
Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is
highly non-trivial.

Ideally we’d like to maintain an expressive language while restricting it enough
to be able to do inference e�ciently.

Further aims:

• To give a brief introduction to semantic networks and frames for knowledge
representation.

• To see how inheritance can be applied as a reasoning method.
• To look at the use of rules for knowledge representation, along with forward
chaining and backward chaining for reasoning.

Further reading: �e Essence of Arti�cial Intelligence, Alison Cawsey. Prentice
Hall, 1998.

1

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of classes of
objects and relationships between them:

• �e subclass and instance relationships are emphasised.
• We form class hierarchies in which inheritance is supported and provides the
main inference mechanism.

As a result inference is quite limited.

We also need to be extremely careful about semantics.

�e only major di�erence between the two ideas is notational.

2

Example of a semantic network

has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

3

Frames

Frames once again support inheritance through the subclass relationship.

volume: loud

has: ear problems
hairlength: long

subclass: Musician

Rock musician

subclass: Person
has: instrument

Musician

has, hairlength, volume etc are slots.

long, loud, instrument etc are slot values.

�ese are a direct predecessor of object-oriented programming languages.

4

Defaults

Both approaches to knowledge representation are able to incorporate defaults:

has: ear problems
* hairlength: long

subclass: Musician

* volume: loud

subclass: Rock musician
hairlength: short
image: gothic

Rock musician
Dementia Evilperson

Starred slots are typical values associated with subclasses and instances, but can
be overridden.

5

Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

• What is hairlength for Cornelius if we’re trying to use inheritance to es-
tablish it?

• �is can be overcome initially by specifying which class is inherited from in
preference when there’s a con�ict.

• But the problem is still not entirely solved—what if we want to prefer inheri-
tance of some things from one class, but inheritance of others from a di�erent
one?

6

Other issues

• Slots and slot values can themselves be frames. For example Dementia may
have an instrument slot with the value Electricharp, which itself may have
properties described in a frame.

• Slots can have speci�ed a�ributes. For example, we might specify that:
– instrument can have multiple values
– Each value can only be an instance of Instrument
– Each value has a slot called owned by

and so on.
• Slots may contain arbitrary pieces of program. �is is known as procedural
a�achment. �e fragment might be executed to return the slot’s value, or
update the values in other slots etc.

7

Rule-based systems

A rule-based system requires three things:

1. A set of if− then rules. �ese denote speci�c pieces of knowledge about
the world.
�ey should be interpreted similarly to logical implication.
Such rules denote what to do or what can be inferred under given circum-
stances.

2. A collection of facts denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the light of the current facts.

8

Forward chaining

�e �rst of two basic kinds of interpreter begins with established facts and then
applies rules to them.

�is is a data-driven process. It is appropriate if we know the initial facts but not
the required conclusion.

Example: XCON—used for con�guring VAX computers.

In addition:

• We maintain a working memory, typically of what has been inferred so far.
• Rules are o�en condition-action rules, where the right-hand side speci�es an
action such as adding or removing something from working memory, print-
ing a message etc.

• In some cases actions might be entire program fragments.

9

Forward chaining

�e basic algorithm is:

1. Find all the rules that can �re, based on the current working memory.
2. Select a rule to �re. �is requires a con�ict resolution strategy.
3. Carry out the action speci�ed, possibly updating the working memory.

Repeat this process until either no rules can be used or a halt appears in the
working memory.

10

dry_mouth

working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working

working −> ADD no_work

get_drink AND no_work −> ADD go_bar

thirsty −> ADD get_drink

dry_mouth −> ADD thirsty

11

Example

Progress is as follows:

1. �e rule
dry mouth→ ADD thirsty

�res adding thirsty to working memory.
2. �e rule

thirsty→ ADD get drink

�res adding get drink to working memory.
3. �e rule

working→ ADD no work

�res adding no work to working memory.
4. �e rule

get drink AND no work→ ADD go bar

�res, and we establish that it’s time to go to the bar.

12

Con�ict resolution

Clearly in any more realistic system we expect to have to deal with a scenario
where two or more rules can be �red at any one time:

• Which rule we choose can clearly a�ect the outcome.
• We might also want to a�empt to avoid inferring an abundance of useless
information.

We therefore need a means of resolving such con�icts. Common con�ict resolution
strategies are:

• Prefer rules involving more recently added facts.
• Prefer rules that are more speci�c. For example

patient coughing→ ADD lung problem

is more general than
patient coughing AND patient smoker→ ADD lung cancer.

• Allow the designer of the rules to specify priorities.
• Fire all rules simultaneously—this essentially involves following all chains of
inference at once.

13

Reason maintenance

Some systems will allow information to be removed from the working memory
if it is no longer justi�ed.

For example, we might �nd that

patient coughing

and
patient smoker

are in working memory, and hence �re

patient coughing AND patient smoker→ ADD lung cancer

but later infer something that causes patient coughing to be withdrawn from
working memory.

�e justi�cation for lung cancer has been removed, and so it should perhaps
be removed also.

14

Pa�ern matching

In general rules may be expressed in a slightly more �exible form involving vari-
ables which can work in conjunction with pa�ern matching.

For example the rule

coughs(X) AND smoker(X)→ ADD lung cancer(X)

contains the variable X .

If the working memory contains coughs(neddy) and smoker(neddy) then

X = neddy

provides a match and
lung cancer(neddy)

is added to the working memory.

15

Backward chaining

�e second basic kind of interpreter begins with a goal and �nds a rule that would
achieve it.

It then works backwards, trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

�is is a goal-driven process. If you want to test a hypothesis or you have some
idea of a likely conclusion it can be more e�cient than forward chaining.

16

Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. �is

so we’re done.

Working memory
Goal

go bar

can be done by establishing thirsty.

�ese are the new goals.
establish get drink and no work.
To establish go bar we have to

thirsty can be established by establishing
dry mouth. �is is in the working memory

Finally, we can establish no work by
establishing working. �is is in the working
memory so the process has �nished.

17

Example with backtracking

If at some point more than one rule has the required conclusion then we can
backtrack.

Example: Prolog backtracks, and incorporates pa�ern matching. It orders at-
tempts according to the order in which rules appear in the program.

Example: having added

up early→ ADD tired

and
tired AND lazy→ ADD go bar

to the rules, and up early to the working memory:

18

Example with backtracking

thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Process proceeds as before

go bar

lazy

lazy
up early

lazy
tired

di�erent approach.

by establishing tired and
A�empt to establish go bar

lazy.

�is can be done by establishing
up early and lazy.

so we’re done.
up early is in the working memory

and so we backtrack and try a

GoalWorking memory

We can not establish lazy

19

