Artificial Intelligence

Computer Laboratory, Room FC06
Telephone extension 63725
sbhllecl.cam.ac.uk

www.cl.cam.ac.uk/~sbhi11/

Copyright © Sean Holden 2002-2020.

Artificial Intelligence

Reading: AIMA chapters 1, 2, 26 and 27.

2

Introduction: what are our aims?

Artificial Intelligence (Al) is currently at the top of its

Much of this has been driven by and

Introduction: what are our aims?

What is the purpose of Artificial Intelligence (AI)? If you're a or a
then perhaps it’s:

e To

« To understand

Philosophers have worked on this for at least years. They’ve also wondered
about:

. we do Al? we do AI? What are the ?

e Is Al ? (Note: I didn’t write here, for a good reason...)

Despite years of work by philosophers, there’s essentially in the
way of results.

Introduction: what are our aims?

Luckily, we were sensible enough not to pursue degrees in philosophy—we’re
scientists/engineers, so while we might have interest in such pursuits, our
perspective is different:

« Brains are small (true) and apparently slow (not quite so clear-cut), but in-
credibly good at some tasks—we want to understand a specific form of

o It would be nice to be able to intelligent systems.

« It is also nice to

Historically speaking, this view
Al has been entering our lives for decades, almost without us being aware of it.

But be careful: brains are

Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got under way in 1956
with the

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

« This means we can actually <o things. It’s as if we were physicists before
anyone thought about atoms, or gravity, or....

» Also, we know what we’re trying to do is . (Unless we think humans
don’t exist. before

Perhaps I'm being too hard on them; there was some good groundwork: wanted an algorithm for ,
leading to . Ramon Lull’s and other attempts at mechanical calculators. Rene Descartes’
and the idea of mind as a . Wilhelm Leibnitz’s opposing position of . (The
intermediate position: mind is but .) The origin of : Francis Bacon’s , John
Locke: . David Hume: we obtain rules by repeated
exposure: . Further developed by Bertrand Russell and in the of Carnap and Hempel.
More recently: the connection between and ? How are actions ? If to achieve the end you

need to achieve something intermediate, consider how to achieve that, and so on. This approach was implemented
in Newell and Simon’s 1957

What has been achieved?

Artificial Intelligence (Al) is currently at the top of its

As a result, it’s important to maintain some sense of perspective.
Notable successes:
» Perception: vision, speech processing, inference of emotion from video, scene
labelling, touch sensing, artificial noses...

« Logical reasoning: prolog, expert systems, CYC, Bayesian reasoning, Wat-
son...

« Playing games: chess, backgammon, go, robot football...
« Diagnosis of illness in various contexts...

 Theorem proving: Robbin’s conjecture, formalization of the Kepler conjec-
ture...

« Literature and music: automated writing and composition...

« And many more... (most of which don’t include the word)]

What has been achieved?

Artificial Intelligence (Al) is currently at the top of its

As a result, it’s important to maintain some sense of perspective.

There are equally many areas in which we currently

is a line from Shakespeare’s Macbeth.

When Al has a success, the ideas in question tend to

Do you consider the fact that
of AI?

to be a form

The nature of the pursuit

This is not necessarily a straightforward question.
It depends on who you ask...

We can find many definitions and a rough categorisation can be made depending
on whether we are interested in:

« The way in which a system or the way in which it

« Whether we want it to do this in a way or a way.

Here, the word has a special meaning: it means

What is Al version one: acting like a human

proposed what is now known as the

« A human judge is allowed to interact with an Al program via a terminal.
e This is the method of interaction.
o If the judge can’t decide whether the interaction is produced by a machine or

another human then the program passes the test.

In the Turing test the Al program may also have a camera attached,

so that objects can be shown to it, and so on.

The Turing test is informative, and (very!) hard to pass. (See the)
o It requires many abilities that seem necessary for Al such as learning.

a human child would probably not pass the test.

« Sometimes an Al system needs human-like acting abilities—for example
often have to produce explanations—but

10

What is Al version two: thinking like a human

There is always the possibility that a machine like a human does not ac-
tually . The approach to Al has tried to:
 Deduce —for example by or

« Copy the process by mimicking it within a program.

An early example of this approach is the produced by
Newell and Simon in 1957. They were concerned with whether or not the pro-
gram reasoned in the same manner that a human did.

Computer Science Psychology

11

What is Al version three: thinking rationally and the “laws of thought”

The idea that intelligence reduces to is a very old one, going at
least as far back as Aristotle as we’ve already seen.

The general field of made major progress in the 19th and 20th centuries,
allowing it to be applied to AL
« We can and about many different things.

e The approach to AL
This is a very appealing idea, but there are obstacles. It is hard to:

« Represent

e Deal with

 Reason without being tripped up by

- Sometimes it’s necessary to act when there’s 0 logical course of action.
« Sometimes inference is (reflex actions).

These will be recurring themes in this course, and in
next year.

12

What is Al version four: acting rationally

Basing Al on the idea of means attempting to design systems
that act to given their
« Thinking about this in engineering terms, it seems to lead

us towards the usual subfields of AI. What might be needed?

« The concepts of : and can be defined precisely making the
field suitable for scientific study.

e This is important: if we try to model Al systems on humans, we can’t even
propose sensible definition of

« In addition, humans are a system that is still changing and adapted to a very
specific environment.

o All of the things needed to pass a Turing test seem necessary for rational

acting, so this seems preferable to the approach.
» The logicist approach can clearly form of what’s required to act ratio-
nally, so this seems preferable to the approach alone.

As a result, we will focus on the idea of designing systems that

13

Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Hermann von Helmholtz: visual system. Aristotle's material turned into mathematics by Boole L RGeS 1y
Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

Tarski: relationship between real and logical objects. Bernoulli: degree of belief.

al-Khowarazmi: concept of algorithm. Bayes: updating beliefs using evidence.

Watson and Thorndike: Behaviourism
Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.
Von Neumann and Morgenstern: combine uncertainty with

Intractability and complexity. i
action: decision theory.

Stimulus and response/objective measures.
Godel: incompleteness theorem.

\

Craik: "The Nature of Explanation"

Brain as an information processing device. Neuroscience

R ing, beliefs, goals etc. i
easoning, beliefs, goals etc Nasty bumps on the head - we know brains

System has a model of how the world works. Artificial Intelligence and consciousness are related.

<& paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory

Linguistics not really understood.
Recently: EEG, MRI etc.
Skinner's "Verbal Behaviour".
Noam Chomsky: behaviourisn can't account for understanding or

production of things not previously heard.

A central Al concept: "Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice

Cybernetics stuff in the future?

. AR : How do I measure the degree of niceness?
250BC: first machine able to modify its own behaviour.

| Probability + Utility = Decision Theory.
James Watt: governor for steam engines.

Small economies: game theory - sometimes it's rational to act (apparently)
Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markov decision processes. Future gains

Mo . i i resulting from a series of actions.
Minimisation of difference between current situation and goal.

. : HEU iR % S . Rational action is intractable. Herbert Simon: Satisficing is a better description
Stochastic optimal control: minimisation over time of an objective function. of what humans do.

----Al moves away from linear and continuous scenarios.

14

What’s in this course?

This course introduces some of the fundamental areas that make up Al:

 An outline of the background to the subject.

« An introduction to the idea of an

» Solving problems in an intelligent way by

« Solving problems represented as problems.
- Playing

. using

Strictly speaking, this course covers what is often referred to as
. (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed when the importance of was fully
appreciated. covers this more recent
material.

15

What’s not in this course?

« The classical Al programming languages and
« A great deal of all the areas on the last slide!

« Perception: : and : (force sensing, know-
ing where your limbs are, knowing when something is bad), :

- Natural language processing.

« Acting on and in the world: (effectors, locomotion, manipulation),

b pJ

o Areas such as , ,
and , for reasons that I will expand upon during
the lectures.

. and much further probabilistic material. (You’ll have to wait until
next year.)

16

Introductory reading that

« Francis Crick, , Nature (1989) is
still entirely relevant:

www.nature.com/nature/journal/v337/n6203/abs/337129a0.html
« The
aisb.org.uk/aisb-events/

provides a good illustration of how far we are from passing the Turing test.

« Marvin Minsky, , Al Magazine (1982) is
an excellent response to nay-saying philosophers.

http://web.media.mit.edu/~minsky/

e GO: www.nature.com/nature/journal/v529/n7587/full/nature16961.html
« The Cyc project: www.cyc.com

o Al at Nasa Ames:

www.nasa.gov/centers/ames/research/areas-of-ames-ingenuity-autonomy-

and-robotics

17

Introductory reading that

House of Lords, Select Committee on Artificial Intelligence

https://publications.parliament.uk/pa/1d201719/1dselect/1dai/100/100.pdf

The Royal Society

https://royalsociety.org/topics-policy/projects/machine-learning/

Brenden M. Lake et al, Behavioral and Brain Sciences, Cambridge University
Press, 2017.

18

Text book

The course is based on the relevant parts of:

, Third Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

and an alternative source is:

, Second Edition
(2017). David L. Poole and Alan K. Mackworth, Cambridge University Press.

For more depth on specific areas see:
Dechter, R. (2003). . Morgan Kaufmann.
Cawsey, A. (1998). . Prentice Hall.

Ghallab, M., Nau, D. and Traverso, P. (2004).
. Morgan Kaufmann.

Bishop, C.M. (2006). . Springer.

Brachman, R. J. and Levesque, H. J. (2004).
. Morgan Kaufmann.

19

Prerequisites

The prerequisites for the course are: first order logic, some algorithms and data
structures, discrete and continuous mathematics, and basic computational com-
plexity.

No doubt you want to know something about , given the recent
peek in interest.

In the lectures on I will be talking about

[will introduce the , which is the foundation for both
and the more fashionable methods.

This means you will need to be able to and also handle

If you've forgotten how to do this

20

Prerequisites

Self test:
1. Let
where the ¢, are constants. Can you compute where ?
2. Let be a function. Now assume for each

and some collection of functions .. Assuming all requirements for differen-
tiability and so on are met, can you write down an expression for
where ?

If the answer to either of these questions is “no” then it’s time for some revision.
(You have about three weeks notice, so I'll assume you know it!)

21

And finally...

There are some important points to be made regarding

First, you might well hear the term being used a lot. What does it
mean?

For example: high-quality automatic translation from one language to another.

To produce a genuinely good translation of from English to Cantonese
is likely to be Al-complete.

22

And finally...

More practically, you will often hear me make the claim that

There are two ways to interpret this:

1. The wrong way: “It’s all a waste of time.'” OK, so it’s a partly understandable
interpretation. the fact that Boolean satisfiability is intractable
mean we can't solve large instances in practice...

2. The right way: “It’s an opportunity to design nice approximation algorithms.”
In reality, the algorithms that are are ones that try to
find a but not necessarily solution, in a amount of
time and memory.

!In essence, a comment on a course assessment a couple of years back to the effect of: “Why do you teach us this stuff if it’s all futile?”

23

Agents

There are many different definitions for the term

Allow me to introduce EVIL ROBOT.

MUST ENSLAVE
EARTH!!! Dr Holden

will be our GLORIOUS
LEADER!!!

Environment

We will use the following simple definition:

24

within AL

Agents

This definition can be very widely applied: to humans, robots, pieces of software,

and so on.

We are taking quite an perspective. We want to
. So:

1. How can we judge an agent’s performance?
2. How can an agent’s affect its design?

3. Are there sensible ways in which to think about the

Recall that we are interested in devices that
doing the under

25

rather than

of an agent?

, where ‘rational’ means

Measuring performance

How can we judge an agent’s performance?

- Any measure of performance is likely to be
— Even a simple email filter is an agent—it can sense and act. Here the per-
formance measure is straightforward.

— For a self-driving car, it is more complicated!
« We're usually interested in

- performance because usually agents are not —they
don’t know the outcome of their actions.
(It is for you to enter this lecture theatre even if the roof falls in
today. An agent capable of detecting and protecting itself from a falling
roof might be more than you, but 70/ more

- because it tends to lead to better approximations
to what we’d consider rational behaviour.

26

Environments

How can an agent’s affect its design?

Some common attributes of an environment have a considerable influence on
agent design.

. do percepts tell you you need to know
about the world?

. does the future depend on the
present and your actions?

. is the agent run in independent episodes.

. can the world change while the agent is deciding what to do?

. an environment is discrete if the sets of allowable per-

cepts and actions are finite.

. whether the situation is or , and
whether is required.

27

Programming agents

Are there sensible ways in which to think about the of an agent?

A basic agent can be thought of as working according to a straightforward un-
derlying process. To achieve some

 Update to take account of them.
o On the basis of what’s in the working memory, to perform.
. the working memory to take account of this action.

« Do the chosen action.
Obviously, this hides a great deal of complexity:

» A percept might arrive

o The world may change

o Actions may affect the world in

« We might have , which with each other.
« And so on...

28

Keeping track of the environment, and having a goal

[t seems reasonable that an agent should maintain:

« A
« Knowledge of how the environment

« Knowledge of how the agent’s

This requires us to do and

It also seems reasonable that an agent should choose a rational course of action
depending on its

- If an agent has knowledge of how its actions affect the environment, then it
has a basis for choosing actions to achieve goals.

« To obtain a of actions we need to be able to and to

29

Goal-based agents

We now have a basic design that looks something like this:

Percept
Update
Y Update
Description: current environment y
T

Y

Description: effect of actions

Y

Description: behaviour of environment

Description of Goal

Infer

y
Action/Action sequence

30

Utility-based agents

Introducing goals is still not the end of the story.

o There may be sequences of actions that lead to a given goal, and

« We might need to trade-oft , for example speed and safety.

« An agent may have several goals, but not be certain of achieving any of them.
Can it trade-off the likelihood of reaching a goal against the desirability of
getting there?

A maps a state to a number representing the desirability of that

state.

over time forms a fundamental model for the design
of agents.

Unfortunately, there is insufficient time in this course to properly explore agents
based on utility:.

31

Learning agents

It seems reasonable that an agent should

Percept
Update
L Update
Description: current environment ~

Y

Description: effect of actions

Y

Feedback - Learner L . Description: behaviour of environment

Description of Goal

P

Action/Action sequence

What might this entail?

32

Learning agents

Learning mainly requires two additions:
1. The learner needs some form of on the agent’s performance. This
can come in several different forms.
2. The learner needs a means of in order to find out
about the world.
The second point leads to an important trade-oft:
1. Should the agent spend time what it’s learned so far, if it’s achieving
a level of success, or...

2. ...should the agent try new things, the environment on the basis

that it might learn something even if it performs
?

33

Artificial Intelligence

Reading: AIMA chapters 3 and 4.

34

Problem solving by search

We begin with what is perhaps the simplest collection of Al techniques: those al-

lowing an existing within an to fora
that
apply to a particularly simple class of problems—we need to
identify:
. from a set - of possible states.

This models the agent’s situation before anything else happens.

. , denoted

These are modelled by specitying what state will result on performing any
available action in any state.

We can model this using a function : if the agent is in
state < and performs action « then its new state is

. : we can tell whether or not the state we’re in corresponds to a

goal.

We can model this using a function

35

Problem solving by search

We also need the idea of

We need another function . This denotes the cost of
n

If the agent starts in state -, and takes a sequence of actions
it moves through a sequence of states

with . We then define the of this path as

We generally want a path to a that has

Note that you have problems like this...

36

then

Problem solving by search

You have problems like this...
. : talks about searching in
It covers ; and search.
. : talks about searching in
It also covers and search, from a more formal per-
spective.

This is all important stufl, but there’s a problem:
Essentially, the problem is that they are too naive in the way that they

at each step.

I’'m going to assume that you know this material and move on...

37

Problem solving by search

A simple example:

Start State
3 5
]' Y 4 2 ACtiOl’l 1 3 5
—
7 8 6
4 2 ACtiOl’l 1 3 5
— Goal State
7 8 6
4 2 Further actions 1 9
H “ e —>
7 8 6
4 5
7 8
From the . Christmas was grim...

38

Problem solving by search

Here we have:

. a randomly-selected configuration of the numbers | to - arranged
on a square grid, with one square empty.

. the numbers in ascending order with the bottom right square
empty.

. : , up, . We can move any square adjacent to the

empty square into the empty square. (It’s not always possible to choose from
all four actions.)

. per move.

The ~-puzzle is very simple. However general sliding block puzzles are a good
test case. The general problem is NP-complete. The version has about
states, and a random instance is in fact quite a challenge.

39

Problem solving by search

Problems of this kind are very simple, but a surprisingly large number of appli-
cations have appeared:

« Route-finding/tour-finding.

- Layout of VLSI systems.

- Navigation systems for robots.

« Sequencing for automatic assembly:.

- Searching the internet.

» Design of proteins.

and many others...

Problems of this kind continue to form an active research area.

40

Search trees versus search graphs

We need to make an important distinction between and

as opposed to

eIna only can lead to a given state.
eIna a can be reached via possibly

eIna we may also encounter

41

Search trees versus search graphs

Graphs can lead to

The for example suffers this way.

: we start by assuming the search is taking place on a

42

The basic tree-search algorithm

We need to define one more function: takes any . It applies all
that can be applied in - and returns the :

The algorithm for searching in a tree then looks like this:

1 fringe = [s¢];

2 while true do

3 | if fringe.empty() then
4+ | | return NONE;

5 | s=fringe.remove();
¢ | if goal(s)then
7 L return (SOME s);

8 | fringe.addAll(expand(s));

The is set by using a to implement the fringe.

The definition of then sets the way in which the tree is searched.

43

The basic tree-search algorithm

The process looks like this:

@ Expanded
O In the fringe, but not expanded
g p

@ Not yet investigated

A A
d N N
, N N
, N N
N N
.\ . .
7 N
7 N

At each iteration, one node from the fringe is expanded. In general, if the
is [then the at can have /" states.

The to depth </ can have states.

44

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

« Whether a solution is found.
« Whether the solution found is a good one in terms of path cost.

» The cost of the search in terms of time and memory.

So

If a problem is highly complex it may be worth settling for a
obtained in a

we are interested in:
does the strategy a solution is found?
does the strategy guarantee that the solution is found?

Once we start to consider these, things get a lot more interesting...

45

Basic search algorithms

We can immediately define some familiar tree search algorithms:

« New nodes are added to the . This is
« New nodes are added to the . This is
We will not dwell on these, as they are both in practice.

Why is breadth-first search hopeless?

« The procedure is : it is guaranteed to find a solution if one exists.
e The procedure is if the path cost is a non-decreasing function of node-
depth.

e The procedure has

In practice it is the requirement that is problematic.

46

Basic search methods

With depth-first search: for a given branching factor / and depth ' the memory
requirement is

L

This is because we need to store and
The time complexity is still (if you know you only have to go to depth /).
The search is , and may not be

combines the two, but

47

Uniform-cost search

How might we change tree search to try to get to an while lim-
iting the needed?
The key point: so far we only distinguish from !
What is a ?
« Well, at any point in the search we can work out the of whatever

state 5 we've got to.

« How about using the as the priority for the priority queue?

This is called

In practice it doesn’t work very well: we need

But it does suggest the idea of an : a function that attempts to
measure the

48

Heuristics

Why is not a good evaluation function? It is not in any sense

A , usually denoted , is one that the cost of the
best path from any state - to a goal. If - is a goal then

p(s) is known when we get to s.

This is a measure. We are required either to using
our , or by some other means.

The last point is critical:

49

Example: route-finding

for route finding a reasonable heuristic function is

So 1 S1 1 S92
& & .
N \\ |
|
~. I
T h(s1) = V2 |

\\\\ : h(Sg):l
RN I
S I
h(so) = V5 |
\\\\\\ :
NN

® Goal

Accuracy here obviously depends on what the roads are really like.

Can we use in choosing a state to explore? If it’s it can work
well, but !

50

A* search

is the classical

combines the good points of:

« Using to know how far we’ve come.

o Using to estimate how far we have to go.

It does this in a very simple manner: it uses path cost and also the heuristic
function by forming

is the of a path

By using this as a priority for exploring states we get a search algorithm that is
and under simple conditions, and can be to the
more naive approaches.

51

A* search

an is one that the cost of
the best path from - to a goal.

p(s) is known when we get to s.

S Seoal
Actual path to nearest goal.
h(s) must underestimate this. T R
So if denotes the distance from - to the goal we have

If is then

52

A* tree-search is optimal for admissible h(s)

To see that we reason as follows. Let be an
optimal goal state with (because).

At some point Goals is in the fringe.

Can it be selected before s?

Let be a suboptimal goal state with . We
need to demonstrate that

53

A* tree-search is optimal for admissible h(s)

Let - be a state in the fringe on an optimal path to . So

because /' is admissible.

Now say is chosen for expansion . This means that

so we’ve established that

But this means that is not optimal: a contradiction.

And that’s all that’s needed for trees.

54

Graph search

To search in we need a way to make sure no state gets visited

We need to add a , and add a state to it when the state is

closed = [|;

fringe = [so;

while true do

if fringe.empty() then
L return NONE;

s = fringe.remove();
7 | if goal(s) then

G R W N =

=)}

8 _ return (SOME s);

9 | if Iclosed.contains(s) then
10 closed.add(s);

11 _ fringe.addAll(expand(s));

55

Graph search

There are several points to note regarding graph search:

1. The contains all the expanded states.
2. The closed list can be implemented using a . So the time taken to
or can be managable.

3. Both worst case time and space are now
. (Which is BIG!!!!)

4, depth first and iterative deepening search are no longer linear space
as we need to store the closed list.

5. when a repeat is found we are
. We may need to check which solution is better
and if necessary modify path costs and depths for descendants of the repeated
state.

Unfortunately last point breaks the proof...

56

A* graph search

Unfortunately last point breaks the proof...

 Graph search can route if that route is not the first one
generated.
« We could keep . 'This means updating, which is
extra work, not to mention messy, but sufficient to insure optimality.
- Alternatively, we can impose a further condition on which
The required condition is called . As

this is an important property.

57

Monotonicity

Assume /1 is admissible. Remember that so if < follows

and we expect that although this does not have to be the case.

Here and SO

58

Monotonicity

o If it is always the case that then is called

. is monotonic if and only if it obeys the

where « is the action moving us from - to

If is monotonic we can make a simple alteration and use

This is called the equation.

59

The pathmax equation

Why does this make sense?

The fact that tells us the cost of a path through - is (because
is admissible).

But - is . So to say that makes no sense.

60

A* graph search is optimal for monotonic heuristics

The crucial fact from which optimality follows is that if is monotonic then
the values of along any path are non-decreasing.

We therefore have the following situation:

You can’t deal with s’ until everything with

f(s)
f(s") < f(s') has been dealt with.
&)
/ \ o / }; /N
AN h
/AR ~
Consequently everything with gets explored. Then one or more

things with get found (not necessarily all goals).

61

A* search is complete

A* search is provided:

1. The graph has
2. There is a such that has

Why is this? The search expands nodes according to increasing
only way it can fail to find a goal is if there are

There are two ways this can happen:

1. There is a node with an

2. There is a path with an but a

62

. So: the

Complexity

We won'’t be the following, but they are

« A* search has a further desirable property: it is

« This means that no other optimal algorithm that works by constructing paths
from the root can

. : despite its good properties we're not done yet...

e ...A* search unfortunately still has
unless satisfies a very stringent condition that is generally unrealistic:

where denotes the cost from - to the goal.

« As A* search also stores all the nodes it generates: once again it is generally

63

IDA* - iterative deepening A* search

How might we the way in which A* search uses ?
- [terative deepening search used depth-first search with a that
1s

. does the same thing

64

IDA* - iterative deepening A* search

The function searches from a specified state
[t returns either a path from - to a goal, or the value to try for the
limit on

1 function contour (s, fLimit, path)
2 nextF = oo;

3 | if f(s) > fLimit then

4 | return (1], f(s));

if goal(s) then

6 return (s :: path, fLimit)

7 | for s’ € expand(s) do

8 (newPath, newF) = contour(s, fLimit, s :: path);
9 if newPath ! = [| then

10 L return (newPath, fLimit);

11 | nextF = min(nextF, newF);

12 | return ([], nextF);

65

IDA* - iterative deepening A* search

S B N T T CR

N

function iterativeDeepeningAStar()
fLimit = f(so);
while true do

(path, fLimit) = contour (s, fLimit, []);
if path ! = [] then

L return path;

if fLimit == oo then

L return [[;

66

IDA* - iterative deepening A* search

This is a little tricky to unravel, so here is an example:

/I\O N
A . R B R
PAENTREN P P
. N N N
| 4 | ~ 4 | ~
s ~ s 7
N N

. ~
~ | ~ // | ~ // | ~
e | N - I S - | AN
- -
/ 5 \ / 5 \ / 5 \
- ~ (D/ \\%:) (D/ \\%)
0 2N 2N 20 0 2N 2N 20 0
VAN VAN VAN VAN VAN VAN VAN VAN VAN
VAL VAL VAL VAL VAL VAL VAL VAL VAL
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ | \ / | \ / | \ / | \ / I \ / | \ / | \ / | \ / I \

Initially, the algorithm looks ahead and finds the cost that is
its current | cost limit. The new limit is

67

IDA* - iterative deepening A* search

It now does the same again:

e ~
- ~

// \\ - ~

- ~ - ~

- ! ~ Pid | S~

- ~

/ CY) \ 10 O/ g) \D

/N N N N N /N /N

SRS R RS RS RN RS R R R

- 1

Anything with | cost equal to the current limit gets explored, and the
algorithm keeps track of the cost that is its current limit.
The new limit is

68

IDA* - iterative deepening A* search

And again:

- ~
- ~
- | ~
- ~
- ~
s 5 ~
/‘\ /‘\ /‘\

VAR VARE VARE //‘\\ //‘\\ VARE //‘\\ //‘\\
VAL VAL VAL VAL VAL VAL VAL VAL
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \

X

The new limit is /, so at the next iteration the three arrowed nodes will be ex-
plored.

69

IDA* - iterative deepening A* search

Properties of IDA™:

« It is complete and optimal under the same conditions as A*.
- It is often good if we have step costs equal to

« It does not require us to maintain a sorted queue of nodes.
o It only requires

o The time taken depends on the number of values /: can take.

If / takes enough values to be problematic we can increase the limit on / by a
fixed - at each stage, guaranteeing a solution at most « worse than the optimum.

70

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory limitations is

the

try to use /, but only use by doing a depth-first search with a
few modifications:

1. We remember the for the best alternative state - we’ve seen so far on
the way to the state - we’re currently considering.
2. If < has

« We go back and explore the best alternative...

. ...and as we retrace our steps we replace the / cost of every state we've
seen in the current path with

The replacement of | values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we can easily return to it
later.

71

Recursive best-first search (RBFS)

12
13
14
15
16

function rbfs (s, fLimit)

if goal(s) then

~ return (SOME s, fLimit);
f expand (s) = () then
_ return (NONE, c0);

for each s’ € expand(s) do
f(s") = maximum(f(s'), f(s));
while true do
best = ¢ € expand (s) with smallest f(s');
if f(best) > fLimit then
L return (NONE, f(best));

nextBest = s’ € expand (s) with second smallest f(s);
(result, f') = rbfs (best, minimum(fLimit, f(nextBest)));
f(best) = f";
if result ! = NONE then

L return (result, f');

o

72

Recursive best-first search (RBFS): an example

This function is called using rbfs(sg, c0) to begin the process.

Function call number

3

fLimit; = oo
7 4Y best; 5
A N . nextBest; =5
PR TN 7 ~ 7 ~
-7 I RN e I N . I AN
~ ~ - | ~

-
- ! ~ - | ~ - ~
- -
e ! N - | NN - | S
C / % \ : / % \ / % \
- ~ O/ \Y) Q/ \%
28 28 28 2N 2N 2N 2N 20 2N
7N 7N 7N /N /N /N VAN VAN 7N
VAR VAR VAR VAR VAR VAR VAR VAR VAR
/ [N / [N / [N s \ s \ s \ / ! \ / ! \ / [N
/ | \ / | \ / | \ / | A\ / | A\ / | A\ / | A\ / | A\ / | \

Now perform the recursive function call (results, f') = rbfs(best, 5)

so f(best;) takes the returned value f’

73

Recursive best-first search (RBFS): an example

Function call number

3 fLimit; = oo
fLimitQ =5

5
. nextBest; =5
[N

.
.

. N

. < R4 | N

s ~ ~

- ! N R | S

. <

. ! < 5 10 Q// ! \%

/‘\ /‘\ /‘\ /‘ /‘\ /‘\ /‘\ /‘\

/ \ / \ / \ / / \ / \ / \ / \

RS U RUPE EUE RN RN RS R R

) bests
\

Now perform the recursive function call (results, f’) = rbfs(bests, 5)

so f(bests) takes the returned value f’

74

Recursive best-first search (RBFS): an example

Function call number

fLimit; = oo
3 fLimity = 5
fLimits = 5

5
. nextBest; =5
! > ~

5 replaced by 1

R AR //// | N
Pid I AN - I \\\
o ! v 0 o } v
//:\\ //:\\ //:\\ //:\\ //:\\ //:\\ //:\\ //:\\
/ ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \
JEVY LIV LAY B WL IV LEY LEDY LEV LY

nextBests = 11 bests

besty

Now so the function call returns into
and

75

Recursive best-first search (RBFS): an example

The while loop for function call * now repeats:

fLimits = 5
4 replaced by 9
7 best; 5
N . nextBest; = 5

PATRN PR N
e ! N e ! S
7 l . 5replacedby/ i \ e : s
- s best g T~
o o el 10 o ! 0
/‘\ /‘\ /‘\ /‘\ /‘\ /‘\ /‘\ /‘\

RS RS RET RTIE RS RO S R R

Now so the function call returns into
and

76

Recursive best-first search (RBFS): an example

The while loop for function call | now repeats:

4 replaced by 9

~_nextBest; = 7

//’/ 3 \\\\ 5replacedby/
A T ’ g

VAREEN VAREEN VAREEN VAREEN VAREEN //‘\\ //‘\\ //‘\\
VAR VAR VAR VAR VAR VAR VAR VAR
/ | \ / | \ / | \ / | \ / | \ / | \ / | \ / | \
/ I \ / I \ / I \ / I \ / I \ / I \ / I \ / I \

We do a further function call to expand the new best node, and so on...

77

Recursive best-first search (RBFS)

Some nice properties:

o If // is admissible then RBFS is optimal.
« Memory requirement is

« Generally more efficient than IDA*.
And some less nice ones:

 Time complexity is hard to analyse, but can be exponential.

 Can spend a lot of time
To some extent IDA* and RBFS throw the baby out with the bathwater.

o They limit memory too harshly, so...

e ...we can try to use

MA* and SMA* will not be covered in this course...

78

Local search

Sometimes, it’s only the that we're interested in. The needed to get
there is irrelevant.

« For example: VLSI layout, factory design, automatic programming...
« We are now simply searching for a state that is in some sense

« This is also known as

This leads to the remarkably simple concept of

79

Local search

Instead of trying to find a path from start state to goal, we explore the
of the graph, meaning those states one edge away from the one we’re at:

We assume that we have a function such that indicates
preferable to

80

1S

The m-queens problem

You may be familiar with the

Find an arrangement of //» queens on an /» by /" board such that no queen is
attacking another.

In the Prolog course you may have been tempted to generate permutations of
row numbers and test for attacks.

This is a for large /1. (Imagine)

81

The m-queens problem

We might however consider the following:

- A state - for an 11/ by 1 board is a sequence of //» numbers drawn from the

set , possibly including repeats.

« We move from one state to another by moving a to alterna-
tive row.

« We define to be the number of pairs of queens attacking one-another in

the new position®. (Regardless of whether or not the attack is direct.)

?Note that we actually want to here. This is equivalent to maximizing — /, and I will generally use whichever seems more appropriate.

82

Here, we have
shown.

As we can choose which queen to move, each state in fact has

the graph.

The m-queens problem

and the

values for the undecided queen are

7|\

M

™

83

neighbours in

Hill-climbing search

is remarkably simple:

1 Generate a start state s;

2 while true do

3 | Generate the neighbours N = {s1,...,s,} of s;
o | Ny = {f(s)lsi € N}

5 | if max Ny < f(s) then

6 L return s;

7 s = s; € N with maximum f(s;);

In fact, that looks so simple that it’s amazing the algorithm is at all usetful.

In this version we stop when we get to a node with no better neighbour.

84

Hill-climbing search: the reality

We might alternatively allow by changing the stopping condi-
tion:

1 if max Ny < f(s) then
2 L return s;

Why would we consider doing this?

85

Hill-climbing search: the reality

In reality, nature has a number of ways of shaping |/ to complicate the search
process.

f(s) Global maximum

A /

Local maxima

DDDDD

Plateau

Y
w

moves allow us to move across

However, should we ever find a then we’ll return it: we won’t
keep searching to find a

86

Hill-climbing search: the reality

Of course, the fact that we’re dealing with a means we need to think
of something like the preceding figure, but in a :
and this makes the problem

There is a body of techniques for trying to overcome such problems. For example:

. Choose a neighbour at random, perhaps with a prob-
ability depending on its | value. For example: let denote the neighbours
of 5. Define

Then

87

Hill-climbing search: the reality

. Generate neighbours at random. Select the first one that is better
than the current one. (Particularly good if nodes have)
. Run a procedure /' times with a limit on the time allowed

for each run.
generating a start state at random may itself not be straightforward.
. Similar to stochastic hill-climbing, but start with lots of
random variation and
in some cases this is an effective procedure, although the time
taken may be excessive if we want the proof to hold.
. Maintain / states at any given time. At each search step, find
the successors of each, and retain the best /' from «// the successors.

this is the same as random restarts.

88

Gradient ascent and related methods

For some problems®—we do not have a search graph, but a

-30

Typically, we have a function and we want to find

3For the purposes of this course, the is a notable example.

89

Gradient ascent and related methods

In a single dimension we can clearly try to solve

to find the , and use
to find a global .In the equivalent is to solve
where

and the equivalent of the second derivative is the matrix

90

Gradient ascent and related methods

However this approach is usually regardless of dimen-
sionality.

The simplest way around this is to employ

» Start with a randomly chosen point

« Using a small , iterate using the equation

This can be understood as follows:

o At the current point ¢, the gradient tells us the and
of the slope at

 Adding therefore moves us a

This is perhaps more easily seen graphically...

91

Gradient ascent and related methods

Here we have a simple

50
0 |
E -2000
S
-4000 |
P /' /
50
50
7, 50 -50
With the procedure is clearly effective at finding the maximum.

Note however that

, and in a more realistic problem

92

Gradient ascent and related methods

Simply increasing the step size < can lead to a different problem:

50 50 P

T2

o

T2

o
\\

50 LA 50

-50 0 50 -50 0 50
T
e=2.0
50 pr
100
g 0 8 oF
- 100
-50 ‘ -
-50 0 50
x1

We can easily jump too far...

93

Gradient ascent and related methods

There is a large collection of more sophisticated methods. For example:

. increase « until and maximise in the resulting interval.
Then choose a new direction to move in. , the
and methods etc.

« Use | | to exploit knowledge of the local shape of /. For example the
and methods etc.

94

Artificial Intelligence

Reading: AIMA chapter 5.

95

Solving problems by search: playing games

How might an agent act when because
an ?

» This is essentially a more realistic kind of search problem because we do not
know the exact outcome of an action.

« This is a common situation when : in chess, draughts, and so
on an opponent to our moves.
Game playing has been of interest in Al because it provides an of a
world in which two agents act to each other’s well-being.

We now look at:
« How game-playing can be modelled as
e The for game-playing.
« Some problems inherent in the use of minimax.

« The concept of

96

Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be an excellent
source of hard problems. For instance with chess:

« The average branching factor is roughly
« Games can reach () moves per player.
« So a rough calculation gives the search tree nodes.

- Even if only different, legal positions are considered it’s about
to the uncertainty due to the opponent:

« We can’t make a complete search to find the best move...

. ... S0 we have to act even though we’re not sure about the best thing to do.

And chess isn’t even very hard: (o is harder...

yes, more advanced learning-based methods have conquered chess and Go, but that’s an entirely different approach with its own pros and cons.

97

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are called and for reasons
that will become clear.

« We'll use as an initial example.

. moves first.

« The players alternate until the game ends.

o At the end of the game, prizes are awarded. (Or punishments administered—

EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughts and so on.

98

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

e There is an

Max to move

e There is a set of . Here, can place a cross in any empty square,
or a nought.
e There is a . Here, the game ends when three noughts or three

crosses are in a row, or there are no unused spaces.

« There is a or function. This tells us, numerically, what the out-
come of the game is.

This is enough to model the entire game.

99

Perfect decisions in a two-person game

We can to represent a game.

From the initial state can make nine possible moves:

Then it’s ’s turn...

100

Perfect decisions in a two-person game

For each of ’s opening moves has eight replies:
X X
X
X X X
And so on...

This can be continued to represent «// possibilities for the game.

101

Perfect decisions in a two-person game

{ o x[o
<G x|o|x| -1

x[o[x ol Ix
x|o]0o] +1

x|ololo SiI

O x|x

At the leaves a player has won or there are no spaces. Leaves are using
the utility function.

102

Perfect decisions in a two-person game

How can use this tree to decide on a first move?

Consider a much simpler tree:

A\

Labels on the leaves denote utility.
High values are preferred by Max.

Low values are preferred by Min.

4 5 2 20 20 15 6 7 I 4 10 9 5 8§ 5 4

If is rational he will play to reach a position with the

But if is rational she will play to the utility available to

103

The minimax algorithm

There are two moves: then . Game theorists would call this one move,
or two 1/y deep.
The allows us to infer the best move that the current player

can make, given the utility function, by working backward from the leaves.

A\

FEON

4 5 20 20 15 7 4 10 9 5 8§ 5

As plays the last move, she the utility available to

104

The minimax algorithm

Moving one further step up the tree:

2 1 4

FEON

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

We can see that ’s best opening move is move , as this leads to the node
with highest utility.

105

The minimax algorithm

« Generate the complete tree and label the leaves according to the utility func-
tion.

« Working from the leaves of the tree upward, label the nodes depending on

whether or is to move.

o If is to move label the current node with the utility of any
descendant.

o If is to move label the current node with the utility of any
descendant.

If the game is » ply and at each point there are available moves then this process
has (surprise, surprise) time complexity and space complexity linear in
and

106

Making imperfect decisions

We need to avoid searching all the way to the end of the tree.

« We generate only part of the tree: instead of testing whether a node is a leaf
we introduce a test telling us when to stop.

- Instead of a utility function we introduce an for the eval-
uation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of the current
game position.

107

Making imperfect decisions

How can this be justified?

» This is a strategy that humans clearly sometimes make use of.

« For example, when using the concept of in chess.
o The effectiveness of the evaluation function is

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be understated—it is probably
the most important part of the design.

108

The evaluation function

Designing a good evaluation function can be extremely tricky:

- Let’s say we want to design one for chess by giving each piece its material
value: pawn = |, knight/bishop = , rook = ' and so on.

« Define the evaluation of a position to be the difference between the material
value of black’s and white’s pieces

This seems like a reasonable first attempt. Why might it go wrong?

e Until the first capture the evaluation function gives (), so in fact we have
a containing many different game positions with equal estimated
utility.

« For example, all positions where white is one pawn ahead.

So in fact this seems highly naive ...

109

The evaluation function

We can try to an evaluation function.

« For example, using material value, construct a

where the //, are and the | represent of the position—in this
case, the value of the 'th piece.

« Weights can be chosen by allowing the game to play itself and using
techniques to adjust the weights to improve performance.

However in general

« Here we probably want to give to

« The design of an evaluation function can be highly and
might require significant

110

o — [pruning

Even with a good evaluation function and cut-off test, the time complexity of the
minimax algorithm makes it impossible to write a good chess program without
some further improvement.

« Assuming we have 150 seconds to make each move, for chess we would be
limited to a search of about ' to | ply whereas...

- ...even an average human player can manage © to

Luckily, it is possible to prune the search tree and

111

o — [pruning

Returning for a moment to the earlier, simplified example:

A\

4 5 2 20 20 15 6 7 1 4 10 9 5 8

The search is depth-first and left to right.

112

o — [pruning

The search continues as previously for the first - leaves.

4 5 2 20 20 15 6 7 1 [47710 9. 5 8 5 4

Then we note: if plays move ' then can reach a leaf with utility at most
So: . This is be-
cause the search has that can do better by making open-

ing move

113

o — [3 pruning in general

Remember that this search is . We’re only going to use knowledge of
a = m tells us that the A _ Player

value of this node is > m.

lue > m
vae = v = Opponent

The value of « is updated as

the search progresses.

While searching under this node
we find that the opponent can force
a score of n.

value > m’

If n < m we can stop. There is a
better choice earlier in the game.

If n < m' we can stop. The player

Searching here establishes that maximises and will never move here.

the opponent can force a score
of m’.

once you've established that 1 is sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

114

o — [3 pruning in general

The situation is exactly analogous if we
diagram.

The search is depth-first, so we're only ever looking at

We need to keep track of the values < and = where

Assume . Initial values for < and ' are

and

115

in the previous

o — [3 pruning in general

we start with the function call

The following function implements the procedure suggested by the previous di-
agram:

=

function player (o, 5,n)

2 | if cutoff(n) then
3 L return eval (n);
4 | value = —o0;
5 | for each successorn’ of n do
6 value = max (value, opponent («, 5,n'));
7 if value > (then
8 L return value;
9 if value > a then
10 L « = value;
11 return value;

116

o — [3 pruning in general

The function opponent is exactly analogous:

=

function opponent («, 5, n)

2 | if cutoff(n) then

3 L return eval (n);

4 | value = oo;

5 | for each successorn’ of n do

6 value = min (value, player (a, 5,n'));
7 if value < o then

8 L return value;

9 if value < then

10 L B = value;
11 return value;

the semantics here is that parameters are passed to functions

117

o — [3 pruning in general

Applying this to the earlier example and keeping track of the values for < and
you should obtain:

N 7 N 7
o ,
a=—-00=2%=6
7z N 7z AN

Return 2

Return 1

118

How effective is @ — [pruning?

(Warning: the theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:

o If you were to have a perfect move-ordering technique then o« — 3 pruning
would be as opposed to

 Consequently the branching factor would effectively be instead of .

« We would therefore expect to be able to search ahead

However, this is not realistic: if you had such an ordering technique you’d be
able to play perfect games!

119

How effective is @ — [pruning?

If moves are arranged at random then o« — 3 pruning is:

. asymptotically when or...
. ...about for reasonable values of .
In practice can get . For example,

if we try captures, then threats, then moves forward etc.

Alternatively, we can implement an approach and use the
order obtained at one iteration to drive the next.

120

A further optimisation: the transposition table

Finally, note that many games correspond to rather than because the
same state can be arrived at in different ways.

« This is essentially the same effect we saw in heuristic search: recall
Versus

o It can be addressed in a similar way: store a state with its evaluation in a hash

table—generally called a —the first time it is seen.
The transposition table is essentially equivalent to the introduced as
part of graph search.

This can vastly increase the effectiveness of the search process, because we don’t
have to evaluate a single state multiple times.

121

Artificial Intelligence

Reading: AIMA chapter 6.

122

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some ways unsatisfactory:.
- States were represented using an and data struc-
ture.
« Heuristics were also

o It would be nice to be able to general search problems into a

CSPs the manner in which states and goal tests are represented. By
standardising like this we benefit in several ways:

« We can devise algorithms and heuristics.

« We can look at general methods for exploring the of the problem.

- Consequently it is possible to introduce techniques for prob-
lems.

« We can try to understand the relationship between the of a problem

and the

123

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it from this
new perspective.

« To introduce the idea of a constraint satisfaction problem (CSP) as a general
means of representing and solving problems by search.

« To look at a for solving CSPs.
e To look at some for solving CSPs.
» To look at

Another method of interest in Al that allows us to do similar things involves
transforming to a problem.

We'll see an example of this—and of the application of CSPs—when we discuss

124

Constraint satisfaction problems

We have:

« A set of
« Foreach | a specifying the values that | can take.

« A set of

Each constraint (| involves a set of variables and specifies an

« A is an assignment of specific values to some or all of the variables.
« An assignment is if it violates no constraints.
 An assignment is if it gives a value to every variable.

A is a consistent and complete assignment.

125

Example

We will use the problem of as a running example.

\

0

Each node corresponds to a . We have three colours and directly con-
nected nodes should have different colours.

126

Example

This translates easily to a CSP formulation:

« The variables are the nodes

« The domain for each variable contains the values black, red and cyan

« The constraints enforce the idea that directly connected nodes must have dif-
ferent colours. For example, for variables || and | the constraints specify

« Variable | . is unconstrained.

127

Different kinds of CSP

This is an example of the simplest kind of CSP: it is with
We will concentrate on these.

We will also concentrate on : that is, constraints between

« Constraints on single variables— —can be handled by adjust-
ing the variable’s domain. For example, if we don’t want | to be , then
we just remove that possibility from

. applying to three or more variables can certainly be
considered, but...

. ...when dealing with finite domains they can always be converted to sets of
binary constraints by introducing extra

How does that work?

128

Auxiliary variables

three variables each with domain

A single constraint

The original constraint connects all
three variables.

Introducing auxiliary variable ' with domain

to a set of binary constraints.

129

New, binary constraints:

allows us to convert this

Backtracking search

now takes on a very simple form: search depth-first, assign-
ing a single variable at a time, and backtrack if no valid assignment is available.

Using the graph colouring example, the search now looks something like this...

Il
vellvv)
DN —
Il

A ™

g
—

N =

D
ooll” v llvo)
W N =
Il
AR ™
W N =
1Al
QOR™

...and new possibilities appear.

130

Backtracking search

TR
xW AR W

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to improve searching, we
can now explore heuristics applicable to CSPs.

131

Backtracking search

Starting with:

-

function backTrack (assignmentList, problemDescription)

2 | if assignmentList is complete then
3 L return SOME assignmentList;
4 | nextVar = getNextVariable (assignmentList, problemDescription);
5 for each v in orderValues (nextVar, assignmentList, problemDescription) do
6 if v is consistent with assignmentList then
7 add “nextVar = v” to assignmentList;
8 solution = backTrack (assignmentList, problemDescription);
9 if solution is not FAIL then
10 L return solution;
11 remove “nextVar = v” from assignmentList;
12 return FAIL;

132

Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain general CSP-
based heuristics:

o In what order should we try to ?

o In what order should we try to to a variable?
Or being a little more subtle:

« What might the have on
?

« When , is it possible to ?

« Can we try to force the search in a successful direction (remember the use of
)?

« Can we try to force to occur quickly?

133

Heuristics I: Choosing the order of variable assignments and values

Say we have and

At this point there is only one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variables is called the
heuristic.

(Alternatively, the or heuristic.)

134

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The chooses the variable involved in the most constraints on as
yet unassigned variables.

Start with 3, 5 or 7.

MRV is usually better but the degree heuristic is a good tie breaker.

135

Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, in ?

Choosing 1 = (' is bad as it removes
the final possibility for 3.

- The heuristic prefers 1=B

The heuristic chooses first the value that leaves the max-
imum possible freedom in choosing assignments for the variable’s neighbours.

136

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add

C is ruled out as an assignment to
2 and 3.

Each time we assign a value to a variable, it makes sense to delete that value from
the collection of

This is called . It works nicely in conjunction with MRV.

137

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC | BRC
2=B| RC | =B | RC | RC |BRC |BRC | BRC | BRC

3=R| C |=B|=R| RC | BC |BRC| BC | BRC
6=B| C |=B|=R| RC | C |-= ¢ | BRC
5=C| C |=B|=R| R |=C|=8 BRC

At the fourth step ' has

However, we could have detected a problem a little earlier...

138

Heuristics II: forward checking and constraint propagation

...by looking at step three.

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC
2=B| RC | =B | RC | RC |BRC |BRC |BRC |BRC

3=R| C = =R | RC | BC |BRC| BC | BRC
6=B| C =B | =R | RC C =B C | BRC
b=C| C =B | =R R =C | =8B BRC

o At step three, H can be ¢ only and / can be ¢ only.
« But » and | are connected.
- So we can’t progress, but this hasn’t been detected.

« Ideally we want to do

time to do the search, against time to explore constraints.

139

Constraint propagation

Consider a constraint as being . For example

In general, say we have a constraint and currently the domain of / is
and the domain of | is

is if

In step three of the table, and

in step three of the table
. in step three of the table

can be made consistent by deleting ¢ ' from

Or in other words, regardless of what you assign to : you’ll be able to find some-
thing valid to assign to

140

Enforcing arc consistency

We can enforce arc consistency each time a variable / is assigned.

« We need to maintain a

- Each time we alter a domain, we may have to include further arcs in the

collection.
This is because if is inconsistent resulting in a deletion from /’, we may as
a consequence make some arc inconsistent.

Why is this?

141

Enforcing arc consistency

kq t — 7 is not consistent so ky
delete B from the domain
]{?2 O\ of 7. k‘g
O]

7 — j is now consistent.
i J : i J
{R, B} {B} {R} {B}

ki) . kx O g .
K 7 1S consisten u K 7 1S NO 1onger consisten
{R} kr — tent but {R} ki — 1 g tent
kx = R can only be paired because kx = R can not be paired
with ¢ = B. with 7 = R.
. inconsistent means removing a value from
. such that there is no valid
However some may only have been pairable with

We need to continue until all consequences are taken care of.

142

The AC-3 algorithm

1 function AC-3 (problemDescription)

2 | Queue toCheck = [all arcsi — j |;

3 | while toCheck is not empty do

4 1t — j =next (toCheck);

5 if removeInconsistencies(D;, D;) then
6 for each k that is a neighbour of i do

7 L L add k& — 7 to toCheck;

1 function removelInconsistencies (Dy, Dy)
2 Bool result = FALSE;

3 | for eachd € D; do

4 if nod € D, valid with d then

5 remove d from Dy;

6 L result = TRUE;

7 return result;

143

Enforcing arc consistency

« A binary CSP with / variables can have directional constraints

« Any can be considered at most / times where because
only «/ things can be removed from

 Checking any single arc for consistency can be done in

So the complexity is
this setup includes 3SAT.

we can’t check for consistency in polynomial time, which suggests
this doesn’t guarantee to find all inconsistencies.

144

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

. any variables and any consistent assignment to these.

. We can find a consistent assignment to any / th variable.

This is known as

requires the we be / -consistent, -consistent etc as far
down as | -consistent.

If we can demonstrate strong 1 -consistency (where as usual / is the number of
variables) then an assignment can be found in

Unfortunately, demonstrating strong ' -consistency will be

145

Backjumping

The basic backtracking algorithm backtracks to the . This
is known as . It is not always the best policy:

7 i
- 75 2?7?
6

Say we’'ve assigned , : and and now we want to as-
sign something to /. This isn’t possible so we backtrack, however re-assigning
clearly doesn’t help.

146

Backjumping

With some careful bookkeeping it is often possible to
without sacrificing the ability to find a solution.

We need some definitions:

« When we set a variable | to some value we refer to this as the

« A isa set of assignments
to the first /' variables...

e ... Where means that no constraints are violated.
« Conversely, with some variable | if no value for | is consistent
with

Henceforth we shall assume that variables are assigned in the order
when formally presenting algorithms.

147

Gaschnig’s algorithm

works as follows. Say we have a partial instantiation

« When choosing a value for we need to check that any candidate value
, s consistent with

« When testing potential values for /, we will generally discard one or more
possibilities, because they conflict with some member of

« We keep track of the for which this has happened.
Finally, if n0 value for is consistent with /, then we backtrack to
More formally: if /; conflicts with we backtrack to | where

If there are no possible values left to try for | then we backtrack

148

Gaschnig’s algorithm

Backtrack to 5

If there’s no value left to try for - then backtrack to ' and so on.

149

Graph-based backjumping

This allows us to jump back multiple levels

Can we do better than chronological backtracking ?

Some more definitions:

« We assume an ordering for the variables.

« Given where the of
bers of | connected to by a constraint.

e The of 1s 1ts most recent ancestor.

are the mem-

The ancestors for each variable can be accumulated as assignments are made.

backtracks to the of

Gaschnig’s algorithm uses whereas graph-based backjumping

uses

150

Graph-based backjumping

{1,3,5}

{1,3,4,8}

{4}

N

{5} {5}

50 {3} 5 {9/

3D{1}3 {11 3¢ {1}

{3}

{1}

1 1 1

At this point, backjump to the for /, which is

151

Backjumping and forward checking

If we use : say we're assigning to by making
« Forward checking removes « from the /’ of connected to by a
constraint.
« When doing graph-based backjumping, we’d also add to the ancestors
of

In fact, use of forward checking can make some forms of backjumping

there are in fact many ways of combining with
, and we will not explore them in further detail here.

152

Backjumping and forward checking

7T 755 7272 Ancestors
1-{}
0 2-{1,3,4)
S 4 3-{1)

4-{}
5-1{3}
6-{°}
7-{1,3,5]
8-1{}

Start | BRC | BRC' | BRC | BRC | BRC | BRC | BRC | BRC
l=B| =B | RC | RC |BRC|BRC|BRC| RC | BRC

3=R| = C | =R |BRC| BC |BRC| C |BRC
5=C| = C | = BR | = BR BRC
4=B| =B | C | = BR | = BR BRC

Forward checking finds the problem

153

Graph-based backjumping

We’re not quite done yet though. What happens when

?

Vz k77?7

Ve

Vs

Vi Vi
vy Vy
v v
Vi Vi

Backjumping from | to || is fine. However we shouldn’t then just backjump to
, because changing |, could fix the problem at

154

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variable V5

Leaf dead-end
Ig.

Given an instantiation /. and
a and a

, if there is no consistent

155

we call

Graph-based backjumping

Also
Leaf dead-end variable V; i 777
Ve
Vs
Internal dead-end |)
Vi L. ;:??? / Internal dead-end variable V,
Leaf dead-end
I;.

Vs V3

Vo Vo

Vi Vi

If ' was backtracked to from a later leaf dead-end and there are no more values
to try for | then we refer to it as an and call an

156

Graph-based backjumping

To keep track of exactly where to jump to we also need the definitions:
« The of a variable | begins when the search algorithm visits it and
ends when it backtracks through it to an earlier variable.

e The of a variable | is the set of all variables visiting during its
session.

o In particular, the current session for any | contains
 The for a variable | are:

1. is initialized to when | is first visited.
2. If ' is a leaf dead-end variable then
3. If " was backtracked to from a dead-end | ' then

And we're not done yet...

157

Graph-based backjumping

Session of V7 = {V;}. -
R(Vz7) ={Vz} m

Session starts

Session of Vj = {V}, Vs, Vg, V7 }.
R(Vy) = {V4, Vz}

Session starts

As expected, the relevant dead-ends for || are and

158

Graph-based backjumping

One more bunch of definitions before the pain stops. Say

« The of ', are defined as

. The for |, is the most recent

Note that these definitions depend on

graph-based backjumping

159

is a dead-end:

Graph-based backjumping

Backjump from V7
to V.

Session of V, = {V}, V5, Vg, V7 }.
Nothing left to try! R(V}) = {Vi, V&}

ind(Vy) = {Va, Vs}

As expected, we back jump to || instead of | . Hooray!

Gaschnig’s algorithm and graph-based backjumping can be to produce

We will not explore conflict-directed backjumping in this course.

160

Varieties of CSP

We have only looked at CSPs with . These are the simplest.
We could also consider:

1. Discrete CSPs with

« We need a . For example

« Algorithms are available for integer variables and linear constraints.

« There is for integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints defining convex regions we
have . This is solvable in polynomial time in

3. We can introduce in addition to ,and
In some cases an

161

Artificial Intelligence

Reading: AIMA, chapters 7 to 10.

162

Knowledge representation and reasoning

We now look at how an agent might knowledge about its environment,
and with this knowledge to achieve its goals.

Initially we’ll represent and reason using first order logic (FOL).

« To show how FOL can be used to about an environment
in the form of both and

 To show how this knowledge can be used to
about the environment using a

« To introduce the and demonstrate its application in a simple
environment as a means by which an agent can work out what to do next.

Using FOL in all its glory can be problematic.

Later we’ll look at how some of the problems can be addressed using
; ; and

163

Knowledge representation and reasoning

Earlier in the course we looked at what an should be able to do.

It seems that all of us—and all intelligent agents—should use to
help us interact successtully with the world.

Any intelligent agent should:

« Possess about the and about

» Use some form of to its knowledge as ar-
rive.

o Use some form of to to perform in order to

achieve

164

Knowledge representation and reasoning

This raises some important questions:

« How do we describe the current state of the world?

« How do we infer from our percepts, knowledge of unseen parts of the world?
« How does the world change as time passes?

« How does the world stay the same as time passes? (The)

« How do we know the effects of our actions? (The and

)

We’ll now look at one way of answering some of these questions.

FOL (arguably?) seems to provide a good way in which to represent the required
kinds of knowledge: it is , , , it can be adapted to
,and it has an , although a semidecidable one.

In addition is has a well-defined and

165

Logic for knowledge representation

it’s quite easy to talk about things like using FOL. For exam-
ple, we can easily write axioms like

But how would we go about representing the proposition that

?

More importantly, how could this be represented within a wider framework for
reasoning about the world?

It’s time to introduce

166

Wumpus world

As a simple test scenario for a knowledge-based agent we will make use of the

O
QO

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-
scathed.

167

Wumpus world

The rules of

« Unfortunately the cave contains a number of pits, which EVIL ROBOT can
fall into. Eventually his batteries will fail, and that’s the end of him.

« The cave also contains the Wumpus, who is armed with state-of-the-art

« The Wumpus itself knows where the pits are and never falls into one.

168

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the following;:

« In a position adjacent to the Wumpus, a stench is perceived. (Wumpuses are

famed for their)
- In a position adjacent to a pit, a is perceived.
« In the position where the gold is, a is perceived.
 On trying to move into a wall, a is perceived.
e On killing the Wumpus a is perceived.

In addition, EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following does include diagonals.

169

Wumpus world

So we have:

b b 3 b b/ b/

Of course, our aim now is 70/ just to design an agent that can perform well in a
single cave layout.

We want to design an agent that can perform well of the layout
of the cave.

170

Logic for knowledge representation

The fundamental aim is to construct a containing a
about the world—expressed in FOL—such that
from it.
Our central aim is to generate sentences that are , if

This process is based on concepts familiar from your introductory logic courses:

« Entailment: means that the ' entails

e Proof: means that « is derived from the ' using inference procedure
T then we have a

. is if it can generate only entailed

N if it can find a proof for entailed

171

Example: Prolog

You have by now learned a little about programming in

is a program to concatenate two lists. The query

results in

What’s happening here? Well, Prolog is just a

172

. For example:

SO...

Example: Prolog

... we are in fact doing inference from a

» The Prolog programme itself is the . It expresses some

» The query is expressed in such a way as to

How does this relate to full FOL? First of all the list notation is nothing but
. It can be removed: we define a constant called and a function

called

Now just means

which is a term in FOL.

173

Prolog and FOL

The program when expressed in FOL, says

The rule is simple—given a Prolog program:

If the universally quantified lines are
corresponds to the

Now, what does the query mean?

174

and

then the Prolog programme

Prolog and FOL

When you give the query
to Prolog it responds by the following statement
it tries to prove that the , and variables in the query are

existentially quantified.

When a proof is found, it supplies a that

175

Prolog and FOL

Prolog differs from FOL in that, amongst other things:

« It restricts you to using

- Its inference procedure is not a

« It does not deal with correctly.
However
If you want to experiment, you can obtain from

https : //www.cs.unm.edu/ ~ mccune/maced/

We'll see a brief example now, and a more extensive example of its use later, time
permitting...

176

Prolog and FOL

Expressed in Prover9, the above Prolog program and query look like this:

set (prolog_style_variables).

% This is the translated Prolog program for list concatenation.
% Prover9 has its own syntactic sugar for lists.

formulas (assumptions).
concat([], L, L).
concat(T, L, L2) -> concat([H:T], L, [H:L2]).
end.of_list.
% This is the query.
formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).
end of_list.

it is assumed that

177

Prolog and FOL

You can try to infer a proof using
prover9 -f file.in

and the result is (in addition to a lot of other information):

concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non.clause). [assumption].
(exists X concat([1,2,3],[4,5],X)) # label(non.clause) # label(goal). [goal].
concat([],A,A). [assumption].

-concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].
-concat([1,2,3],[4,5],A). [deny(2)].

concat([A],B,[A:B]). [ur(4,a,3,a)].

-concat([2,3],[4,5],A). [resolve(5,a,4,b)].

concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

O 00O Ul WN P-

This shows that a proof is found but doesn’t explicitly give a value for X—we’ll
see how to extract that later...

178

The fundamental idea

So the is: build a 2 that encodes , the
and so on.

The " is a conjunction of pieces of knowledge, such that:

A query regarding what our agent should do

« Proving that

instantiates to an that will achieve a goal
represented by the predicate.

We sometimes use the notation and to refer to and

179

Using FOL in Al: the triumphant return of the Wumpus

We want to be able to about the past and about

D
QO

Evil Robot

« We include in the logical language used by our

« We include in our “ = that relate to situations.

This gives rise to

180

. So:

Situation calculus

In

« The world consists of sequences of
 Over time, an agent moves from one situation to another.

- Situations are changed as a result of

In Wumpus World the actions are: : , : : :

b]

« A is added to items that can change over time. For example

[tems that can change over time are called

« A situation argument is not needed for things that don’t change. These are
sometimes referred to as or

181

Representing change as a result of actions

Situation calculus uses a function

to denote the situation arising as a result of performing the specified action
in the specified situation.

182

Axioms I: possibility axioms

The first kind of axiom we need in a “© specifies

We introduce a predicate

denoting that an action can be performed in situation

We then need a for each action. For example:

Remember that

183

Axioms II: effect axioms

Given that an action results in a new situation, we can introduce
specify the properties of the new situation.

For example, to keep track of whether EVIL ROBOT has the gold we need
to describe the effect of picking it up:

Effect axioms describe the way in which the world

We would probably also include

in the =, where - is the

: we are describing in the from
in a

184

to

Axioms III: frame axioms

We need to describe

Example:

describes the effect of

In a more general setting such an axiom might well look different. For example

describes the effect of

185

The frame problem

The has historically been a major issue.

: a large number of frame axioms are required to
represent the many things in the world which will not change as the result of an
action.

We will see how to solve this in a moment.

: when reasoning about a sequence of situations, all the
unchanged properties still need to be carried through all the steps.

This can be alleviated using that allow us to reason efficiently
when actions change only a small part of the world. There are also other reme-
dies, which we will not cover.

186

Successor-state axioms

Effect axioms and frame axioms can be combined into

One is needed for each predicate that can change over time.

For example

187

Knowing where you are, and so on...

We now have considerable flexibility in adding further rules:

e If 5 is the we know that

« We need to keep track of what way we’re facing. Say north is (), south is ,
east is | and west is . We might assume

« We need to know how motion affects location

and so on.

« The concept of adjacency is very important in the Wumpus world

« We also know that the cave is | by | and surrounded by walls

188

The qualification and ramification problems

: we are in general never completely certain what condi-
tions are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are omitted from axioms.

: actions tend to have implicit consequences that are large
in number.

For example, if I pick up a sandwich in a dodgy sandwich shop, I will also be
picking up all the bugs that live in it. I don’t want to model this explicitly.

189

Solving the ramification problem

The ramification problem can be solved by

For example:

describes the fact that anything EVIL ROBOT is carrying moves around with
him.

190

Deducing properties of the world: causal and diagnostic rules

If you know where you are, then you can think about rather than just
relate properties shared by a single state of the world.

There are two kinds: and

: some properties of the world will produce percepts.

Systems reasoning with such rules are known as reasoning systems.

: infer properties of the world from percepts. For example:

These may not be very strong.

The difference between model-based and diagnostic reasoning can be important.
For example, medical diagnosis can be done based on symptoms or based on a
model of disease.

191

General axioms for situations and objects

: in FOL, if we have two constants and then an interpretation is
free to assign them to be the same thing. This is not something we want to allow.

state that each pair of distinct items in our model of the
world must be different

state that actions must share this property, so for each pair
of actions

and in addition we need to define equality for actions, so for each action

192

General axioms for situations and objects

The situations are SO

and situations are SO

Strictly speaking we should be using a

In such a system variables can be divided into
from one another.

Finally, we’re going to need to specify

For example

and so on.

193

version of FOL.

which are implicitly separate

Sequences of situations

We know that the function tells us about the situation resulting from
performing an action in an earlier situation.

How can this help us find ?
Define

To obtain a we can use the query

194

Interesting reading

Knowledge representation based on logic is a vast subject and can’t be covered
in full in the lectures.

In particular:

« Techniques for representing
o Techniques for moving beyond the idea of a
 Reasoning systems based on

« Reasoning systems using

Happy reading...

195

Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is
highly non-trivial.

Ideally we’d like to maintain an language while it enough
to be able to do inference

« To give a brief introduction to and for knowledge
representation.
« To see how can be applied as a reasoning method.
» To look at the use of for knowledge representation, along with
and for reasoning.

, Alison Cawsey. Prentice
Hall, 1998.

196

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of

and
e The and relationships are emphasised.
« We form in which is supported and provides the
main

As a result inference is quite limited.
We also need to be extremely careful about

The only major difference between the two ideas is

197

Example of a semantic network

Person

subclass

Musician

subclass subclass volume

Ear problems
.Viluﬁ Classical musician
» hair_length | hair_length

Jake Mayhem
¢ has

has

instance

instance

] has
Violet Scroot

Oboe

198

Frames

Frames once again support inheritance through the

Rock musician

Musician
subclass: Musician subclass: Person
has: ear problems has: instrument

hairlength: long
volume: loud

etc are
etc are

bJ bJ

These are a direct predecessor of

199

Defaults

Both approaches to knowledge representation are able to incorporate

Rock musician] .
Dementia Evilperson

sub.class: sl subclass: Rock musician
has.. ear problems hairlength: short
* hairlength: long image: gothic
* volume: loud

Starred slots are associated with subclasses and instances, but

200

Multiple inheritance

Both approaches can incorporate , at a cost:

Rock musician Classical musician
insta:& instance

Cornelius Cleverchap

« What is for if we're trying to use inheritance to es-
tablish it?

« This can be overcome initially by specifying which class is inherited from
when there’s a conflict.

« But the problem is still not entirely solved—what if we want to prefer inheri-
tance of some things from one class, but inheritance of others from a different
one?

201

Other issues

» Slots and slot values can themselves be frames. For example may
have an instrument slot with the value , which itself may have
properties described in a frame.

« Slots can have . For example, we might specify that:

— can have multiple values
— Each value can only be an instance of

— Each value has a slot called
and so on.

« Slots may contain arbitrary pieces of program. This is known as
. The fragment might be executed to return the slot’s value, or
update the values in other slots etc.

202

Rule-based systems

A rule-based system requires three things:

1. A set of . These denote specific pieces of knowledge about
the world.
They should be interpreted similarly to logical implication.
Such rules denote or under given circum-
stances.

2. A collection of denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the light of the current facts.

203

Forward chaining

The first of two basic kinds of interpreter

This is a process. It is appropriate if we know the but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

« We maintain a , typically of what has been inferred so far.

« Rules are often , Where the right-hand side specifies an
action such as adding or removing something from working memory, print-
Ing a message etc.

» In some cases actions might be entire program fragments.

204

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working memory.
2. Select a rule to fire. This requires a

3. Carry out the action specified, possibly updating the working memory.

Repeat this process until either or a appears in the
working memory.

205

Condition—action rules

dry_mouth -> ADD thirsty

thirsty —-> ADD get_drink

get_drink AND no_work -> ADD go_bar
working —> ADD no_work

no_work -> DELETE working

Working memory Interpreter

dry_mouth
working

206

Example

Progress is as follows:

1. The rule

fires adding to working memory.

2. The rule

fires adding to working memory.

3. The rule

fires adding to working memory.

4. The rule

fires, and we establish that it’s time to go to the bar.

207

Contflict resolution

Clearly in any more realistic system we expect to have to deal with a scenario
where

« Which rule we choose can clearly affect the outcome.

- We might also want to attempt to avoid inferring an abundance of useless

information.

We therefore need a means of . Common
are:

e Prefer rules involving more recently added facts.

o Prefer rules that are . For example

is more general than

o Allow the designer of the rules to specify priorities.

« Fire all rules —this essentially involves following all chains of
inference at once.

208

Reason maintenance

Some systems will allow information to be removed from the working memory
if it is no longer

For example, we might find that
and

are in working memory, and hence fire

but later infer something that causes to be from
working memory.

The justification for has been removed, and so it should perhaps
be removed also.

209

Pattern matching

In general rules may be expressed in a slightly more flexible form involving
which can work in conjunction with

For example the rule

contains the variable

If the working memory contains and then

provides a match and

is added to the working memory.

210

Backward chaining

The second basic kind of interpreter begins with a and finds a rule that would
achieve it.
It then works , trying to achieve the resulting earlier goals in the suc-

cession of inferences.
Example: MYCIN—medical diagnosis with a small number of conditions.

This is a process. If you want to or you have some
idea of a likely conclusion it can be more eflicient than forward chaining.

211

Working memory

dry_mouth
working

Example

Goal

go_bar

get_drink

no_work

thirsty
no_work

dry_mouth
no_work

working

To establish go_bar we have to
establish get_drink and no_work.

These are the new goals.

Try first to establish get_drink. This
can be done by establishing thirsty.

thirsty can be established by establishing
dry_mouth. This is in the working memory

so we’re done.
Finally, we can establish no_work by

establishing working. This is in the working

memory so the process has finished.

212

Example with backtracking

If at some point more than one rule has the required conclusion then we can
Example: backtracks, and incorporates pattern matching. It orders at-

tempts according to the order in which rules appear in the program.

Example: having added

and

to the rules, and to the working memory:

213

Example with backtracking

Working memory Goal
dry mouth
working go-bar
up_early

tired
lazy

up-early
lazy

lazy

Attempt to establish go_bar
by establishing tired and
lazy.

This can be done by establishing
up_earlyand lazy.
up_early is in the working memory

bl
so we’re done.

We can not establish 1azy
and so we backtrack and try a

different approach.

214

get_drink
no_work

Y

thirsty
no_work

Y

dry mouth
no_work

Y

working

Process proceeds as before

Artificial Intelligence I

Reading: AIMA, chapter 11.

215

Problem solving is different to planning

In we:
. : and a state representation contains that’s relevant
about the environment.
. : by describing a new state obtained from a current state.

. : all we know is how to test a state either to see if it’s a goal,
or using a heuristic.

. : but we only consider

Search algorithms are good for solving problems that fit this framework. How-
ever for more complex problems they may fail completely...

216

Problem solving is different to planning

Representing a problem such as: is hopeless:

» There are at each step.

o A heuristic can only help you rank states. In particular it does not help you
useless actions.

« We are forced to start at the initial state, but you have to work out
—that is, go to town and buy them, get online and find a web site that
sells pies etc—

Knowledge representation and reasoning might not help either: although we end
up with a sequence of actions—a plan—there is so much flexibility that complex-
ity might well become an issue.

Our aim now is to look at how an agent might enabling it to
achieve a goal.

« We look at how we might update our concept of
to apply more specifically to planning tasks.

« We look in detail at the

217

Planning algorithms work differently

» Planning algorithms use a —often based on FOL or a
subset— to represent states, goals, and actions.

- States and goals are described by sentences, as might be expected, but...

. ...actions are described by stating their and their

So if you know the goal includes (maybe among other things)

and action has an effect then you know that a plan

might be reasonable.

218

Planning algorithms work differently

« Planners can add actions at
, not just at the end of a sequence starting at the start state.

» This makes sense: | may determine that is a good state to be
in without worrying about what happens before or after finding them.

« By making an important decision like requiring early on we
may reduce branching and backtracking.

- State descriptions are not complete— describes a —
and this adds flexibility.

: you have the potential to search both and within the
same problem.

219

Planning algorithms work differently

It is assumed that most elements of the environment are

A goal including several requirements can be attacked with a divide-and-
conquer approach.

« Each individual requirement can be fulfilled using a subplan...

. ...and the subplans then combined.

This works provided there is not significant interaction between the subplans.

Remember: the

220

Running example: gorilla-based mischief

We will use a simple example, based on one from Russell and Norvig.

The intrepid little scamps in the wish
to attach an to the spire of a . To do this they need
to leave home and obtain:

. : these can be purchased from all good joke shops.

. : available from a hardware store.

. : also available from a hardware store.

They need to return home after they’ve finished their shopping. How do they go
about planning their ?

221

The STRIPS language

STRIPS: (1970).
: are of . They must not include
. are of where variables are assumed

A planner finds a sequence of actions that when performed makes the goal true.

We are no longer employing a full theorem-prover.

222

The STRIPS language

STRIPS represents actions using . For example

At(z),Path(z, y)

Go(y)

At(y), At(z)

All variables are implicitly universally quantified. An operator has:

« An : what the action does.

« A : what must be true before the operator can be used. A

« An : what is true after the operator has been used. A

223

The space of plans

We now make a change in perspective—we search in

 Start with an

. to obtain new plans. Incomplete plans are called

add constraints to a partial plan. All other operators are
called

» Continue until we obtain a plan that solves the problem.

Operations on plans can be:

. that places a step in front of another.

« and so on...

224

Representing a plan: partial order planners

When putting on your shoes and socks:

o It whether you deal with your left or right foot first.
o It that you place a sock on a shoe, for any given foot.
[t makes sense in constructing a plan 10/ to make any to which side

is done first

: do not commit to any specific choices until you
have to. This can be applied both to ordering and to instantiation of variables.

A allows plans to specity that some steps must come before
others but others have no ordering.

A of such a plan imposes a specific sequence on the actions therein.

225

Representing a plan: partial order planners

A plan consists of:

1. A set of . Each of these is one of the available

2. A set of . An ordering constraint denotes the fact
that step °© must happen before step - . and so on has the
obvious meaning. does mean that © must precede

3. A set of variable bindings where /' is a variable and ' is either a variable
or a constant.

4. A set of or . This denotes the fact that
the purpose of ° is to achieve the precondition for

A causal link is paired with an equivalent ordering constraint.

226

Representing a plan: partial order planners

The has:

 Two steps, called and

« A single ordering constraint
« No

« No

In addition to this:

o The step has no preconditions, and its effect is the start state for the
problem.

o The step has no effect, and its precondition is the goal.

e Neither or has an associated action.

We now need to consider what constitutes a

227

Solutions to planning problems

A solution to a planning problem is any and partially ordered
plan.

: each precondition of each step is by another step in the so-
lution.

A precondition « for ° is achieved by a step - if:

1. The precondition is an effect of the step

and...

2. ... there is step that cancel the precondition. That is, no
exists where:

« The existing ordering constraints allow °" to occur but

228

Solutions to planning problems

: no contradictions exist in the binding constraints or in the proposed
ordering. That is:

1. For binding constraints, we never have and for distinct con-
stants . and

2. For the ordering, we never have and
Returning to the roof-climbers’ shopping expedition, here is the basic approach:

 Begin with only the and steps in the plan.
- At each stage add a new step.
« Always add a new step such that a

 Backtrack when necessary.

229

An example of partial-order planning

Here is the

Start

At (Home) A Sells(JS,G) ANSells(HS,R) ANSells(HS,FA)

At (Home) AHave (G) AHave(R) AHave (FA)

Finish

Thin arrows denote ordering.

230

An example of partial-order planning

There are
At(x) At(z),Sells(z,y)
Go(y) Buy(y)
At(y), "At(x) Have(y)
A planner might begin, for example, by adding a action in order to achieve
the precondition of

: the following order of events is by no means the only one available to a
planner.

It has been chosen for illustrative purposes.

231

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

At (Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At(z),$ells(z,G)

Buy (G)

At (Home),Have (G),Have (R),Have (FA)

Finish

Thick arrows denote causal links. They always have a thin arrow underneath.

Here the new step achieves the precondition of

232

An example of partial-order planning

The planner can now introduce a second causal link from to achieve the
precondition of

Start

At (Home),Sells(JS,3,Sells(HS,R),Sells(HS,FA)

At (JS),Sells(JS,G)

Buy (G)

At (Home),Have (G),Have(R),Have (FA)

Finish

233

An example of partial-order planning

The planner’s next obvious move is to introduce a o step to achieve the
precondition of

Start

At (z) At (Home),Sells(JS\G),Sells(HS,R),Sells(HS,FA)

Go(JS)

" At (JS),Sells(JS,G)

Buy (G)

f

At (Home),Have (G),Have(R),Have (FA)

Finish

And we continue...

234

An example of partial-order planning

Initially the planner can continue quite easily in this manner:

« Add a causal link from to to achieve the

 Add the step with an associated causal link to the
tion of

« Add a causal link from to to achieve the
dition.

But then things get more interesting...

235

precondition.

precondi-

precon-

An example of partial-order planning

At (Home) At (Home),Sells(J HS,R),Sells(HS,FA)

Go(JS)

oAt (JS),Sells(JS,G) At (HS),Sells (HS,R)

Buy (G) ‘ Buy (R)

e
At (Home),Have (G),Have (R),Have (FA)

Finish

At this point it starts to get tricky...

The precondition in is not achieved.

236

At (Home

Go(JS)

An example of partial-order planning

Start
At(z)
At (Home),Sells(JS\G),S (HS,R),Sells(HS,FA)
Go (HS)
—At (517)

o At (JS),Sells(JS,G)

Buy (G)

Sells(HS,R),At (HS)

! Buy (R)

il
At (Home),Have (G),Have (R),Have (FA)

Finish

The precondition is easy to achieve.

237

An example of partial-order planning

A step that might invalidate (sometimes the word is employed) a previ-
ously achieved precondition is called a

4/Demotion -C
C

-C
c Cc \liromotion

Threat
\ \ kc

A planner can try to fix a threat by introducing an ordering constraint.

238

An example of partial-order planning

The planner could backtrack and try to achieve the precondition using the
existing step.

At(JS)

At (Home),Sells(JS\G),S (HS,R),Sells(HS,FA)

Go (HS)

Go(JS) /ﬁAt(Js)

™At (JS),Sells(JS,G) Sells(HS,R),At (HS)

! Buy (R)

At (Home),Have (G),Have(R),Have (FA)

Finish

This involves a threat, but one that can be fixed using promotion.

239

The algorithm

Simplifying slightly to the case where there are
Say we have a partially completed plan and a set of the preconditions that have
yet to be achieved.

« Select a precondition » that has not yet been achieved and is associated with

an action

- At each stage

 To expand a plan, we can try to achieve by using an action that’s
already in the plan or by adding a new action to the plan. In either case, call
the action

We then try to construct consistent plans where ' achieves

240

The algorithm

This works as follows:

e For

- Add : : and the causal link to the plan.

— If the resulting plan is consistent we’re done, otherwise
by promotion or demotion and

At this stage:

o If you have then

241

The algorithm

But how do we try to ?

When you attempt to achieve /) using

« Find all the existing causal links that are by

« For each of those you can try adding or to the plan.

» Find all existing actions (' in the plan that clobber the causal link

« For each of those you can try adding or to the plan.

« Generate in this way and retain any consistent

plans that result.

242

Possible threats

What about dealing with ?

If at any stage an effect appears, is it a threat to ?

Such an occurrence is called a and we can deal with it by intro-
ducing : in this case

o Each partially complete plan now has a set / of inequality constraints asso-
ciated with it.

 An inequality constraint has the form where ¢ is a variable and ' is
a variable or a constant.

« Whenever we try to make a substitution we check / to make sure we won't
introduce a conflict.

If we introduce a conflict then we discard the partially completed plan as
inconsistent.

243

Planning II

Unsurprisingly, this process can become complex.

How might we improve matters?

One way would be to introduce . We now consider:
o The way in which might be defined for use in planning prob-
lems.
« The construction of and their use in obtaining more sensible
heuristics.
« Planning graphs as the basis of the algorithm.
Another is to translate into the language of a algorithm exploit-

ing its own heuristics. We now consider:

» Planning using

» Planning using

244

An example of partial-order planning

We left our example problem here:

The planner could backtrack and try to achieve the precondition using the
existing step.

At (JS)
At (Home (HS,R),Sells(HS,FA) Go (HS)
Go(JS)
/ ~At (JS)

At (JS),Sells(JS,G) Sells(HS,R),At (HS)

! Buy (R)

At (Home) ,Have (G),Have(R),Have (FA)

Finish

This involves a threat, but one that can be fixed using promotion.

245

Using heuristics in planning

We found in looking at search problems that were a helpful thing to
have.
Note that now there is no simple representation of a , and consequently it is

harder to measure the

Defining heuristics for planning is therefore more difficult than it was for search
problems. Simple possibilities:

or

These can lead to underestimates or overestimates:

« Underestimates if

« Overestimates if

246

Using heuristics in planning

We can go a little further by learning from and
adopting the heuristic:

o Prefer the precondition
This can be computationally demanding but two special cases are helpful:

« Choose preconditions for which

 Choose preconditions that

But these still seem somewhat basic.

We can do better using . These are and can also
be used to generate

247

Planning graphs

Planning Graphs apply when it is possible to work entirely using
representations of plans. Luckily, STRIPS can always be propositionalized...

Predicate Propositional
At(x) At(Home) At(JS)
Go(y) e Go(JS) Go(HS)
At(y), -At(z) At(JS), ~At(Home) At(HS), ~At(TS)
At(Home)
Go(HS) and so on...

At(HS), -At(Home)

At(JS)

Go(Home

At(Home), —At(JS)

248

Planning graphs

A planning graph is constructed in levels:

e Level |/ corresponds to the

o At each level we keep track of all things that be true at the
corresponding time.

o At each level we keep track of what actions be applicable
at the corresponding time.

The approximation is due to the fact that not all conflicts between actions are
tracked.

» The graph can how long it might take for a particular proposi-
tion to appear, and therefore ...

e ...a heuristic can be extracted.

: the triumphant return of the gorilla-purchasing roof-climbers...

249

Planning graphs: a simple example

Our intrepid student adventurers will of course need to inflate their before
attachingittoa . It has to be purchased before it can be inflated.
: Empty.

We assume that anything not mentioned in a state is false. So the state is actually

—Have(Gorilla) Have(Gorilla)
Buy(Gorilla) Inflate(Gorilla)
Have(Gorilla) Inflated(Gorilla)

and

250

Planning graphs

So AO Sl Al SQ
—H(G) {1 —H(G) {1 -H(G) ———
Buy(G) [
P
Buy(G) H(G) 0 |
— I(G) — 17—
meG) —1— |
-1(G) {1 -I(G) {1 -I(G) —1—
Describe start All actions available in All possibilities for ~ All actions that might All possibilities for
state. start state. what might be the be available at time what might be the
case at time 1. 1. case at time 2.

[] = a persistence action—what happens if no action is taken.

An action level A; contains all actions that could happen given the propositions in 5;.

251

Mutex links

We also record, using which pairs of actions could
not occur together.

: Effects are inconsistent.

So Ay S
~H(G) o ~H(G)
Buy(G) H(G)

The effect of one action negates the effect of another.

252

Mutex links

: The actions interfere.

S

—|I(G)

Ay

Inf(G)

S2

[]

The effect of an action negates the precondition of another.

253

Mutex links

: Competing for preconditions.

Sy A
—H(G) [
.
BuY(G)J >
H(G) — 11—/
me@) ——

The precondition for an action is mutually exclusive with the precondition for
another. (See next slide!)

254

Mutex links

A state level ° contains «// propositions that be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be true simultaneously:

: pair consists of a proposition and its negation.

S

—H(G)

255

Mutex links

: all pairs of actions that could achieve the pair of propositions are

mutex.
A, S
N —H(G) —
N
Buy(G) [——
//> H(G)
D/
L— I(G —
meG) 1|)

The construction of a planning graph is continued until two identical levels are
obtained.

256

Planning graphs

So A S, Ay
—H(G) o —H(G) N
Buy/(
Buy(G) H(G)
Inf(G)
~1(G) 0 -1(G)]

257

Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

 Any proposition not appearing in the final level has and

e The of a proposition is the level at which it first appears /7 this may
be inaccurate as several actions can apply at each level and this cost does not
count the . (It is however)

« A includes mutex links between all pairs of actions ex-
cept persistence actions.

can be quite a good measurement.

258

Obtaining heuristics from a planning graph

How about estimating the cost to achieve a of propositions?
. : use the maximum level in the graph of any proposition in the set.
Admissible but can be inaccurate.

. : use the sum of the levels of the propositions. Inadmissible but
sometimes quite accurate if goals tend to be decomposable.

. : use the level at which «// propositions appear with none being mu-
tex. Can be accurate if goals tend 70/ to be decomposable.

259

Other points about planning graphs

A planning graph guarantees that:

1. |/ a proposition appears at some level, there be a way of achieving it.
2. I/ a proposition does appear, it can no0/ be achieved.
The first point here is a loose guarantee because only of items are linked by

mutex links.

Looking at larger collections can strengthen the guarantee, but in practice the
gains are outweighed by the increased computation.

260

Graphplan

The algorithm goes beyond using the planning graph as a source of
heuristics.

function GraphPlan ()
Start at level 0;
while true do
if All goal propositions appear in the current level AND no pair has a mutex link then
Attempt to extract a plan;
if A solution is obtained then
L return SOME solution;

if Graph indicates there is no solution then

IS - G

o

9 t return NONE;
10 _ Expand the graph to the next level;
We directly from the planning graph. Termination can be proved

but will not be covered here.

261

Graphplan in action

Here, at levels 5 and . we do not have both and available with no
mutex links, and so we expand first to 5 and then to
S() A() Sl Al SZ
—H(G) {] —H(G) (] -H(G) ——
N
B G) F—
UY()J >> H(G) S
Buy(G) H(G) L —
— 1(G)———
meG) —1— | &
-I(G) (] -I(G) (] -I(G) ——

At

we try to extract a solution (plan).

262

Extracting a plan from the graph

Extraction of a plan can be formalised as a

contain a , and a collection of

the current final level of the graph, along with the relevant goal propo-
sitions.

a state at level ~ containing the initial propositions.

For a state - with level ° , a valid action is to select any set . of actions
in such that:

1. no pair has a mutex link;
2. no pair of their preconditions has a mutex link;

3. the effects of the actions in .\ achieve the propositions in

The effect of such an action is a state having level , and containing the pre-
conditions for the actions in

Each action has a cost of |.

263

Graphplan in action

—H(G)

{]
]
=
2
]
]
i
8

Buy(G) H(G) —{ 7
| 1(G)—F—
meG) —1— | 2
-1I(G) {] -1I(G) {] -I(G) ——

Start state
Action: Buy (G) Action: Inf (G) and O

264

Heuristics for plan extraction

We can of course also apply to this part of the process.

For example, when dealing with a

 Choose the proposition having first.

- For that proposition, attempt to achieve it using the action for which the

265

Planning III: planning using propositional logic

We’ve seen that plans might be extracted from a knowledge base via
, using and

: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing in
, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the form

We attempt to construct this sentence such that:
 If '/ is a model of the sentence then |/ assigns to a proposition if and
only if it is in the plan.

« Any assignment denoting an incorrect plan will not be a model as the goal
description will not be

- The sentence is unsatisfiable if no plan exists.

266

Propositional logic for planning

Two roof-climbers want to

Remember that an expression such as is a . The super-
scripted number now denotes time.

267

Propositional logic for planning

: can be introduced using the equivalent of successor-state axioms

Denote by | the collection of all such axioms.

268

(1)

Propositional logic for planning

We will now find that has a model in which
and are while all remaining actions are

In more realistic planning problems we will clearly not know in advance at what
time the goal might expect to be achieved.

We therefore:

« Loop through possible final times
« Generate a goal for time / and actions up to time
» Try to find a model and extract a plan.

« Until a plan is obtained or we hit some maximum time.

269

Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied,
also be able to obtain less sensible plans.

In the current example

is a model, because the successor-state axiom (1) does not in fact preclude the
application of

We need a

and so on.

270

Propositional logic for planning

Life becomes more complicated still if a third location is added:

is perfectly valid and so we need to specify that he can’t move to two places
simultaneously

and so on.
These are axioms.
Unfortunately they will tend to produce rather than

plans.

271

Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the effect or precondition
of the other.

2. Or, specify that something can’t be in two places simultaneously

for all combinations of , » and
This is an example of a

Clearly this process can become very complex, but there are techniques to help
deal with this.

272

Review of constraint satisfaction problems (CSPs)

Recall that in a CSP we have:

« A set of
« Foreach | a specifying the values that | can take.

« A set of

Each constraint (| involves a set of variables and specifies an

« A is an assignment of specific values to some or all of the variables.
« An assignment is if it violates no constraints.
 An assignment is if it gives a value to every variable.

A is a consistent and complete assignment.

273

The state-variable representation

Another planning language: the

Things of interest such as people, places, objects etc are divided into

Part of the specification of a planning problem involves stating which domain a
particular item is in. For example

and so on.

Relations and functions have arguments chosen from unions of these domains.

is a relation. The are unions of one or more

is used for domains in the state-variable representation. /' is used for
domains in CSPs.

274

The state-variable representation

The relation is in fact a , as it is unchanging: it does not
depend upon . (Remember in situation calculus?)

Similarly, we have

Here, is a . The domain and range are unions of
one or more /. In general these can have multiple parameters

A state-variable denotes assertions such as

where - denotes a and the set - of all states will be defined later.

The state variable allows things such as locations to change—again, much like
in the situation calculus.

Variables appearing in relations and functions are considered to be

275

The state-variable representation

« For properties such as a a function might be considerably more suit-
able than a relation.

« For locations, everything has to be and it can only be in

So a function is perfect and immediately solves some of the problems seen earlier.

276

The state-variable representation

as usual, have a , a and a
. are unique, and followed by a list of variables involved in the action.
. are expressions involving state variables and relations.
. are assignments to state variables.

For example:

Preconditions

Effects

277

The state-variable representation

are sets of involving

For example:

Goal:

From now on we will generally suppress the state - when writing state variables.

278

The state-variable representation

A as just a statement of what values the state variables take at a given time.

s={ has(gorilla) = jokeShop
has(firstAidKit) = climber?2

has(rope) = climber?2

at(climberl) = jokeShop

at(climber2) = spire

}

« For each state variable = consider all ground instances, such as

with arguments with the

Define = to be the set of all such ground instances.

o A state - is then just a set

where ¢ is in the range of

This allows us to define the

A planning problem also needs a

279

, which can be defined in this way.

The state-variable representation

Considering all the

has(gorilla) = jokeShop
has(firstAidKit) = climber2 uy(climberl, gorilla, jokeShop)

has(rope) = climber2

In the definition of buy(z, y,[):

at(climberl) = jokeShop r = climberl

at(climber2) = spire y = gorilla
[= jokeShop
sells(jokeShop, gorilla)
« An action is if all expressions appearing in the set of
preconditions also appear in
« As there is no rigid relation (jokeShop, fruitBats) we would 0/ con-
sider an action such as —it is not

280

The state-variable representation

Finally, there is a function - that maps a state and an action to a new state

‘ has(gorilla) = climberl ‘
has(firstAidKit) = climber2

has(rope) = climber2

‘has(gorilla) = jokeShop ‘ o =1
has(firstAidKit) = climber2

has(rope) = climber2

5=

TN

~(buy(climberl, gorilla, jokeShop), s)

N

at(climberl) = jokeShop at(climberl) = jokeShop

at(climber2) = spire at(climber2) = spire

Specifically, we have

where either ¢ is specified in an effect of /, or otherwise is a member of .

the definition of - implicitly solves the

281

The state-variable representation

A to a planning problem is a sequence of actions such
that...

e (1, is applicable in -, and for each /, ¢, is applicable in

» For each goal we have

What we need now is a method for a problem described in this
language into a CSP.

We’'ll once again do this for a fixed upper limit /| on the number of steps in the
plan.

282

Converting to a CSP

encode as

For each time step / where , the CSP has a variable

with domain

at some point in searching for a plan we might attempt to find the
solution to the corresponding CSP involving

be careful in what follows to distinguish between
in the planning problem and in the CSP.

283

Converting to a CSP

encode as , with a complete copy of
all the state variables

So, for each / where we have a CSP variable

with domain . (That is, the of the CSP variable is the of
the state variable.)

at some point in searching for a plan we might attempt to find the
solution to the corresponding CSP involving

284

Converting to a CSP

encode the as

For each time step / and for each ground action with arguments

For a precondition of the form include constraint pairs

consider the action introduced above, and having the pre-
conditions ; and

Assume is only true for

and

so we only consider these values for / and /. Then for each time step / we have
the constraints...

285

Converting to a CSP

paired with

paired with

paired with

paired with

and so on...

286

Converting to a CSP

encode the as
For each time step / and for each ground action with arguments
For an effect of the form include constraint pairs

continuing with the previous example, we will include constraints

paired with

paired with

and so on...

287

Converting to a CSP

encode the as
An action must not change things not appearing in its effects. So:

For:

1. Each time step .

2. Each ground action with arguments

3. Each that , and each

include in the CSP the ternary constraint

288

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.
The scheme has the following property:

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to the
variables in the solution of the CSP.

It is also the case that:

For a proof see:

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

289

Artificial Intelligence I

Reading: AIMA, chapter 20.

290

Did you heed the DIRE WARNING?

[suggested making sure you can answer the fol-
lowing two questions:

1. Let

where the , are constants. Compute where ?

As only one term in the sum depends on , all the other terms dif-
ferentiate to give | and

2. Let be a function. Now assume for each
and some collection of functions . Assuming all requirements for differen-
tiability and so on are met, can you write down an expression for
where ?

this is just the for partial differentiation

291

Supervised learning with neural networks

We now consider how an agent might to solve a general problem by seeing

o [present an outline of
« | introduce the classical
[introduce and the for train-

ing them.

To begin, a common source of problems in Al is

Imagine that we want to automate the diagnosis of an Embarrassing Disease (call
it /) by constructing a machine:

Measurements taken from the
patient: heart rate, blood pressure, —_— Machine
presence of green spots etc.

1 if the patient suffers from D
0 otherwise

Could we do this by that examines the measurements
and outputs a diagnosis? Experience suggests that this is unlikely:.

292

An example, continued...

An alternative approach: each collection of measurements can be written as a
vector,

where,

and so on.

(: it’s a common convention that vectors are by default. This
is why the above is written as a)

293

An example, continued...

A vector of this kind contains all the measurements for a single patient and is
called a or

The measurements are or

Attributes or features generally appear as one of three basic types:

. : where
° . or

. : 1, can take one of a finite number of values, say

294

An example, continued...

Now imagine that we have a large collection of patient histories (/1 in total) and
for each of these we know whether or not the patient suffered from

« The 'th patient history gives us an instance
» This can be paired with a single bit—{/ or | —denoting whether or not the 'th

patient suffers from /. The resulting pair is called an or a

« Collecting all the examples together we obtain a

295

An example, continued...

In supervised machine learning we aim to design a
takes = and produces a

8 =————1 Learning Algorithm f—# h

Intuitively, a hypothesis is something that lets us diagnose
This is : we want to diagnose patients that

The ability to do this successfully is called

296

patients.

which

An example, continued...

In fact, a hypothesis is just a that maps to
Classifier
Attribute vector —=——————————t— h(x) &= Label
As /i isa it assigns a label to and

What we mean by a here depends on whether we’re doing

297

Supervised learning: classification and regression

In we're assigning = to one of a set of . For
example, if * contains measurements taken from a patient then there might be
three classes:

The case above also fits into this framework, and we’ll often specialise to
the case of two classes, denoted (| and

In we’re assigning to a . For example, if
contains measurements taken regarding today’s weather then we might have

For the we will also refer to a situation somewhat
between the two, where

and so we would typically assign = to class | if

298

Summary

We don’t want to design /1 explicitly.

. Classifier
———
Attribute vector h(x)

X

= Label

h = L(s)

Learner

L

Training sequence

S

So we use a to infer it on the basis of a sequence = of

299

Neural networks

There is generally a set // of hypotheses from which | is allowed to select

is called the

The learner can output a hypothesis explicitly or—as in the case of a
—1t can output a vector

of which in turn specity

where

300

Types of learning

The form of machine learning described is called . The litera-
ture also discusses : , learning using
and , and . (More

about some of this next year...)

Supervised learning has multiple applications:

e Deciding
 Detecting

« Deciding whether to
e Deciding whether a

. : extracting interesting but hidden knowledge from existing, large
databases. For example, databases containing or
. . (See Pomerleau, 1989, in which a car is driven for 90 miles

at 70 miles per hour, on a public road with other cars present, but with no
assistance from humans.)

301

This is very similar to curve fitting

This process is in fact very similar to . Think of the process as follows:

« Nature picks an but doesn’t reveal it to us.

 Nature then shows us a training sequence = where each is labelled as
where -, is noise of some kind.

Our job is to try to infer what /' is : : if 7/ is the set of
all polynomials of degree ' then nature might pick

The line is dashed to emphasise the fact that

302

We can now use

Here we have,

where each ' and

Curve fitting

to obtain a training sequence

~—e
°®
.

in the manner suggested..

is a real number.

303

Curve fitting

We'll use a that operates in a reasonable-looking way: it
picks an minimising the following quantity,

In other words

Why is this sensible?

1. Each term in the sum is | if is
2. Each term as the difference between and /. increases.

3. We add the terms for all examples.

304

Curve fitting

If we pick // using this method then we get:

The chosen /1 is close to the target /1, even though it was chosen
It is not quite identical to the target concept.

However if we were given a new point ' and asked to guess the value
then guessing might be expected to do quite well.

305

Curve fitting

: we don’t know . What if the one we choose
doesn’t match? We can make ‘bigger’ by defining it as

If we use the same learning algorithm then we get:

The result in this case is similar to the previous one: // is again quite close to ///,
but not quite identical.

306

Curve fitting

Repeating the process with,

gives the following;:

In effect, we have made too ‘small’. It does not in fact contain any hypoth-
esis similar to

307

Curve fitting

With

we get:

This is known as

308

The perceptron

The example just given illustrates much of what we want to do. However in

practice we deal with , SO

The simplest form of hypothesis used is the , also known as
the . Here

So: we have a modified by the

The perceptron’s influence continues to be felt in the recent and ongoing devel-
opment of , and forms the basis for most of the field of
supervised learning,.

309

The perceptron activation function I

There are three standard forms for the activation function:

1. : for we often use
2. : for we often use
3. : for we often use
The is important but the algorithms involved are somewhat different

to those we’ll be seeing. We won’t consider it further.

The plays a major role in what follows.

310

The sigmoid/logistic function

The logistic function o(z) = 1

1+exp(=)

0.9t
0.8f
0.7t
0.6f
= 0.5f
0.4f
0.3f
0.2f

011

10

Logistic o(z) applied to the output of a linear function

9%
LA ALY

10

_ 0.8 Nm%%%”m%'
E 0.6
iﬁ/ 0.4 " ’
= oal A
e
LB

311

Gradient descent

A method for works as follows. Assume we're dealing
with a and using
We define a measure of for a given collection of weights. For example

Moditying our notation slightly so that

lets us write

We want to

312

Gradient descent

One way to approach this is to start with a random v, and update it as follows:

where

and /) is some small positive number.

The vector

tells us the

313

Gradient descent

With

we have

where is the 'th element of

314

Gradient descent

The method therefore gives the algorithm

Some things to note:

« In this case is and has a and
so this works well.

. in some form is a very common approach to this kind of
problem.

« We can perform a similar calculation for and for

« Such calculations lead to

315

Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

We need a network that computes

316

The multilayer perceptron

Each in the network is itself a perceptron:

20:1

connect nodes together, and « , is the weighted sum or for
node ;. 7 is the and the is

: we’ll continue to use the notation

so that

317

The multilayer perceptron

In the general case we have a

Feature vector x Node ¢

Output y = h(w; x)

1s a perceptron. is assumed.

connects node ' to node . for node / is denoted

318

Backpropagation

As usual we have:

» Instances

- A training sequence

We also define a measure of training error

where v is the vector of

Our aim is to find a set of weights that using

319

Backpropagation: the general case

The is therefore to calculate

To do that we need to calculate the individual quantities

for

Often is the sum of separate components, one for each example in

in which case

We can therefore consider examples individually.

320

Backpropagation: the general case

Place example at the input and calculate < and - for including the
output /. This is

We have

where

Here the sum is over . As

we can write

where we’ve defined

321

Backpropagation: the general case

So we now need to calculate the values for © . When / is the —that is,
the one producing the output of the network—this is easy as

and

using the fact that : for a

given /= as the error is generally just a measure of the distance between / and
the label /, in the training sequence.

when

we have

322

Backpropagation: the general case

When | is we need something different:

We’'re interested in

Altering < can affect

323

Backpropagation: the general case

k1
A, E
O-

ks

N

We have

where are the nodes to which node ' sends a connection.

324

Backpropagation: the general case

ki
A, E
O-

ks

N

Because we know how to compute we can
computing further o values.
We will

Hence the term

325

Backpropagation: the general case

k1
A, E
O-

ks

N

and

326

Backpropagation: the general case

: to calculate for the /th pattern:

: apply », and calculate outputs etc for

: for the node

where

: For other nodes

where the 0, were calculated at an earlier step.

327

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
T inputs from all hidden
nodes
T2
— y = h(w;x)
Ln
For the output: . For the hidden nodes

328

Backpropagation: a specific example

For the output: SO

For the hidden nodes:

SO

We’ll continue using the same definition for the error

329

Backpropagation: a specific example

: the equation is

where . So as

and SO

and

330

Backpropagation: a specific example

: the equation is

However SO

and we know that

SO

331

Putting it all together

We can then use the derivatives in one of two basic ways:

: (as described previously)

then

: using just one pattern at once

selecting patterns

332

Example: the parity problem revisited

As an example we show the result of training a network with:

« Two inputs.
 One output.

 One hidden layer containing units.

« All other details as above.

The problem is the parity problem. There are (! noisy examples.

The sequential approach is used, with repetitions through the entire training
sequence.

333

X2

Example: the parity problem revisited

Before training After training

2 2
1.5 1.5
1 ¥ 1
0.5 g 0.5
0 * 0
-0.5 -0.5
-1 -1

-1 0 1 2 -1 0 1

r I

334

Example: the parity problem revisited

After training

Before training

1l

Network output
o
o

Network output

N o

335

Example: the parity problem revisited

Error during training

1 0 T T T T T T T T T

0 i i i i i i i ; ‘
0 100 200 300 400 500 600 700 800 900 1000

336

