
Department of Computer Science and Technology

Algorithms— Example sheets

Professor Frank Stajano

Computer Science Tripos — Part IA

Academic year 2019–2020

Lent term 2020

http://www.cl.cam.ac.uk/teaching/1920/Algorithms/

frank.stajano––algs@cst.cam.ac.uk

Revised 2020 edition
Revision 3 of 2020-01-08 03:46:00 +0000 (Wed, 08 Jan 2020).

c© 2005–2020 Frank Stajano

http://www.cl.cam.ac.uk/teaching/1920/Algorithms/

Introduction

This document contains a mix of exercises of various levels of difficulty, from the many
simple ones just to check you’re not reading the handout on autopilot all the way up to
real exam questions.

If you want to challenge yourself with even more exam questions, visit https://
www.cl.cam.ac.uk/teaching/exams/pastpapers/: look for anything you like in any of
Algorithms, Algorithms I, Algorithms II, Data Structures and Algorithms, but be aware
that some past questions may refer to topics that are no longer taught in the Computer
Science Tripos, so you may have to learn new stuff on your own (and well done if you
do). The questions in this curated example sheet, instead, are all covered in this year’s
syllabus.

I encourage and expect you to use the CLRS3 textbook as opposed to relying only on
the course handout. I also very strongly encourage you to program all these algorithms
and data structures by yourself, with textbook and notes and web browser closed, and
test them extensively. There is really no substitute for this. You can’t learn to play the
piano by going to lectures or reading books if you don’t also practice a lot, and writing
correct and beautiful code isn’t any different.

Each of the recommended textbooks, and in particular CLRS3, has a copious supply
of additional problems, both easier and harder than exam questions.

If you seek clarification about these exercises, please contact your supervisor in the
first instance. If your supervisor cannot help, emails to me about this course will be
treated with higher priority if they are sent to the correct address listed on the front page
(note that my priority address contains two consecutive hyphens) and if they demonstrate
you had a serious go at the problem, both by yourself and with your supervisor.

This is a 24-lecture course, of which I now only teach the first half. The current
recommendation from the department is to allocate a supervision every four lectures.
Topics to be covered in supervisions are at the discretion of the supervisor but as a rough
guideline I have split the material for the first half of the course into three example sheets,
each of which should be covered in about 4 lectures (but no promises). Supervisors are
still free to rebalance topics as they see fit, for example by bringing some Binary Search
Tree exercises from the third supervision (which covers many data structures) into the
second (which by comparison is less loaded)1. Students, do not be afraid to read ahead
slightly if your supervisor gave you a problem on a topic I have not yet lectured by the

1Supervisors: should you wish to do that, suitable exercises are 34–37 and suitable exam questions
are those marked with bst in Example Sheet 3.

2

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-Algorithms.html
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-AlgorithmsI.html
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-AlgorithmsII.html
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-DataStructuresandAlgorithms.html

time your supervision takes place.

1. Sorting. Review of complexity and O-notation. Trivial sorting algorithms of quadratic
complexity. Review of merge sort and quicksort, understanding their memory be-
haviour on statically allocated arrays. Heapsort. Stability. Other sorting methods
including sorting in linear time. Median and order statistics.

2. Strategies for algorithm design. Dynamic programming. Divide and conquer, greedy
algorithms and other useful paradigms. Data structures. Primitive data structures.
Abstract data types. Pointers, stacks, queues, lists, trees.

3. Binary search trees. Red-black trees. B-trees. Hash tables. Priority queues and
heaps.

Acknowledgements

Thanks to Daniel Bates, Ramana Kumar, Robin Message, Myra VanInwegen, Sebastian
Funk, Wenda Li and Jannis Bulian for sending corrections or suggesting better solutions
to some of the exercises. If you (whether student or supervisor) have any more suggestions
or corrections, please keep them coming.

c© Frank Stajano 3

Example sheet 1

Covering lectures 1–4 approximately.

Sorting. Review of complexity and O-notation. Trivial sorting algorithms of quadratic
complexity. Review of merge sort and quicksort, understanding their memory behaviour
on statically allocated arrays. Heapsort. Stability. Other sorting methods including
sorting in linear time. Median and order statistics.

Exercise 1
Assume that each swap(x, y) means three assignments (namely tmp = x; x =
y; y = tmp). Improve the insertsort algorithm pseudocode shown in the hand-
out to reduce the number of assignments performed in the inner loop.

Exercise 2
Provide a useful invariant for the inner loop of insertion sort, in the form of an
assertion to be inserted between the “while” line and the “swap” line.

4

Exercise 3

|sin(n)| = O(1)

|sin(n)| 6= Θ(1)

200 + sin(n) = Θ(1)

123456n + 654321 = Θ(n)

2n− 7 = O(17n2)

lg(n) = O(n)

lg(n) 6= Θ(n)

n100 = O(2n)

1 + 100/n = Θ(1)

For each of the above “=” lines, identify the constants k, k1, k2, N as appropriate.
For each of the “ 6=” lines, show they can’t possibly exist.

Exercise 4
What is the asymptotic complexity of the variant of insertsort that does fewer
swaps?

Exercise 5
The proof of Assertion 1 (lower bound on exchanges) convinces us that Θ(n)
exchanges are always sufficient. But why isn’t that argument good enough to
prove that they are also necessary?

Exercise 6
When looking for the minimum of m items, every time one of the m − 1 com-
parisons fails the best-so-far minimum must be updated. Give a permutation of
the numbers from 1 to 7 that, if fed to the Selection sort algorithm, maximizes
the number of times that the above-mentioned comparison fails.

c© Frank Stajano 5

Chapter 1. Example sheet 1

Exercise 7
Code up the details of the binary partitioning portion of the binary insertion
sort algorithm.

Exercise 8
Prove that Bubble sort will never have to perform more than n passes of the
outer loop.

Exercise 9
Can you spot any problems with the suggestion of replacing the somewhat mys-
terious line a3[i3] = smallest(a1, i1, a2, i2) with the more explicit and
obvious a3[i3] = min(a1[i1], a2[i2])? What would be your preferred way
of solving such problems? If you prefer to leave that line as it is, how would you
implement the procedure smallest it calls? What are the trade-offs between
your chosen method and any alternatives?

Exercise 10
In one line we return the same array we received from the caller, while in another
we return a new array created within the mergesort subroutine. This asymmetry
is suspicious. Discuss potential problems.

Exercise 11
Never mind the theoretical computer scientists, but how do you mergesort in n/2
space?

Exercise 12
Justify that the merging procedure just described will not overwrite any of the
elements in the second half.

6 Algorithms— Example sheets (2019–2020)

Exercise 13
Write pseudocode for the bottom-up mergesort.

Exercise 14
Can picking the pivot at random really make any difference to the expected
performance? How will it affect the average case? The worst case? Discuss.

Exercise 15
Justify why running Insertion sort over the messy array produced by the trun-
cated Quicksort might not be as stupid as it may sound at first. How should the
threshold be chosen?

Exercise 16
What is the smallest number of pairwise comparisons you need to perform to
find the smallest of n items?

Exercise 17
(More challenging.) And to find the second smallest?

Exercise 18
What are the minimum and maximum number of elements in a heap of height
h?

Exercise 19
For each of the sorting algorithms seen in this course, establish whether it is
stable or not.

c© Frank Stajano 7

Chapter 1. Example sheet 1

Exercise 20
Give detailed pseudocode for the counting sort algorithm (particularly the second
phase), ensuring that the overall cost stays linear. Do you need to perform any
kind of precomputation of auxiliary values?

Exercise 21
Why couldn’t we simply use counting sort in the first place, since the keys are
integers in a known range?

See also the following exam questions (all clickable hyperlinks for your convenience,
at least so long as the URLs don’t change):

y2018-p01-q07
y2016-p01-q08 (a), (d)
y2014-p01-q08 (a), (b)
y2014-p01-q07
y2012-p01-q05
y2011-p01-q05
y2010-p01-q05
y2008-p11-q07
y2007-p10-q10
y2007-p01-q11
y2007-p01-q04 (a), (b), (d)
y2006-p06-q01
y2006-p01-q12 (b)
y2006-p01-q11
y2006-p01-q04

8 Algorithms— Example sheets (2019–2020)

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p11q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p10q10.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p1q11.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p1q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q12.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q11.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q4.pdf

Example sheet 2

Covering lectures 5–8 approximately.
Strategies for algorithm design. Dynamic programming. Divide and conquer, greedy

algorithms and other useful paradigms. Data structures. Primitive data structures. Ab-
stract data types. Pointers, stacks, queues, lists, trees.

Exercise 22
Leaving aside for brevity Fibonacci’s original 1202 problem on the sexual activi-
ties of a pair of rabbits, the Fibonacci sequence may be more abstractly defined
as follows:

F0 = 1
F1 = 1
Fn = Fn−2 + Fn−1 for n ≥ 2

(This yields 1, 1, 2, 3, 5, 8, 13, 21, . . .)
In a couple of lines in your favourite programming language, write a recursive
program to compute Fn given n, using the definition above. And now, finally,
the question: how many function calls will your recursive program perform to
compute F10, F20 and F30? First, guess; then instrument your program to tell
you the actual answer.

Exercise 23
Prove (an example is sufficient) that the order in which the matrix multi-
plications are performed may dramatically affect the total number of scalar
multiplications—despite the fact that, since matrix multiplication is associative,
the final matrix stays the same.

9

Chapter 2. Example sheet 2

Exercise 24
There could be multiple distinct longest common subsequences, all of the same
length. How is that reflected in the above algorithm? And how could we generate
them all?

Exercise 25
Provide a small counterexample that proves that the greedy strategy of choosing
the item with the highest £/kg ratio is not guaranteed to yield the optimal
solution.

Exercise 26
Draw the memory layout of these two representations for a 3×5 matrix, pointing
out where element (1,2) would be in each case.

Exercise 27
Show how to declare a variable of type list in the C case and then in the Java
case. Show how to represent the empty list in the Java case. Check that this
value (empty list) can be assigned to the variable you declared earlier.

Exercise 28
As a programmer, do you notice any uncomfortable issues with your Java defi-
nition of a list? (Requires some thought and O-O flair.)

Exercise 29
Draw a picture of the compact representation of a list described in the notes.

10 Algorithms— Example sheets (2019–2020)

Exercise 30
Invent (or should I say “rediscover”?) a linear-time algorithm to convert an infix
expression such as
(3+12)*4 - 2
into a postfix one without parentheses such as
3 12 + 4 * 2 -.
By the way, would the reverse exercise have been easier or harder?

Exercise 31
How would you deal efficiently with the case in which the keys are English words?
(There are several possible schemes of various complexity that would all make
acceptable answers provided you justified your solution.)

Exercise 32
Should the new key-value pair added by set() be added at the start or the end
of the list? Or elsewhere?

Exercise 33
Solve the f(n) = f(n/2) + k recurrence, again with the trick of setting n = 2m.

See also the following exam questions:
y2019-p01-q07
y2016-p01-q08 (b), (c)
y2016-p01-q07
y2015-p01-q08
y2013-p01-q06
y2006-p03-q02

c© Frank Stajano 11

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p1q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p3q2.pdf

Example sheet 3

Covering lectures 9–12 approximately.
Binary search trees. Red-black trees. B-trees. Hash tables. Priority queues and heaps.

Exercise 34
(Clever challenge, straight from CLRS3—exercise 12.2-4.) Professor Bunyan
thinks he has discovered a remarkable property of binary search trees. Suppose
that the search for key k in a binary search tree ends up in a leaf. Consider three
sets: A, the keys to the left of the search path; B, the keys on the search path;
and C, the keys to the right of the search path. Professor Bunyan claims that
any three keys a ∈ A, b ∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give a smallest
possible counterexample to the professor’s claim.

Exercise 35
Why, in BSTs, does this up-and-right business find the successor? Can you sketch
a proof?

Exercise 36
(Important.) Prove that, in a binary search tree, if node n has two children, then
its successor has no left child.

Exercise 37
Prove that this deletion procedure, when applied to a valid binary search tree,
always returns a valid binary search tree.

12

Exercise 38
What are the smallest and largest possible number of nodes of a red-black tree
of height h, where the height is the length in edges of the longest path from root
to leaf?

Exercise 39
With reference to the rotation diagram in the handout, and to the stupid way
of referring to rotations that we don’t like, what would a left rotation of the D
node be instead? (Hint: it would not be the one marked as “Left rotation” in
the diagram.)

Exercise 40
During RBT insertion, if p is red and g is black, how could u ever possibly be
black? How could p and u ever be of different colours? Would that not be an
immediate violation of invariant 5?

Exercise 41
Draw the three cases by yourself and recreate, without reading, the correct pro-
cedure to fix each of them. Then apply it to figure 13.4.(a) of CLRS3, without
looking at the rest of the figure.

Exercise 42
For each of the three possible types of 2-3-4 nodes, draw an isomorphic “node
cluster” made of 1, 2 or 3 red-black nodes. The node clusters you produce must:

• Have the same number of keys, incoming links and outgoing links as the
corresponding 2-3-4 nodes. as the corresponding 2-3-4 nodes.

• Respect all the red-black rules when composed with other node clusters.

c© Frank Stajano 13

Chapter 3. Example sheet 3

Exercise 43
(The following is not hard but it will take somewhat more than five minutes.)
Using a soft pencil, a large piece of paper and an eraser, draw a B-tree with
t = 2, initially empty, and insert into it the following values in order:

63, 16, 51, 77, 61, 43, 57, 12, 44, 72, 45, 34, 20, 7, 93, 29.

How many times did you insert into a node that still had room? How many node
splits did you perform? What is the depth of the final tree? What is the ratio
of free space to total space in the final tree?

Exercise 44
Prove that, if a key is not in a bottom node, its successor, if it exists, must be.

Exercise 45
(Trivial) Make a hash table with 8 slots and insert into it the following values:

15, 23, 12, 20, 19, 8, 7, 17, 10, 11.

Use the hash function
h(k) = (k mod 10) mod 8

and, of course, resolve collisions by chaining.

Exercise 46
Non-trivial Imagine redoing the exercise above but resolving collisions by open
addressing. When you go back to the table to retrieve a certain element, if
you land on a non-empty location, how can you tell whether you arrived at the
location for the desired key or on one occupied by the overspill from another
one? (Hint: describe precisely the low level structure of each entry in the table.)

Exercise 47
How can you handle deletions from an open addressing table? What are the
problems of the obvious naïve approach?

14 Algorithms— Example sheets (2019–2020)

Exercise 48
Why do we claim that keeping the sorted-array priority queue sorted using bubble
sort has linear costs? Wasn’t bubble sort quadratic?

Exercise 49
Before reading ahead: what is the most efficient algorithm you can think of to
merge two binary heaps? What is its complexity?

Exercise 50
Draw a binomial tree of order 4.

Exercise 51
Give proofs of each of the stated properties of binomial trees (trivial) and heaps
(harder until you read the next paragraph—try before doing so).

Exercise 52
Prove that the sequence of trees in a binomial heap exactly matches the bits of
the binary representation of the number of elements in the heap.

See also the following exam questions:
y2019-p01-q08 (a) bst , (b−−e)
y2018-p01-q09 (a), (b)
y2018-p01-q08
y2017-p01-q08
y2017-p01-q07 bst
y2015-p01-q07
y2014-p01-q08 (c), (d) bst
y2012-p01-q06 bst
y2009-p01-q05 bst
y2009-p01-q06
y2008-p10-q09

c© Frank Stajano 15

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p1q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p1q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p10q9.pdf

Chapter 3. Example sheet 3

y2008-p01-q11 bst
y2008-p01-q04
y2007-p11-q09
y2007-p01-q12 bst

16 Algorithms— Example sheets (2019–2020)

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p1q11.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p1q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p11q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p1q12.pdf

	Example sheet 1
	Example sheet 2
	Example sheet 3

