Artificial Intelligence

Knowledge representation and reasoning

Reading: AIMA, chapters 7 to 10.

Knowledge representation and reasoning

We now look at how an agent might represent knowledge about its environment,
and reason with this knowledge to achieve its goals.

Initially we’ll represent and reason using first order logic (FOL). Aims:
« To show how FOL can be used to represent knowledge about an environment

in the form of both background knowledge and knowledge derived from per-
cepts.

« To show how this knowledge can be used to derive non-perceived knowledge
about the environment using a theorem prover.

« To introduce the situation calculus and demonstrate its application in a simple
environment as a means by which an agent can work out what to do next.
Using FOL in all its glory can be problematic.

Later we’ll look at how some of the problems can be addressed using semantic
networks, frames, inheritance and rules.

Knowledge representation and reasoning

Earlier in the course we looked at what an agent should be able to do.

It seems that all of us—and all intelligent agents—should use logical reasoning to
help us interact successfully with the world.

Any intelligent agent should:
« Possess knowledge about the environment and about how its actions affect the
environment.

« Use some form of logical reasoning to maintain its knowledge as percepts ar-
rive.

« Use some form of logical reasoning to deduce actions to perform in order to
achieve goals.

Knowledge representation and reasoning

This raises some important questions:

« How do we describe the current state of the world?
« How do we infer from our percepts, knowledge of unseen parts of the world?
« How does the world change as time passes?
« How does the world stay the same as time passes? (The frame problem.)
« How do we know the effects of our actions? (The qualification and ramifica-
tion problems.)
We’ll now look at one way of answering some of these questions.

FOL (arguably?) seems to provide a good way in which to represent the required
kinds of knowledge: it is expressive, concise, unambiguous, it can be adapted to
different contexts, and it has an inference procedure, although a semidecidable one.

In addition is has a well-defined syntax and semantics.

Logic for knowledge representation

Problem: it’s quite easy to talk about things like set theory using FOL. For exam-
ple, we can easily write axioms like

VS.VS' . (Vz.(zeSezels)=85=9)

But how would we go about representing the proposition that if you have a bucket
of water and throw it at your friend they will get wet, have a bump on their head
from being hit by a bucket, and the bucket will now be empty and dented?

More importantly, how could this be represented within a wider framework for
reasoning about the world?

It’s time to introduce The Wumpus...

Wumpus world

As a simple test scenario for a knowledge-based agent we will make use of the
Wumpus World.

o ©
2@

Evil Robot @

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-
scathed.

Wumpus world
The rules of Wumpus World:
« Unfortunately the cave contains a number of pits, which EVIL ROBOT can

fall into. Eventually his batteries will fail, and that’s the end of him.

« The cave also contains the Wumpus, who is armed with state-of-the-art Evil
Robot Obliteration Technology.

« The Wumpus itself knows where the pits are and never falls into one.

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the following:

« In a position adjacent to the Wumpus, a stench is perceived. (Wumpuses are

famed for their lack of personal hygiene.)

« In a position adjacent to a pit, a breeze is perceived.

« In the position where the gold is, a is perceived.

« On trying to move into a wall, a bump is perceived.

+ On killing the Wumpus a scream is perceived.
In addition, EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following does not include diagonals.

Wumpus world

So we have:
Percepts: stench, breeze, glitter, bump, scream.
Actions: forward, turnLeft, turnRight, grab, release, shoot, climb.

Of course, our aim now is not just to design an agent that can perform well in a
single cave layout.

We want to design an agent that can usually perform well regardless of the layout
of the cave.

Logic for knowledge representation

The fundamental aim is to construct a knowledge base KB containing a collection
of statements about the world—expressed in FOL—such that useful things can be
derived from it.

Our central aim is to generate sentences that are true, if the sentences in the KB
are true.

This process is based on concepts familiar from your introductory logic courses:

« Entailment: KB |= o means that the KB entails a.

« Proof: KB I-; o means that « is derived from the KB using inference procedure
i. If i is sound then we have a proof.

« i is sound if it can generate only entailed a.

« i is complete if it can find a proof for any entailed a.

Example: Prolog

You have by now learned a little about programming in Prolog. For example:

concat([}, L, L).
concat([H|T), L,[H|L2]) :- concat(T, L, L2).

is a program to concatenate two lists. The query
concat([1,2,3], [4, 5], X).

results in
X =11,2,3,4,5].
What’s happening here? Well, Prolog is just a more limited form of FOL so...

Example: Prolog
.. we are in fact doing inference from a KB:

« The Prolog programme itself is the KB. It expresses some knowledge about
lists.
« The query is expressed in such a way as to derive some new knowledge.
How does this relate to full FOL? First of all the list notation is nothing but syn-

tactic sugar. It can be removed: we define a constant called empty and a function
called cons.

Now [1, 2, 3] just means
cons(1, cons(2, cons(3, empty))))
which is a term in FOL.

I will assume the use of the syntactic sugar for lists from now on.

Prolog and FOL

The program when expressed in FOL, says

Vx . concat(empty, z, z) A
Vh,t,l1,ly. concat(t, 1, ly) — concat(cons(h,t),ly, cons(h,ls))

The rule is simple—given a Prolog program:

« Universally quantify all the unbound variables in each line of the program and

« ... form the conjunction of the results.

If the universally quantified lines are Ly, Lo, . . ., L, then the Prolog programme
corresponds to the KB
KB=L ALyA---AL,

Now, what does the query mean?

Prolog and FOL

When you give the query
concat([1,2,3], [4,5], X).
to Prolog it responds by trying to prove the following statement
KB — 3X . concat([1,2,3],[4, 5], X)

So: it tries to prove that the KB implies the query, and variables in the query are
existentially quantified.

When a proof is found, it supplies a value for X that makes the inference true.

Prolog and FOL
Prolog differs from FOL in that, amongst other things:

« It restricts you to using Horn clauses.
« Its inference procedure is not a full-blown proof procedure.

« It does not deal with negation correctly.

However the central idea also works for full-blown theorem provers.
If you want to experiment, you can obtain Prover9 from
https : //www.cs.unm.edu/ ~ mccune/maced/

We’ll see a brief example now, and a more extensive example of its use later, time
permitting...

Prolog and FOL

Expressed in Prover9, the above Prolog program and query look like this:

set(prologstyle_variables).

% This is the translated Prolog program for list concatenation.
% Prover9 has its own syntactic sugar for lists.

formulas(assumptions) .

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).
end of list.

% This is the query.
formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).
end of list.

Note: it is assumed that unbound variables are universally quantified.

Prolog and FOL
You can try to infer a proof using
prover9 -f file.in

and the result is (in addition to a lot of other information):

concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non.clause). [assumption].
(exists X concat([1,2,3],[4,5],X)) # label(non.clause) # label(goal). [goal]
concat([],A,A). [assumption].

-concat (A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].
-concat([1,2,3],[4,5],A). [deny(2)].
concat([A],B,[A:B]). [ur(4,a,3,a)].
-concat([2,3],[4,5],A). [resolve(5,a,4,b)].
concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

OB NG W N e

This shows that a proof is found but doesn’t explicitly give a value for X—we’ll
see how to extract that later...

The fundamental idea

So the basic idea is: build a KB that encodes knowledge about the world, the effects
of actions and so on.

The KB is a conjunction of pieces of knowledge, such that:

« A query regarding what our agent should do can be posed in the form

JactionList.Goal(...actionList...)
« Proving that
KB — JactionList.Goal(...actionList...)

instantiates actionList to an actual list of actions that will achieve a goal
represented by the Goal predicate.

We sometimes use the notation ask and tell to refer to querying and adding to
the KB.

Using FOL in Al the triumphant return of the Wumpus

We want to be able to speculate about the past and about possible futures. So:

O ©
©

Wumpus

Evil Robot

« We include situations in the logical language used by our KB.

« We include axioms in our KB that relate to situations.

This gives rise to situation calculus.

Situation calculus
In situation calculus:

« The world consists of sequences of situations.

« Over time, an agent moves from one situation to another.

« Situations are changed as a result of actions.
In Wumpus World the actions are: forward, shoot, grab, climb, release,
turnRight, turnLeft.

« A situation argument is added to items that can change over time. For example

At(location, s)
Items that can change over time are called fluents.

« A situation argument is not needed for things that don’t change. These are
sometimes referred to as eternal or atemporal.

20

Representing change as a result of actions

Situation calculus uses a function
result(action,s)

to denote the new situation arising as a result of performing the specified action
in the specified situation.

result(grab, s9) = s

result(turnleft,s;) = so
result(shoot, s9) = s3

result(forward, s3) = s4

v~~~

21

Axioms I: possibility axioms

The first kind of axiom we need in a KB specifies when particular actions are
possible.

We introduce a predicate
Poss(action, s)

denoting that an action can be performed in situation s.
We then need a possibility axiom for each action. For example:
At(l,s) A Available(gold,l, s) — Poss(grab, s)

Remember that unbound variables are universally quantified.

22

Axioms II: effect axioms

Given that an action results in a new situation, we can introduce effect axioms to
specify the properties of the new situation.

For example, to keep track of whether EVIL ROBOT has the gold we need effect
axioms to describe the effect of picking it up:

Poss(grab, s) — Have(gold, result(grab, s))
Effect axioms describe the way in which the world changes.
We would probably also include
—Have(gold,)
in the KB, where sy is the starting situation.

Important: we are describing what is true in the situation that results from per-
forming an action in a given situation.

23

Axioms III: frame axioms

We need frame axioms to describe the way in which the world stays the same.
Example:

Have(o, s) A
—(a = release Ao =gold) A —(a =shoot A o= arrow)
— Have(o, result(a, s))

describes the effect of having something and not discarding it.
In a more general setting such an axiom might well look different. For example

—Have(o, s) A
(a # grab(o) V —(Available(o,s) A Portable(o)))
— —Have(o, result(a, s))

describes the effect of not having something and not picking it up.

24

The frame problem

The frame problem has historically been a major issue.

Representational frame problem: a large number of frame axioms are required to
represent the many things in the world which will not change as the result of an
action.

We will see how to solve this in a moment.

Inferential frame problem: when reasoning about a sequence of situations, all the
unchanged properties still need to be carried through all the steps.

This can be alleviated using planning systems that allow us to reason efficiently
when actions change only a small part of the world. There are also other reme-
dies, which we will not cover.

25

Successor-state axioms

Effect axioms and frame axioms can be combined into successor-state axioms.
One is needed for each predicate that can change over time.

Action a is possible —
(true in new situation <=
(you did something to make it true V
it was already true and you didn’t make it false))

For example
Poss(a, s) —
(Have(o,result(a,s)) <= ((a = grab A Available(o,s)) V
(Have(o,s) A —(a =release A o= gold) A
—(a = shoot A 0= arrow))))

26

Knowing where you are, and so on...

We now have considerable flexibility in adding further rules:

« If ¢ is the initial situation we know that At((1, 1), sp).

« We need to keep track of what way we’re facing. Say north is 0, south is 2,
east is 1 and west is 3. We might assume facing(sp) = 0.

» We need to know how motion affects location
forwardResult((z,y),north) = (z,y + 1)
forwardResult((x,y),east) = (z+ 1,y)

and so on.
« The concept of adjacency is very important in the Wumpus world
Adjacent(ly,ls) <= 3Id forwardResult(l;,d) =1,
« We also know that the cave is 4 by 4 and surrounded by walls
WallHere((z,y)) <= (z=0Vy=0Va=5Vy=15)

27

The qualification and ramification problems

Qualification problem: we are in general never completely certain what condi-
tions are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are omitted from axioms.

Ramification problem: actions tend to have implicit consequences that are large
in number.

For example, if I pick up a sandwich in a dodgy sandwich shop, I will also be
picking up all the bugs that live in it. I don’t want to model this explicitly.

28

Solving the ramification problem

The ramification problem can be solved by modifying successor-state axioms.
For example:
Poss(a, s) —
(At(o,l, result(a,s)) <
(3" . a=go(l',l) A
[0 = robot V Has(robot,o,s)]) V
(At(o,1,8) A
[~3" . a=go(l,I")y NT#T"A
{0 =robot V Has(robot,o,s)}]))

describes the fact that anything EVIL ROBOT is carrying moves around with
him.

29

Deducing properties of the world: causal and diagnostic rules

If you know where you are, then you can think about places rather than just
situations. Synchronic rules relate properties shared by a single state of the world.

There are two kinds: causal and diagnostic.
Causal rules: some properties of the world will produce percepts.
WumpusAt(ly) A Adjacent(ly,ls) — StenchAt(ly)
PitAt(l;) A Adjacent(ly, ly) — BreezeAt(ls)

Systems reasoning with such rules are known as model-based reasoning systems.
Diagnostic rules: infer properties of the world from percepts. For example:
At(l,s) N Breeze(s) — BreezeAt(l)
At(l,s) A Stench(s) — StenchAt(l)

These may not be very strong.

The difference between model-based and diagnostic reasoning can be important.
For example, medical diagnosis can be done based on symptoms or based on a
model of disease.

30

General axioms for situations and objects

Note: in FOL, if we have two constants robot and gold then an interpretation is
free to assign them to be the same thing. This is not something we want to allow.

Unique names axioms state that each pair of distinct items in our model of the

world must be different
robot # gold

robot # arrow
robot # wumpus

Unique actions axioms state that actions must share this property, so for each pair

of actions
go(l,l') # grab
go(l,1') # drop(o)

and in addition we need to define equality for actions, so for each action

go(l, 1) = go(I",I") = 1 =1"AU ="
drop(o) = drop(0') < o=

31

General axioms for situations and objects

The situations are ordered so
sp # result(a, s)
and situations are distinct so
result(a, s) = result(d,s’) <= a=d As=¢
Strictly speaking we should be using a many-sorted version of FOL.

In such a system variables can be divided into sorts which are implicitly separate
from one another.

Finally, we’re going to need to specify what’s true in the start state.

For example
At(robot, [1,1], so)
At(wumpus, [3,4], so)
Has(robot, arrow, so)

and so on.

32

Sequences of situations

We know that the function result tells us about the situation resulting from
performing an action in an earlier situation.

How can this help us find sequences of actions to get things done?

Define

/

Sequence([],s,s) =5 =s

Sequence([al, s, s') = Poss(a, s) A s’ = result(a, s)
Sequence(a :: as, s,s’) = 3t . Sequence([a], 5,t) A Sequence(as, t, s')

To obtain a sequence of actions that achieves Goal(s) we can use the query

Ja Js . Sequence(a, s, s) A Goal(s)

33

Interesting reading

Knowledge representation based on logic is a vast subject and can’t be covered
in full in the lectures.

In particular:

« Techniques for representing further kinds of knowledge.
» Techniques for moving beyond the idea of a situation.

« Reasoning systems based on categories.

+ Reasoning systems using default information.

« Truth maintenance systems.

Happy reading...

34

