1, s) : D
at
1 × S → Dat.

Here, at(x, s) is a state-variable. �e domain Dat
1 and range Dat are unions of

one or more Di. In general these can have multiple parameters

sv(x1, . . . , xn, s) : D
sv
1 × · · · ×Dsv

n × S → Dsv.

A state-variable denotes assertions such as

at(gorilla, s) = jokeShop

where s denotes a state and the set S of all states will be de�ned later.

�e state variable allows things such as locations to change—again, much like
�uents in the situation calculus.

Variables appearing in relations and functions are considered to be typed.

10



�e state-variable representation

Note:

• For properties such as a location a function might be considerably more suit-
able than a relation.

• For locations, everything has to be somewhere and it can only be in one place
at a time.

So a function is perfect and immediately solves some of the problems seen earlier.

11



�e state-variable representation

Actions as usual, have a name, a set of preconditions and a set of e�ects.

• Names are unique, and followed by a list of variables involved in the action.
• Preconditions are expressions involving state variables and relations.
• E�ects are assignments to state variables.

For example:

buy(x, y, l)
Preconditions at(x, s) = l

sells(l, y)
has(y, s) = l

E�ects has(y, s) = x

12



�e state-variable representation

Goals are sets of expressions involving state variables.

For example:

Goal:
at(climber, s) = home

has(rope, s) = climber

at(gorilla, s) = spire

From now on we will generally suppress the state swhen writing state variables.

13



�e state-variable representation

A state as just a statement of what values the state variables take at a given time.

}

has(gorilla) = jokeShop

has(firstAidKit) = climber2

has(rope) = climber2

...

at(climber1) = jokeShop

at(climber2) = spire

...

s = {

• For each state variable sv consider all ground instances, such as sv(climber, rope),
with arguments consistent with the rigid relations.
De�ne X to be the set of all such ground instances.

• A state s is then just a set
s = {(v = c)|v ∈ X}

where c is in the range of v.

�is allows us to de�ne the e�ect of an action.

A planning problem also needs a start state s0, which can be de�ned in this way.
14



�e state-variable representation

Considering all the ground actions consistent with the rigid relations:

In the de�nition of buy(x, y, l):
x = climber1

y = gorilla

l = jokeShop

at(climber1) = jokeShop

at(climber2) = spire

...
}

s = {
buy(climber1, gorilla, jokeShop)

sells(jokeShop, gorilla)

has(gorilla) = jokeShop

has(firstAidKit) = climber2

has(rope) = climber2

...

• An action is applicable in s if all expressions v = c appearing in the set of
preconditions also appear in s.

• As there is no rigid relation sells(jokeShop, fruitBats) we would not con-
sider an action such as buy(climber1, fruitBats, jokeShop)—it is not con-
sistent with the rigid relations.

15



�e state-variable representation

Finally, there is a function γ that maps a state and an action to a new state

γ(s, a) = s′

has(firstAidKit) = climber2

has(rope) = climber2

...

at(climber1) = jokeShop

at(climber2) = spire

...
}

has(gorilla) = climber1s′ = {s = {

γ(buy(climber1, gorilla, jokeShop), s)

has(gorilla) = jokeShop

has(firstAidKit) = climber2

has(rope) = climber2

...

at(climber1) = jokeShop

at(climber2) = spire

...
}

Speci�cally, we have
γ(s, a) = {(v = c)|v ∈ X}

where either c is speci�ed in an e�ect of a, or otherwise v = c is a member of s.

Note: the de�nition of γ implicitly solves the frame problem.

16



�e state-variable representation

A solution to a planning problem is a sequence (a0, a1, . . . , an) of actions such
that…

• a0 is applicable in s0 and for each i, ai is applicable in si = γ(si−1, ai−1).
• For each goal g we have

g ∈ γ(sn, an).

What we need now is a method for transforming a problem described in this
language into a CSP.

We’ll once again do this for a �xed upper limit T on the number of steps in the
plan.

17



Converting to a CSP

Step 1: encode actions as CSP variables.

For each time step t where 0 ≤ t ≤ T − 1, the CSP has a variable

actiont

with domain

Dactiont = {a|a is the ground instance of an action} ∪ {none}

Example: at some point in searching for a plan we might a�empt to �nd the
solution to the corresponding CSP involving

action5 = attach(gorilla, spire)

WARNING: be careful in what follows to distinguish between state variables, ac-
tions etc in the planning problem and variables in the CSP.

18



Converting to a CSP

Step 2: encode ground state variables as CSP variables, with a complete copy of
all the state variables for each time step.

So, for each t where 0 ≤ t ≤ T we have a CSP variable

svti(c1, . . . , cn)

with domain D = Dsvi. (�at is, the domain of the CSP variable is the range of
the state variable.)

Example: at some point in searching for a plan we might a�empt to �nd the
solution to the corresponding CSP involving

location9(climber1) = hospital.

19



Converting to a CSP

Step 3: encode the preconditions for actions in the planning problem as constraints
in the CSP problem.

For each time step t and for each ground action a(c1, . . . , cn) with arguments
consistent with the rigid relations in its preconditions:

For a precondition of the form svi = v include constraint pairs
(actiont = a(c1, . . . , cn),

svti = v)

Example: consider the action buy(x, y, l) introduced above, and having the pre-
conditions at(x) = l, sells(l, y) and has(y) = l.

Assume sells(y, l) is only true for
l = jokeShop

and
y = gorilla

so we only consider these values for l and y. �en for each time step t we have
the constraints…

20



Converting to a CSP

actiont = buy(climber1, gorilla, jokeShop)
paired with

att(climber1) = jokeShop

actiont = buy(climber1, gorilla, jokeShop)
paired with

hast(gorilla) = jokeShop

actiont = buy(climber2, gorilla, jokeShop)
paired with

att(climber2) = jokeShop

actiont = buy(climber2, gorilla, jokeShop)
paired with

hast(gorilla) = jokeShop

and so on…

21



Converting to a CSP

Step 4: encode the e�ects of actions in the planning problem as constraints in the
CSP problem.

For each time step t and for each ground action a(c1, . . . , cn) with arguments
consistent with the rigid relations in its preconditions:

For an e�ect of the form svi = v include constraint pairs
(actiont = a(c1, . . . , cn),

svt+1
i = v)

Example: continuing with the previous example, we will include constraints

actiont = buy(climber1, gorilla, jokeShop)
paired with

hast+1(gorilla) = climber1

actiont = buy(climber2, gorilla, jokeShop)
paired with

hast+1(gorilla) = climber2

and so on…

22



Converting to a CSP

Step 5: encode the frame axioms as constraints in the CSP problem.

An action must not change things not appearing in its e�ects. So:

For:

1. Each time step t.
2. Each ground action a(c1, . . . , cn) with arguments consistent with the rigid re-
lations in its preconditions.

3. Each svi that does not appear in the e�ects of a, and each v ∈ Dsvi

include in the CSP the ternary constraint
(actiont = a(c1, . . . , cn),

svti = v,

svt+1
i = v).

23



Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.

�e scheme has the following property:

A solution to the planning problem with at most T steps exists if and only if there
is a a solution to the corresponding CSP .

Assume the CSP has a solution.

�en we can extract a plan simply by looking at the values assigned to the
actiont variables in the solution of the CSP.

It is also the case that:

�ere is a solution to the planning problem with at most T steps if and only if there
is a solution to the corresponding CSP from which the solution can be extracted in
this way.

For a proof see:

Automated Planning: �eory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

24


