Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is
highly non-trivial.

Ideally we’d like to maintain an language while it enough
to be able to do inference

« To give a brief introduction to and for knowledge
representation.
« To see how can be applied as a reasoning method.
» To look at the use of for knowledge representation, along with
and for reasoning.

, Alison Cawsey. Prentice
Hall, 1998.

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of

and
e The and relationships are emphasised.
« We form in which is supported and provides the
main

As a result inference is quite limited.
We also need to be extremely careful about

The only major difference between the two ideas is

Example of a semantic network

Person

subclass

Musician

subclass subclass volume

Ear problems
.Viluﬁ Classical musician
» hair_length | hair_length

Jake Mayhem
has

has

instance
instance

Oboe

Frames

Frames once again support inheritance through the

Rock musician

Musician
subclass: Musician subclass: Person
has: ear problems has: instrument

hairlength: long
volume: loud

etc are

etc are

bJ bJ

These are a direct predecessor of

Defaults

Both approaches to knowledge representation are able to incorporate

Rock musician

subclass: Musician

has:

ear problems

* hairlength: long
* yvolume: loud

Dementia Evilperson

subclass: Rock musician
hairlength: short
image: gothic

Starred slots are

associated with subclasses and instances, but

Multiple inheritance

Both approaches can incorporate , at a cost:

Rock musician Classical musician
insta:& instance

Cornelius Cleverchap

« What is for if we're trying to use inheritance to es-
tablish it?

« This can be overcome initially by specifying which class is inherited from
when there’s a conflict.

« But the problem is still not entirely solved—what if we want to prefer inheri-
tance of some things from one class, but inheritance of others from a different
one?

Other issues

» Slots and slot values can themselves be frames. For example may
have an instrument slot with the value , which itself may have
properties described in a frame.

« Slots can have . For example, we might specify that:

— can have multiple values
— Each value can only be an instance of

— Each value has a slot called
and so on.

« Slots may contain arbitrary pieces of program. This is known as
. The fragment might be executed to return the slot’s value, or
update the values in other slots etc.

Rule-based systems

A rule-based system requires three things:

1. A set of . These denote specific pieces of knowledge about
the world.
They should be interpreted similarly to logical implication.
Such rules denote or under given circum-
stances.

2. A collection of denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the light of the current facts.

Forward chaining

The first of two basic kinds of interpreter

This is a process. It is appropriate if we know the but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

« We maintain a , typically of what has been inferred so far.

« Rules are often , Where the right-hand side specifies an
action such as adding or removing something from working memory, print-
Ing a message etc.

» In some cases actions might be entire program fragments.

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working memory.
2. Select a rule to fire. This requires a

3. Carry out the action specified, possibly updating the working memory.

Repeat this process until either or a appears in the
working memory.

10

Condition—action rules

dry_mouth -> ADD thirsty

thirsty —-> ADD get_drink

get_drink AND no_work -> ADD go_bar
working —> ADD no_work

no_work -> DELETE working

Working memory Interpreter

dry_mouth
working

11

Example

Progress is as follows:

1. The rule

fires adding to working memory.

2. The rule

fires adding to working memory.

3. The rule

fires adding to working memory.

4. The rule

fires, and we establish that it’s time to go to the bar.

12

Contflict resolution

Clearly in any more realistic system we expect to have to deal with a scenario
where

« Which rule we choose can clearly affect the outcome.

- We might also want to attempt to avoid inferring an abundance of useless

information.

We therefore need a means of . Common
are:

e Prefer rules involving more recently added facts.

o Prefer rules that are . For example

is more general than

o Allow the designer of the rules to specify priorities.

« Fire all rules —this essentially involves following all chains of
inference at once.

13

Reason maintenance

Some systems will allow information to be removed from the working memory
if it is no longer

For example, we might find that
and

are in working memory, and hence fire

but later infer something that causes to be from
working memory.

The justification for has been removed, and so it should perhaps
be removed also.

14

Pattern matching

In general rules may be expressed in a slightly more flexible form involving
which can work in conjunction with

For example the rule

contains the variable

If the working memory contains and then

provides a match and

is added to the working memory.

15

Backward chaining

The second basic kind of interpreter begins with a and finds a rule that would
achieve it.
It then works , trying to achieve the resulting earlier goals in the suc-

cession of inferences.
Example: MYCIN—medical diagnosis with a small number of conditions.

This is a process. If you want to or you have some
idea of a likely conclusion it can be more eflicient than forward chaining.

16

Working memory

dry_mouth
working

Example

Goal

go_bar

get_drink

no_work

thirsty
no_work

dry_mouth
no_work

working

To establish go_bar we have to
establish get_drink and no_work.

These are the new goals.

Try first to establish get_drink. This
can be done by establishing thirsty.

thirsty can be established by establishing
dry_mouth. This is in the working memory

so we’re done.
Finally, we can establish no_work by

establishing working. This is in the working

memory so the process has finished.

17

Example with backtracking

If at some point more than one rule has the required conclusion then we can
Example: backtracks, and incorporates pattern matching. It orders at-

tempts according to the order in which rules appear in the program.

Example: having added

and

to the rules, and to the working memory:

18

Example with backtracking

Working memory Goal
dry mouth
working go-bar
up_early

tired
lazy

up-early
lazy

lazy

Attempt to establish go_bar
by establishing tired and
lazy.

This can be done by establishing
up_earlyand lazy.
up_early is in the working memory

bl
so we’re done.

We can not establish 1azy
and so we backtrack and try a

different approach.

19

get_drink
no_work

Y

thirsty
no_work

Y

dry mouth
no_work

Y

working

Process proceeds as before

