
Arti�cial Intelligence I

Planning algorithms

Reading: AIMA, chapter 11.
1

Problem solving is di�erent to planning

In search problems we:

• Represent states: and a state representation contains everything that’s relevant
about the environment.

• Represent actions: by describing a new state obtained from a current state.
• Represent goals: all we know is how to test a state either to see if it’s a goal,
or using a heuristic.

• A sequence of actions is a ‘plan’: but we only consider sequences of consecutive
actions.

Search algorithms are good for solving problems that �t this framework. How-
ever for more complex problems they may fail completely…

2

Problem solving is di�erent to planning

Representing a problem such as: ‘go out and buy some pies’ is hopeless:

• �ere are too many possible actions at each step.
• A heuristic can only help you rank states. In particular it does not help you
ignore useless actions.

• We are forced to start at the initial state, but you have to work out how to get
the pies—that is, go to town and buy them, get online and �nd a web site that
sells pies etc—before you can start to do it.

Knowledge representation and reasoningmight not help either: although we end
up with a sequence of actions—a plan—there is so much �exibility that complex-
ity might well become an issue.

Our aim now is to look at how an agent might construct a plan enabling it to
achieve a goal.

• We look at howwemight update our concept of knowledge representation and
reasoning to apply more speci�cally to planning tasks.

• We look in detail at the partial-order planning algorithm.

3

Planning algorithms work di�erently

Di�erence 1:

• Planning algorithms use a special purpose language—o�en based on FOL or a
subset— to represent states, goals, and actions.

• States and goals are described by sentences, as might be expected, but…
• …actions are described by stating their preconditions and their e�ects.

So if you know the goal includes (maybe among other things)

Have(pie)

and action Buy(x) has an e�ect Have(x) then you know that a plan including

Buy(pie)

might be reasonable.

4



Planning algorithms work di�erently

Di�erence 2:

• Planners can add actions at any relevant point at all between the start and the
goal, not just at the end of a sequence starting at the start state.

• �is makes sense: I may determine that Have(carKeys) is a good state to be
in without worrying about what happens before or a�er �nding them.

• By making an important decision like requiring Have(carKeys) early on we
may reduce branching and backtracking.

• State descriptions are not complete—Have(carKeys) describes a class of states—
and this adds �exibility.

So: you have the potential to search both forwards and backwards within the
same problem.

5

Planning algorithms work di�erently

Di�erence 3:

It is assumed that most elements of the environment are independent of most other
elements.

• A goal including several requirements can be a�acked with a divide-and-
conquer approach.

• Each individual requirement can be ful�lled using a subplan…
• …and the subplans then combined.

�is works provided there is not signi�cant interaction between the subplans.

Remember: the frame problem.

6

Running example: gorilla-based mischief

We will use a simple example, based on one from Russell and Norvig.

�e intrepid li�le scamps in theCambridge University Roof-Climbing Society wish
to a�ach an in�atable gorilla to the spire of a Famous College. To do this they need
to leave home and obtain:

• An in�atable gorilla: these can be purchased from all good joke shops.
• Some rope: available from a hardware store.
• A �rst-aid kit: also available from a hardware store.

�ey need to return home a�er they’ve �nished their shopping. How do they go
about planning their jolly escapade?

7

�e STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals. �eymust not include function symbols.
At(home) ∧ ¬Have(gorilla)

∧ ¬Have(rope)
∧ ¬Have(kit)

Goals: are conjunctions of literals where variables are assumed existentially quan-
ti�ed.

At(x) ∧ Sells(x, gorilla)
A planner �nds a sequence of actions that when performed makes the goal true.

We are no longer employing a full theorem-prover.

8



�e STRIPS language

STRIPS represents actions using operators. For example

At(y),¬At(x)

At(x), Path(x, y)

Go(y)

Op(Action: Go(y), Pre: At(x) ∧ Path(x, y),E�ect: At(y) ∧ ¬At(x))
All variables are implicitly universally quanti�ed. An operator has:

• An action description: what the action does.
• A precondition: what must be true before the operator can be used. A con-
junction of positive literals.

• An e�ect: what is true a�er the operator has been used. A conjunction of
literals.

9

�e space of plans

We now make a change in perspective—we search in plan space:

• Start with an empty plan.
• Operate on it to obtain new plans. Incomplete plans are called partial plans.
Re�nement operators add constraints to a partial plan. All other operators are
called modi�cation operators.

• Continue until we obtain a plan that solves the problem.

Operations on plans can be:

• Adding a step.
• Instantiating a variable.
• Imposing an ordering that places a step in front of another.
• and so on…

10

Representing a plan: partial order planners

When pu�ing on your shoes and socks:

• It does not ma�er whether you deal with your le� or right foot �rst.
• It does ma�er that you place a sock on before a shoe, for any given foot.

It makes sense in constructing a plan not to make any commitment to which side
is done �rst if you don’t have to.

Principle of least commitment: do not commit to any speci�c choices until you
have to. �is can be applied both to ordering and to instantiation of variables.

A partial order planner allows plans to specify that some steps must come before
others but others have no ordering.

A linearisation of such a plan imposes a speci�c sequence on the actions therein.

11

Representing a plan: partial order planners

A plan consists of:

1. A set {S1, S2, . . . , Sn} of steps. Each of these is one of the available operators.
2. A set of ordering constraints. An ordering constraint Si < Sj denotes the fact
that step Si must happen before step Sj. Si < Sj < Sk and so on has the
obvious meaning. Si < Sj does not mean that Si must immediately precede
Sj.

3. A set of variable bindings v = xwhere v is a variable and x is either a variable
or a constant.

4. A set of causal links or protection intervals Si
c→ Sj. �is denotes the fact that

the purpose of Si is to achieve the precondition c for Sj.

A causal link is always paired with an equivalent ordering constraint.

12



Representing a plan: partial order planners

�e initial plan has:

• Two steps, called Start and Finish.
• A single ordering constraint Start < Finish.
• No variable bindings.
• No causal links.

In addition to this:

• �e step Start has no preconditions, and its e�ect is the start state for the
problem.

• �e step Finish has no e�ect, and its precondition is the goal.
• Neither Start or Finish has an associated action.

We now need to consider what constitutes a solution…

13

Solutions to planning problems

A solution to a planning problem is any complete and consistent partially ordered
plan.

Complete: each precondition of each step is achieved by another step in the so-
lution.

A precondition c for S is achieved by a step S ′ if:

1. �e precondition is an e�ect of the step

S ′ < S and c ∈ E�ects(S ′)

and…
2. … there is no other step that could cancel the precondition. �at is, no S ′′

exists where:
• �e existing ordering constraints allow S ′′ to occur a�er S ′ but before S.
• ¬c ∈ E�ects(S ′′) .

14

Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in the proposed
ordering. �at is:

1. For binding constraints, we never have v = X and v = Y for distinct con-
stants X and Y .

2. For the ordering, we never have S < S ′ and S ′ < S.

Returning to the roof-climbers’ shopping expedition, here is the basic approach:

• Begin with only the Start and Finish steps in the plan.
• At each stage add a new step.
• Always add a new step such that a currently non-achieved precondition is
achieved.

• Backtrack when necessary.

15

An example of partial-order planning

Here is the initial plan:

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

�in arrows denote ordering.

16



An example of partial-order planning

�ere are two actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

Aplannermight begin, for example, by adding a Buy(G) action in order to achieve
the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one available to a
planner.

It has been chosen for illustrative purposes.

17

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At(x),Sells(x,G)

�ick arrows denote causal links. �ey always have a thin arrow underneath.

Here the new Buy step achieves the Have(G) precondition of Finish.

18

An example of partial-order planning

�e planner can now introduce a second causal link from Start to achieve the
Sells(x, G) precondition of Buy(G).

Start

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(JS),Sells(JS,G)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

19

An example of partial-order planning

�e planner’s next obvious move is to introduce a Go step to achieve the At(JS)
precondition of Buy(G).

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(x)

Go(JS)

Start

At(JS),Sells(JS,G)

And we continue…

20



An example of partial-order planning

Initially the planner can continue quite easily in this manner:

• Add a causal link from Start to Go(JS) to achieve the At(x) precondition.
• Add the step Buy(R) with an associated causal link to the Have(R) precondi-
tion of Finish.

• Add a causal link from Start to Buy(R) to achieve the Sells(HS, R) precon-
dition.

But then things get more interesting…

21

An example of partial-order planning

Start

At(JS),Sells(JS,G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

At(HS),Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get tricky…

�e At(HS) precondition in Buy(R) is not achieved.

22

An example of partial-order planning

Start

At(JS),Sells(JS,G)

Finish

At(Home),Have(G),Have(R),Have(FA)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

�e At(HS) precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk invalidating the
precondition for Go(JS).

23

An example of partial-order planning

A step that might invalidate (sometimes the word clobber is employed) a previ-
ously achieved precondition is called a threat.

Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner can try to �x a threat by introducing an ordering constraint.

24



An example of partial-order planning

�e planner could backtrack and try to achieve the At(x) precondition using the
existing Go(JS) step.

Start

At(JS),Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home),Have(G),Have(R),Have(FA)

Sells(HS,R),At(HS)

�is involves a threat, but one that can be �xed using promotion.

25

�e algorithm

Simplifying slightly to the case where there are no variables.

Say we have a partially completed plan and a set of the preconditions that have
yet to be achieved.

• Select a precondition p that has not yet been achieved and is associated with
an action B.

• At each stage the partially complete plan is expanded into a new collection of
plans.

• To expand a plan, we can try to achieve p either by using an action that’s
already in the plan or by adding a new action to the plan. In either case, call
the action A.

We then try to construct consistent plans where A achieves p.

26

�e algorithm

�is works as follows:

• For each possible way of achieving p:

– Add Start < A,A < Finish,A < B and the causal linkA p→ B to the plan.
– If the resulting plan is consistent we’re done, otherwise generate all pos-
sible ways of removing inconsistencies by promotion or demotion and keep
any resulting consistent plans.

At this stage:

• If you have no further preconditions that haven’t been achieved then any plan
obtained is valid.

27

�e algorithm

But how do we try to enforce consistency?

When you a�empt to achieve p using A:

• Find all the existing causal links A′ ¬p→ B′ that are clobbered by A.
• For each of those you can try adding A < A′ or B′ < A to the plan.

• Find all existing actionsC in the plan that clobber the new causal linkA p→ B.
• For each of those you can try adding C < A or B < C to the plan.
• Generate every possible combination in this way and retain any consistent
plans that result.

28



Possible threats

What about dealing with variables?

If at any stage an e�ect ¬At(x) appears, is it a threat to At(JS)?
Such an occurrence is called a possible threat and we can deal with it by intro-
ducing inequality constraints: in this case x 6= JS.

• Each partially complete plan now has a set I of inequality constraints asso-
ciated with it.

• An inequality constraint has the form v 6= X where v is a variable and X is
a variable or a constant.

• Whenever we try to make a substitution we check I to make sure we won’t
introduce a con�ict.

If we would introduce a con�ict then we discard the partially completed plan as
inconsistent.

29

Planning II

Unsurprisingly, this process can become complex.

How might we improve ma�ers?

One way would be to introduce heuristics. We now consider:

• �e way in which basic heuristics might be de�ned for use in planning prob-
lems.

• �e construction of planning graphs and their use in obtaining more sensible
heuristics.

• Planning graphs as the basis of the GraphPlan algorithm.

Another is to translate into the language of a general-purpose algorithm exploit-
ing its own heuristics. We now consider:

• Planning using propositional logic.
• Planning using constraint satisfaction.

30

An example of partial-order planning

We le� our example problem here:

�e planner could backtrack and try to achieve the At(x) precondition using the
existing Go(JS) step.

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R),At(HS)

At(Home)

�is involves a threat, but one that can be �xed using promotion.
31

Using heuristics in planning

We found in looking at search problems that heuristics were a helpful thing to
have.

Note that now there is no simple representation of a state, and consequently it is
harder to measure the distance to a goal.

De�ning heuristics for planning is therefore more di�cult than it was for search
problems. Simple possibilities:

h = number of unsatis�ed preconditions

or
h =number of unsatis�ed preconditions
− number satis�ed by the start state

�ese can lead to underestimates or overestimates:

• Underestimates if actions can a�ect one another in undesirable ways.
• Overestimates if actions achieve many preconditions.

32



Using heuristics in planning

We can go a li�le further by learning from Constraint Satisfaction Problems and
adopting the most constrained variable heuristic:

• Prefer the precondition satis�able in the smallest number of ways.

�is can be computationally demanding but two special cases are helpful:

• Choose preconditions for which no action will satisfy them.
• Choose preconditions that can only be satis�ed in one way.

But these still seem somewhat basic.

We can do be�er using Planning Graphs. �ese are easy to construct and can also
be used to generate entire plans.

33

Planning graphs

Planning Graphs apply when it is possible to work entirely using propositional
representations of plans. Luckily, STRIPS can always be propositionalized…

At(y),¬At(x)

Go(y)

At(x)

Predicate

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on…

Propositional

At(Home)

Go(HS)

Go(HS)

At(HS),¬At(Home)

At(Home),¬At(JS)

At(JS)

At(JS),¬At(Home) At(HS),¬At(JS)

34

Planning graphs

A planning graph is constructed in levels:

• Level 0 corresponds to the start state.
• At each level we keep approximate track of all things that could be true at the
corresponding time.

• At each level we keep approximate track of what actions could be applicable
at the corresponding time.

�e approximation is due to the fact that not all con�icts between actions are
tracked. So:

• �e graph can underestimate how long it might take for a particular proposi-
tion to appear, and therefore . . .

• . . . a heuristic can be extracted.

For example: the triumphant return of the gorilla-purchasing roof-climbers…

35

Planning graphs: a simple example

Our intrepid student adventurers will of course need to in�ate their gorilla before
a�aching it to a distinguished roof . It has to be purchased before it can be in�ated.

Start state: Empty.

We assume that anything not mentioned in a state is false. So the state is actually

¬Have(Gorilla) and ¬Inflated(Gorilla)
Actions:

Inflate(Gorilla)Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla) Inflated(Gorilla)

Have(Gorilla)

Goal: Have(Gorilla) and Inflated(Gorilla).

36



Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

¬I(G)

Describe start
state.

All actions available in
start state.

S1

All possibilities for
what might be the
case at time 1.

All actions that might
be available at time
1.

All possibilities for
what might be the
case at time 2.

= a persistence action—what happens if no action is taken.

H(G)

I(G)

An action level Ai contains all actions that could happen given the propositions in Si.

S2

37

Mutex links

We also record, usingmutual exclusion (mutex) links which pairs of actions could
not occur together.

Mutex links 1: E�ects are inconsistent.

Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

�e e�ect of one action negates the e�ect of another.

38

Mutex links

Mutex links 2: �e actions interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S2

�e e�ect of an action negates the precondition of another.

39

Mutex links

Mutex links 3: Competing for preconditions.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

�e precondition for an action is mutually exclusive with the precondition for
another. (See next slide!)

40



Mutex links

A state level Si contains all propositions that could be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be true simultaneously:

Possibility 1: pair consists of a proposition and its negation.

¬H(G)

H(G)

S1

41

Mutex links

Possibility 2: all pairs of actions that could achieve the pair of propositions are
mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S2

�e construction of a planning graph is continued until two identical levels are
obtained.

42

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

43

Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

• Any proposition not appearing in the �nal level has in�nite cost and can never
be reached.

• �e level cost of a proposition is the level at which it �rst appears but this may
be inaccurate as several actions can apply at each level and this cost does not
count the number of actions. (It is however admissible.)

• A serial planning graph includes mutex links between all pairs of actions ex-
cept persistence actions.

Level cost in serial planning graphs can be quite a good measurement.

44



Obtaining heuristics from a planning graph

How about estimating the cost to achieve a collection of propositions?

• Max-level: use the maximum level in the graph of any proposition in the set.
Admissible but can be inaccurate.

• Level-sum: use the sum of the levels of the propositions. Inadmissible but
sometimes quite accurate if goals tend to be decomposable.

• Set-level: use the level at which all propositions appear with none being mu-
tex. Can be accurate if goals tend not to be decomposable.

45

Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, there may be a way of achieving it.
2. If a proposition does not appear, it can not be achieved.

�e �rst point here is a loose guarantee because only pairs of items are linked by
mutex links.

Looking at larger collections can strengthen the guarantee, but in practice the
gains are outweighed by the increased computation.

46

Graphplan

�e GraphPlan algorithm goes beyond using the planning graph as a source of
heuristics.

1 function GraphPlan()
2 Start at level 0;
3 while true do
4 if All goal propositions appear in the current level AND no pair has a mutex link then
5 A�empt to extract a plan;
6 if A solution is obtained then
7 return SOME solution;
8 if Graph indicates there is no solution then
9 return NONE;

10 Expand the graph to the next level;

We extract a plan directly from the planning graph. Termination can be proved
but will not be covered here.

47

Graphplan in action

Here, at levels S0 and S1 we do not have both H(G) and I(G) available with no
mutex links, and so we expand �rst to S1 and then to S2.

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extract a solution (plan).

48



Extracting a plan from the graph

Extraction of a plan can be formalised as a search problem.

States contain a level, and a collection of unsatis�ed goal propositions.

Start state: the current �nal level of the graph, alongwith the relevant goal propo-
sitions.

Goal: a state at level S0 containing the initial propositions.

Actions: For a state S with level Si, a valid action is to select any setX of actions
in Ai−1 such that:

1. no pair has a mutex link;
2. no pair of their preconditions has a mutex link;
3. the e�ects of the actions in X achieve the propositions in S.

�e e�ect of such an action is a state having level Si−1, and containing the pre-
conditions for the actions in X .

Each action has a cost of 1.

49

Graphplan in action

Start state

Action: Action:

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Buy(G)

H(G)
S0 S1 S2

H(G) I(G)

Inf(G) and 2

50

Heuristics for plan extraction

We can of course also apply heuristics to this part of the process.

For example, when dealing with a set of propositions:

• Choose the proposition having maximum level cost �rst.
• For that proposition, a�empt to achieve it using the action for which the
maximum/sum level cost of its preconditions is minimum.

51


