Planning algorithms

Reading: AIMA, chapter 11.
Problem solving is different to planning

In search problems we:

- **Represent states**: and a state representation contains *everything* that’s relevant about the environment.
- **Represent actions**: by describing a new state obtained from a current state.
- **Represent goals**: all we know is how to test a state either to see if it’s a goal, or using a heuristic.
- **A sequence of actions is a ‘plan’**: but we only consider *sequences of consecutive actions*.

Search algorithms are good for solving problems that fit this framework. However for more complex problems they may fail completely...
Problem solving is different to planning

Representing a problem such as: ‘go out and buy some pies’ is hopeless:

- There are *too many possible actions* at each step.
- A heuristic can only help you rank states. In particular it does not help you ignore useless actions.
- We are forced to start at the initial state, but you have to work out *how to get the pies*—that is, go to town and buy them, get online and find a web site that sells pies *etc*—*before you can start to do it*.

Knowledge representation and reasoning might not help either: although we end up with a sequence of actions—a plan—there is so much flexibility that complexity might well become an issue.

Our aim now is to look at how an agent might *construct a plan* enabling it to achieve a goal.

- We look at how we might update our concept of *knowledge representation and reasoning* to apply more specifically to planning tasks.
- We look in detail at the *partial-order planning algorithm*.
Planning algorithms work differently

Difference 1:

- Planning algorithms use a *special purpose language*—often based on FOL or a subset—to represent states, goals, and actions.
- States and goals are described by sentences, as might be expected, but...
- ...actions are described by stating their *preconditions* and their *effects*.

So if you know the goal includes (maybe among other things)

\[\text{Have(pie)} \]

and action \(\text{Buy}(x) \) has an effect \(\text{Have}(x) \) then you know that a plan *including*

\[\text{Buy(pie)} \]

might be reasonable.
Planning algorithms work differently

Difference 2:

- Planners can add actions at *any relevant point at all between the start and the goal*, not just at the end of a sequence starting at the start state.
- This makes sense: I may determine that \texttt{Have(carKeys)} is a good state to be in without worrying about what happens before or after finding them.
- By making an important decision like requiring \texttt{Have(carKeys)} early on we may reduce branching and backtracking.
- State descriptions are not complete—\texttt{Have(carKeys)} describes a *class of states*—and this adds flexibility.

So: you have the potential to search both *forwards* and *backwards* within the same problem.
Planning algorithms work differently

Difference 3:

It is assumed that most elements of the environment are *independent of most other elements.*

- A goal including several requirements can be attacked with a divide-and-conquer approach.
- Each individual requirement can be fulfilled using a subplan...
- ...and the subplans then combined.

This works provided there is not significant interaction between the subplans.

Remember: the *frame problem.*
Running example: gorilla-based mischief

We will use a simple example, based on one from Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing Society wish to attach an inflatable gorilla to the spire of a Famous College. To do this they need to leave home and obtain:

- *An inflatable gorilla*: these can be purchased from all good joke shops.
- *Some rope*: available from a hardware store.
- *A first-aid kit*: also available from a hardware store.

They need to return home after they’ve finished their shopping. How do they go about planning their *jolly escapade*?
The STRIPS language

States: are conjunctions of ground literals. They must not include function symbols.

\[\text{At(home)} \land \neg \text{Have(gorilla)} \land \neg \text{Have(rope)} \land \neg \text{Have(kit)} \]

Goals: are conjunctions of literals where variables are assumed existentially quantified.

\[\text{At}(x) \land \text{Sells}(x, \text{gorilla}) \]

A planner finds a sequence of actions that when performed makes the goal true.

We are no longer employing a full theorem-prover.
STRIPS represents actions using *operators*. For example

\[
\begin{align*}
& \text{At}(x), \text{Path}(x, y) \\
& \text{Go}(y) \\
& \text{At}(y), \neg \text{At}(x)
\end{align*}
\]

\[
\text{Op(} \text{Action: Go}(y), \text{Pre: At}(x) \land \text{Path}(x, y), \text{Effect: At}(y) \land \neg \text{At}(x))
\]

All variables are implicitly universally quantified. An operator has:

- An *action description*: what the action does.
- A *precondition*: what must be true before the operator can be used. A *conjunction of positive literals*.
- An *effect*: what is true after the operator has been used. A *conjunction of literals*.
The space of plans

We now make a change in perspective—we search in plan space:

- Start with an empty plan.
- Operate on it to obtain new plans. Incomplete plans are called partial plans. Refinement operators add constraints to a partial plan. All other operators are called modification operators.
- Continue until we obtain a plan that solves the problem.

Operations on plans can be:

- Adding a step.
- Instantiating a variable.
- Imposing an ordering that places a step in front of another.
- and so on...
Representing a plan: partial order planners

When putting on your shoes and socks:

- It *does not matter* whether you deal with your left or right foot first.
- It *does matter* that you place a sock on *before* a shoe, for any given foot.

It makes sense in constructing a plan *not* to make any *commitment* to which side is done first *if you don’t have to*.

Principle of least commitment: do not commit to any specific choices until you have to. This can be applied both to ordering and to instantiation of variables.

A *partial order planner* allows plans to specify that some steps must come before others but others have no ordering.

A *linearisation* of such a plan imposes a specific sequence on the actions therein.
A plan consists of:

1. A set \(\{S_1, S_2, \ldots, S_n\} \) of steps. Each of these is one of the available operators.

2. A set of ordering constraints. An ordering constraint \(S_i < S_j \) denotes the fact that step \(S_i \) must happen before step \(S_j \). \(S_i < S_j < S_k \) and so on has the obvious meaning. \(S_i < S_j \) does not mean that \(S_i \) must immediately precede \(S_j \).

3. A set of variable bindings \(v = x \) where \(v \) is a variable and \(x \) is either a variable or a constant.

4. A set of causal links or protection intervals \(S_i \xrightarrow{c} S_j \). This denotes the fact that the purpose of \(S_i \) is to achieve the precondition \(c \) for \(S_j \).

A causal link is always paired with an equivalent ordering constraint.
Representing a plan: partial order planners

The *initial plan* has:

- Two steps, called Start and Finish.
- A single ordering constraint Start < Finish.
- No *variable bindings*.
- No *causal links*.

In addition to this:

- The step Start has no preconditions, and its effect is the start state for the problem.
- The step Finish has no effect, and its precondition is the goal.
- Neither Start or Finish has an associated action.

We now need to consider what constitutes a *solution*...
Solutions to planning problems

A solution to a planning problem is any complete and consistent partially ordered plan.

Complete: each precondition of each step is achieved by another step in the solution.

A precondition c for S is achieved by a step S' if:

1. The precondition is an effect of the step

 $$S' < S \text{ and } c \in \text{Effects}(S')$$

 and...

2. ... there is no other step that could cancel the precondition. That is, no S'' exists where:

 - The existing ordering constraints allow S'' to occur after S' but before S.
 - $\neg c \in \text{Effects}(S'')$.
Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in the proposed ordering. That is:

1. For binding constraints, we never have \(v = X \) and \(v = Y \) for distinct constants \(X \) and \(Y \).
2. For the ordering, we never have \(S < S' \) and \(S' < S \).

Returning to the roof-climbers’ shopping expedition, here is the basic approach:

- Begin with only the Start and Finish steps in the plan.
- At each stage add a new step.
- Always add a new step such that a currently non-achieved precondition is achieved.
- Backtrack when necessary.
An example of partial-order planning

Here is the *initial plan*:

Start

\[\text{At(Home)} \land \text{Sells(JS,G)} \land \text{Sells(HS,R)} \land \text{Sells(HS,FA)} \]

Finish

\[\text{At(Home)} \land \text{Have(G)} \land \text{Have(R)} \land \text{Have(FA)} \]

Thin arrows denote ordering.
An example of partial-order planning

There are two actions available:

- **Go**(y)
 - \(\text{At}(y) \) \(\neg \text{At}(x) \)

- **Buy**(y)
 - \(\text{At}(x) \)
 - \(\text{Sells}(x, y) \)
 - \(\text{Have}(y) \)

A planner might begin, for example, by adding a **Buy**(G) action in order to achieve the **Have**(G) precondition of Finish.

Note: the following order of events is by no means the only one available to a planner.

It has been chosen for illustrative purposes.
An example of partial-order planning

Incorporating the suggested step into the plan:

Thick arrows denote causal links. They always have a thin arrow underneath. Here the new Buy step achieves the Have(G) precondition of Finish.
An example of partial-order planning

The planner can now introduce a second causal link from Start to achieve the \(\text{Sells}(x, G) \) precondition of \(\text{Buy}(G) \).
An example of partial-order planning

The planner’s next obvious move is to introduce a Go step to achieve the $At(JS)$ precondition of $Buy(G)$.

And we continue...
An example of partial-order planning

Initially the planner can continue quite easily in this manner:

- Add a causal link from Start to Go(JS) to achieve the At(x) precondition.
- Add the step Buy(R) with an associated causal link to the Have(R) precondition of Finish.
- Add a causal link from Start to Buy(R) to achieve the Sells(HS, R) precondition.

But then things get more interesting...
An example of partial-order planning

At this point it starts to get tricky...

The $At(HS)$ precondition in $Buy(R)$ is not achieved.
An example of partial-order planning

The $\text{At}(\text{HS})$ precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk invalidating the precondition for Go(JS).
An example of partial-order planning

A step that might invalidate (sometimes the word *clobber* is employed) a previously achieved precondition is called a *threat*.

A planner can try to fix a threat by introducing an ordering constraint.
An example of partial-order planning

The planner could backtrack and try to achieve the $\text{At}(x)$ precondition using the existing $\text{Go}(\text{JS})$ step.

This involves a threat, but one that can be fixed using promotion.
The algorithm

Simplifying slightly to the case where there are no variables.

Say we have a partially completed plan and a set of the preconditions that have yet to be achieved.

- Select a precondition p that has not yet been achieved and is associated with an action B.
- At each stage the partially complete plan is expanded into a new collection of plans.
- To expand a plan, we can try to achieve p either by using an action that’s already in the plan or by adding a new action to the plan. In either case, call the action A.

We then try to construct consistent plans where A achieves p.
The algorithm

This works as follows:

• For each possible way of achieving p:
 – Add Start $< A$, $A < \text{Finish}$, $A < B$ and the causal link $A \xrightarrow{p} B$ to the plan.
 – If the resulting plan is consistent we’re done, otherwise generate all possible ways of removing inconsistencies by promotion or demotion and keep any resulting consistent plans.

At this stage:

• If you have no further preconditions that haven’t been achieved then any plan obtained is valid.
The algorithm

But how do we try to *enforce consistency*?

When you attempt to achieve p using A:

- Find all the existing causal links $A' \xrightarrow{p} B'$ that are *clobbered* by A.
- For each of those you can try adding $A < A'$ or $B' < A$ to the plan.
- Find all existing actions C in the plan that clobber the *new* causal link $A \xrightarrow{p} B$.
- For each of those you can try adding $C < A$ or $B < C$ to the plan.
- Generate *every possible combination* in this way and retain any consistent plans that result.
Possible threats

What about dealing with variables?

If at any stage an effect \(\neg \text{At}(x) \) appears, is it a threat to \(\text{At}(\text{JS}) \)?

Such an occurrence is called a possible threat and we can deal with it by introducing inequality constraints: in this case \(x \neq \text{JS} \).

- Each partially complete plan now has a set \(I \) of inequality constraints associated with it.
- An inequality constraint has the form \(v \neq X \) where \(v \) is a variable and \(X \) is a variable or a constant.
- Whenever we try to make a substitution we check \(I \) to make sure we won’t introduce a conflict.

If we would introduce a conflict then we discard the partially completed plan as inconsistent.
Unsurprisingly, this process can become complex.

How might we improve matters?

One way would be to introduce \emph{heuristics}. We now consider:

- The way in which \emph{basic heuristics} might be defined for use in planning problems.
- The construction of \emph{planning graphs} and their use in obtaining more sensible heuristics.
- Planning graphs as the basis of the \emph{GraphPlan} algorithm.

Another is to translate into the language of a \emph{general-purpose} algorithm exploiting its own heuristics. We now consider:

- Planning using \emph{propositional logic}.
- Planning using \emph{constraint satisfaction}.
An example of partial-order planning

We left our example problem here:

The planner could backtrack and try to achieve the $\text{At}(x)$ precondition using the existing Go(JS) step.

This involves a threat, but one that can be fixed using promotion.
Using heuristics in planning

We found in looking at search problems that *heuristics* were a helpful thing to have.

Note that now there is no simple representation of a *state*, and consequently it is harder to measure the *distance to a goal*.

Defining heuristics for planning is therefore more difficult than it was for search problems. Simple possibilities:

\[h = \text{number of unsatisfied preconditions} \]

or

\[h = \text{number of unsatisfied preconditions} - \text{number satisfied by the start state} \]

These can lead to underestimates or overestimates:

- Underestimates if *actions can affect one another in undesirable ways*.
- Overestimates if *actions achieve many preconditions*.
Using heuristics in planning

We can go a little further by learning from *Constraint Satisfaction Problems* and adopting the *most constrained variable* heuristic:

• Prefer the precondition *satisfiable in the smallest number of ways*.

This can be computationally demanding but two special cases are helpful:

• Choose preconditions for which *no action will satisfy them*.
• Choose preconditions that *can only be satisfied in one way*.

But these still seem somewhat basic.

We can do better using *Planning Graphs*. These are *easy to construct* and can also be used to generate *entire plans*.
Planning Graphs apply when it is possible to work entirely using *propositional* representations of plans. Luckily, STRIPS can always be propositionalized...

\[
\text{At}(x), \neg \text{At}(x)
\]

\[
\text{Go}(y), \neg \text{At}(x)
\]
Planning graphs

A planning graph is constructed in levels:

• Level 0 corresponds to the *start state*.

• At each level we keep *approximate* track of all things that *could* be true at the corresponding time.

• At each level we keep *approximate* track of what actions *could* be applicable at the corresponding time.

The approximation is due to the fact that not all conflicts between actions are tracked. *So*:

• The graph can *underestimate* how long it might take for a particular proposition to appear, and therefore …

• …a heuristic can be extracted.

For example: the triumphant return of the gorilla-purchasing roof-climbers...
Planning graphs: a simple example

Our intrepid student adventurers will of course need to inflate their gorilla before attaching it to a distinguished roof. It has to be purchased before it can be inflated.

Start state: Empty.

We assume that anything not mentioned in a state is false. So the state is actually

\[\neg \text{Have(Gorilla)} \text{ and } \neg \text{Inflated(Gorilla)} \]

Actions:

- \(\neg \text{Have(Gorilla)} \) \quad \text{Buy(Gorilla)} \quad \text{Have(Gorilla)}
- \text{Have(Gorilla)} \quad \text{Inflate(Gorilla)} \quad \text{Inflated(Gorilla)}

Goal: Have(Gorilla) and Inflated(Gorilla).
Planning graphs

\[\neg H(G) \]

\[\neg I(G) \]

Describe start state.

All actions available in start state.

An action level \(A_i \) contains all actions that could happen given the propositions in \(S_i \).

\[= \text{a persistence action—what happens if no action is taken.} \]

\[\square \]
Mutex links

We also record, using *mutual exclusion (mutex) links* which pairs of actions could not occur together.

Mutex links 1: Effects are inconsistent.

The effect of one action negates the effect of another.
Mutex links

Mutex links 2: The actions interfere.

The effect of an action negates the precondition of another.
Mutex links

Mutex links 3: Competing for preconditions.

The precondition for an action is mutually exclusive with the precondition for another. (See next slide!)
Mutex links

A state level S_i contains all propositions that could be true, given the possible preceding actions.

We also use mutex links to record pairs that can not be true simultaneously:

Possibility 1: pair consists of a proposition and its negation.

$$
\neg H(G) \quad H(G)
$$
Mutex links

Possibility 2: all pairs of actions that could achieve the pair of propositions are mutex.

The construction of a planning graph is continued until two identical levels are obtained.
Planning graphs

\[\neg H(G) \]

\[\neg I(G) \]

\[\neg H(G) \quad \neg I(G) \]

\[\neg H(G) \quad H(G) \]

\[\neg I(G) \quad \neg I(G) \]

\[\neg H(G) \quad \neg H(G) \quad \neg I(G) \quad I(G) \]

\[\neg H(G) \quad \neg I(G) \]

\[\neg H(G) \quad \neg H(G) \quad \neg I(G) \quad I(G) \]

\[\neg I(G) \]

\[\neg I(G) \]

\[\neg I(G) \]

\[\neg I(G) \]
Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

• Any proposition not appearing in the final level has \textit{infinite cost} and \textit{can never be reached}.

• The \textit{level cost} of a proposition is the level at which it first appears \textit{but} this may be inaccurate as several actions can apply at each level and this cost does not count the \textit{number of actions}. (It is however \textit{admissible}.)

• A \textit{serial planning graph} includes mutex links between all pairs of actions except persistence actions.

\textit{Level cost in serial planning graphs} can be quite a good measurement.
Obtaining heuristics from a planning graph

How about estimating the cost to achieve a collection of propositions?

- Max-level: use the maximum level in the graph of any proposition in the set. Admissible but can be inaccurate.
- Level-sum: use the sum of the levels of the propositions. Inadmissible but sometimes quite accurate if goals tend to be decomposable.
- Set-level: use the level at which all propositions appear with none being mutex. Can be accurate if goals tend not to be decomposable.
Other points about planning graphs

A planning graph guarantees that:

1. *If* a proposition appears at some level, there *may* be a way of achieving it.
2. *If* a proposition does *not* appear, it can *not* be achieved.

The first point here is a loose guarantee because only *pairs* of items are linked by mutex links.

Looking at larger collections can strengthen the guarantee, but in practice the gains are outweighed by the increased computation.
Graphplan

The *GraphPlan* algorithm goes beyond using the planning graph as a source of heuristics.

```plaintext
function GraphPlan() {
    Start at level 0;
    while true do
        if All goal propositions appear in the current level AND no pair has a mutex link then
            Attempt to extract a plan;
            if A solution is obtained then
                return SOME solution;
            if Graph indicates there is no solution then
                return NONE;
        Expand the graph to the next level;
}
```

We extract a plan directly from the planning graph. Termination can be proved but will not be covered here.
Graphplan in action

Here, at levels S_0 and S_1 we do not have both $H(G)$ and $I(G)$ available with no mutex links, and so we expand first to S_1 and then to S_2.

At S_2 we try to extract a solution (plan).
Extracting a plan from the graph

Extraction of a plan can be formalised as a *search problem*. States contain a *level*, and a collection of *unsatisfied goal propositions*. Start state: the current final level of the graph, along with the relevant goal propositions. Goal: a state at level S_0 containing the initial propositions. Actions: For a state S with level S_i, a valid action is to select any set X of actions in A_{i-1} such that:

1. no pair has a mutex link;
2. no pair of their preconditions has a mutex link;
3. the effects of the actions in X achieve the propositions in S.

The effect of such an action is a state having level S_{i-1}, and containing the preconditions for the actions in X. Each action has a cost of 1.
Graphplan in action

Start state

Action: Buy(G)

Action: Inf(G) and □
Heuristics for plan extraction

We can of course also apply *heuristics* to this part of the process.

For example, when dealing with a *set of propositions*:

- Choose the proposition having *maximum level cost* first.
- For that proposition, attempt to achieve it using the action for which the *maximum/sum level cost of its preconditions is minimum*.