Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is
highly non-trivial.

Ideally we’d like to maintain an expressive language while restricting it enough
to be able to do inference efficiently.

Further aims:
« To give a brief introduction to semantic networks and frames for knowledge
representation.
« To see how inheritance can be applied as a reasoning method.
« To look at the use of rules for knowledge representation, along with forward

chaining and backward chaining for reasoning.

Further reading: The Essence of Artificial Intelligence, Alison Cawsey. Prentice
Hall, 1998.

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of classes of
objects and relationships between them:
« The subclass and instance relationships are emphasised.
« We form class hierarchies in which inheritance is supported and provides the
main inference mechanism.
As a result inference is quite limited.
We also need to be extremely careful about semantics.

The only major difference between the two ideas is notational.

Example of a semantic network

Frames

Frames once again support inheritance through the subclass relationship.

Rock musician

Musician
subclass: Musician subclass: Person
has: ear problems has: instrument
hairlength: long
volume: loud

has, hairlength, volume etc are slots.
long, loud, instrument etc are slot values.

These are a direct predecessor of object-oriented programming languages.

Defaults

Both approaches to knowledge representation are able to incorporate defaults:

Rock musician q 5
Dementia Evilperson

subclass: Musician subclass: Rock musician
has: ear problems hairlength: short

* hairlength: long image: gothic
*volume: loud

Starred slots are typical values associated with subclasses and instances, but can
be overridden.

Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

instance instance

Cornelius Cleverchap

« What is hairlength for Cornelius if we're trying to use inheritance to es-
tablish it?

« This can be overcome initially by specifying which class is inherited from in
preference when there’s a conflict.

« But the problem is still not entirely solved—what if we want to prefer inheri-
tance of some things from one class, but inheritance of others from a different
one?

Other issues

« Slots and slot values can themselves be frames. For example Dementia may
have an instrument slot with the value Electricharp, which itself may have
properties described in a frame.

» Slots can have specified attributes. For example, we might specify that:

— instrument can have multiple values
— Each value can only be an instance of Instrument

— Each value has a slot called owned by
and so on.

« Slots may contain arbitrary pieces of program. This is known as procedural
attachment. The fragment might be executed to return the slot’s value, or
update the values in other slots etc.

Rule-based systems

A rule-based system requires three things:

1. A set of if — then rules. These denote specific pieces of knowledge about
the world.

They should be interpreted similarly to logical implication.

Such rules denote what to do or what can be inferred under given circum-
stances.

2. A collection of facts denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the light of the current facts.

Forward chaining

The first of two basic kinds of interpreter begins with established facts and then
applies rules to them.

This is a data-driven process. It is appropriate if we know the initial facts but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

« We maintain a working memory, typically of what has been inferred so far.

« Rules are often condition-action rules, where the right-hand side specifies an
action such as adding or removing something from working memory, print-
ing a message etc.

« In some cases actions might be entire program fragments.

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working memory.
2. Select a rule to fire. This requires a conflict resolution strategy.
3. Carry out the action specified, possibly updating the working memory.

Repeat this process until either no rules can be used or a halt appears in the
working memory.

Condition—action rules

dry_mouth —> ADD thirsty
thirsty -> ADD get_drink

get_drink AND no_work —> ADD go_bar
working -> ADD no_work
no_work -> DELETE working

Working memory Interpreter

dry_mouth /

working

Example

Progress is as follows:

1. The rule
dry_mouth — ADD thirsty

fires adding thirsty to working memory.

2. The rule
thirsty — ADD get_drink

fires adding get_drink to working memory.

3. The rule
working — ADD no_work

fires adding no_work to working memory.

4. The rule
get_drink AND no_work — ADD go_bar

fires, and we establish that it’s time to go to the bar.

Conflict resolution

Clearly in any more realistic system we expect to have to deal with a scenario
where two or more rules can be fired at any one time:

+ Which rule we choose can clearly affect the outcome.

« We might also want to attempt to avoid inferring an abundance of useless

information.

We therefore need a means of resolving such conflicts. Common conflict resolution
strategies are:

» Prefer rules involving more recently added facts.

« Prefer rules that are more specific. For example

patient_coughing — ADD lung problem
is more general than
patient_coughing AND patient_smoker — ADD lung cancer.
« Allow the designer of the rules to specify priorities.

« Fire all rules simultaneously—this essentially involves following all chains of
inference at once.

Reason maintenance

Some systems will allow information to be removed from the working memory
if it is no longer justified.

For example, we might find that
patient_coughing

and
patient_smoker

are in working memory, and hence fire
patient_coughing AND patient_smoker — ADD lung cancer

but later infer something that causes patient_coughing to be withdrawn from
working memory.

The justification for lung cancer has been removed, and so it should perhaps
be removed also.

Pattern matching
In general rules may be expressed in a slightly more flexible form involving vari-
ables which can work in conjunction with pattern matching.
For example the rule
coughs(X) AND smoker(X) — ADD lung cancer(X)
contains the variable X.
If the working memory contains coughs(neddy) and smoker(neddy) then
X =neddy

provides a match and
lung cancer(neddy)

is added to the working memory.

Backward chaining

The second basic kind of interpreter begins with a goal and finds a rule that would
achieve it.

It then works backwards, trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

This is a goal-driven process. If you want to test a hypothesis or you have some
idea of a likely conclusion it can be more efficient than forward chaining.

Working memory

Example

Goal

go_bar

get_drin
no_work
thirsty
no_work
dry_mout
no_work

working

i

|

To establish go_bar we have to
establish get_drink and no_work.

These are the new goals.

Try first to establish get_drink. This
can be done by establishing thirsty.

thirsty can be established by establishing
dry_mouth. This is in the working memory

so we're done.

Finally, we can establish no_work by
establishing working. This is in the working

memory so the process has finished.

Example with backtracking

If at some point more than one rule has the required conclusion then we can
backtrack.

Example: Prolog backtracks, and incorporates pattern matching. It orders at-
tempts according to the order in which rules appear in the program.

Example: having added
up_early — ADD tired

and
tired AND lazy — ADD go_bar

to the rules, and up_early to the working memory:

Working memory

dry_mouth
working
up_early

Attempt to establish go_bar

Example with backtracking

Goal

by establishing tired and
lazy.

This can be done by establishing
up_early|lup_early and lazy. i
lazy up_early is in the working memory no-work

so we're done.

We can not establish lazy

lazy and so we backtrack and try a
different approach.

Process proceeds as before

working

