

Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is highly non-trivial.

Ideally we'd like to maintain an *expressive* language while *restricting* it enough to be able to do inference *efficiently*.

Further aims:

- To give a brief introduction to *semantic networks* and *frames* for knowledge representation.
- To see how *inheritance* can be applied as a reasoning method.
- To look at the use of *rules* for knowledge representation, along with *forward chaining* and *backward chaining* for reasoning.

Further reading: *The Essence of Artificial Intelligence*, Alison Cawsey. Prentice Hall, 1998.

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of *classes of objects and relationships between them*:

- The *subclass* and *instance* relationships are emphasised.
- We form *class hierarchies* in which *inheritance* is supported and provides the main *inference mechanism*.

As a result inference is quite limited.

We also need to be extremely careful about *semantics*.

The only major difference between the two ideas is *notational*.

Example of a semantic network

Frames

Frames once again support inheritance through the *subclass relationship*.

has, hairlength, volume *etc* are *slots*.

long, loud, instrument *etc* are *slot values*.

These are a direct predecessor of *object-oriented programming languages*.

Defaults

Both approaches to knowledge representation are able to incorporate *defaults*:

Rock musician

subclass: Musician
has: ear problems
* hairlength: long
* volume: loud

Dementia Evilperson

subclass: Rock musician
hairlength: short
image: gothic

Starred slots are *typical values* associated with subclasses and instances, but *can be overridden*.

Multiple inheritance

Both approaches can incorporate *multiple inheritance*, at a cost:

- What is `hairlength` for Cornelius if we're trying to use inheritance to establish it?
- This can be overcome initially by specifying which class is inherited from *in preference* when there's a conflict.
- But the problem is still not entirely solved—what if we want to prefer inheritance of some things from one class, but inheritance of others from a different one?

Other issues

- Slots and slot values can themselves be frames. For example Dementia may have an instrument slot with the value Electricsharp, which itself may have properties described in a frame.
- Slots can have *specified attributes*. For example, we might specify that:
 - instrument can have multiple values
 - Each value can only be an instance of Instrument
 - Each value has a slot called owned_byand so on.
- Slots may contain arbitrary pieces of program. This is known as *procedural attachment*. The fragment might be executed to return the slot's value, or update the values in other slots *etc.*

Rule-based systems

A rule-based system requires three things:

1. A set of if – then *rules*. These denote specific pieces of knowledge about the world.

They should be interpreted similarly to logical implication.

Such rules denote *what to do* or *what can be inferred* under given circumstances.

2. A collection of *facts* denoting what the system regards as currently true about the world.
3. An interpreter able to apply the current rules in the light of the current facts.

Forward chaining

The first of two basic kinds of interpreter *begins with established facts and then applies rules to them.*

This is a *data-driven* process. It is appropriate if we know the *initial facts* but not the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

- We maintain a *working memory*, typically of what has been inferred so far.
- Rules are often *condition-action rules*, where the right-hand side specifies an action such as adding or removing something from working memory, printing a message *etc.*
- In some cases actions might be entire program fragments.

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working memory.
2. Select a rule to fire. This requires a *conflict resolution strategy*.
3. Carry out the action specified, possibly updating the working memory.

Repeat this process until either *no rules can be used* or a *halt* appears in the working memory.

Condition-action rules

```
dry_mouth -> ADD thirsty
thirsty -> ADD get_drink
get_drink AND no_work -> ADD go_bar
working -> ADD no_work
no_work -> DELETE working
```

Working memory

```
dry_mouth
working
```

Interpreter

Example

Progress is as follows:

1. The rule

$\text{dry_mouth} \rightarrow \text{ADD thirsty}$

fires adding `thirsty` to working memory.

2. The rule

$\text{thirsty} \rightarrow \text{ADD get_drink}$

fires adding `get_drink` to working memory.

3. The rule

$\text{working} \rightarrow \text{ADD no_work}$

fires adding `no_work` to working memory.

4. The rule

$\text{get_drink AND no_work} \rightarrow \text{ADD go_bar}$

fires, and we establish that it's time to go to the bar.

Conflict resolution

Clearly in any more realistic system we expect to have to deal with a scenario where *two or more rules can be fired at any one time*:

- Which rule we choose can clearly affect the outcome.
- We might also want to attempt to avoid inferring an abundance of useless information.

We therefore need a means of *resolving such conflicts*. Common *conflict resolution strategies* are:

- Prefer rules involving more recently added facts.
- Prefer rules that are *more specific*. For example

`patient_coughing → ADD lung_problem`

is more general than

`patient_coughing AND patient_smoker → ADD lung_cancer.`

- Allow the designer of the rules to specify priorities.
- Fire all rules *simultaneously*—this essentially involves following all chains of inference at once.

Reason maintenance

Some systems will allow information to be removed from the working memory if it is no longer *justified*.

For example, we might find that

patient_coughing

and

patient_smoker

are in working memory, and hence fire

patient_coughing AND patient_smoker → ADD lung_cancer

but later infer something that causes patient_coughing to be *withdrawn* from working memory.

The justification for lung_cancer has been removed, and so it should perhaps be removed also.

Pattern matching

In general rules may be expressed in a slightly more flexible form involving *variables* which can work in conjunction with *pattern matching*.

For example the rule

$$\text{coughs}(X) \text{ AND } \text{smoker}(X) \rightarrow \text{ADD lung_cancer}(X)$$

contains the variable X .

If the working memory contains $\text{coughs}(\text{neddy})$ and $\text{smoker}(\text{neddy})$ then

$$X = \text{neddy}$$

provides a match and

$$\text{lung_cancer}(\text{neddy})$$

is added to the working memory.

Backward chaining

The second basic kind of interpreter begins with a *goal* and finds a rule that would achieve it.

It then works *backwards*, trying to achieve the resulting earlier goals in the succession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

This is a *goal-driven* process. If you want to *test a hypothesis* or you have some idea of a likely conclusion it can be more efficient than forward chaining.

Example

Working memory

dry_mouth
working

Goal
go_bar

get_drink
no_work

thirsty
no_work

dry_mouth
no_work

working

To establish go_bar we have to establish get_drink and no_work. These are the new goals.

Try first to establish get_drink. This can be done by establishing thirsty.

thirsty can be established by establishing dry_mouth. This is in the working memory so we're done.

Finally, we can establish no_work by establishing working. This is in the working memory so the process has finished.

Example with backtracking

If at some point more than one rule has the required conclusion then we can *backtrack*.

Example: *Prolog* backtracks, and incorporates pattern matching. It orders attempts according to the order in which rules appear in the program.

Example: having added

up_early → ADD tired

and

tired AND lazy → ADD go_bar

to the rules, and up_early to the working memory:

Example with backtracking

