
Rafał Mantiuk

Advanced Graphics & Image Processing

Computer Laboratory, University of Cambridge

Parallel programming in OpenCL

Single Program Multiple Data (SPMD)

 Consider the following vector addition example

for(i = 0:3) {

C[i] = A[i] + B[i]

}

for(i = 4:7) {

C[i] = A[i] + B[i]

}

for(i = 8:11) {

C[i] = A[i] + B[i]

}

A

B

C

||

+

A

B

C

||

+

for(i = 0:11) {

C[i] = A[i] + B[i]

}Serial program:

one program completes

the entire task

SPMD program:

multiple copies of the

same program run on

different chunks of the

data

Multiple copies of the same program execute on different data in parallel

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

 In the vector addition example, each chunk of data could

be executed as an independent thread

 On modern CPUs, the overhead of creating threads is so

high that the chunks need to be large

 In practice, usually a few threads (about as many as the number

of CPU cores) and each is given a large amount of work to do

 For GPU programming, there is low overhead for thread

creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Parallel Software – SPMD

Single-threaded (CPU)

// there are N elements

for(i = 0; i < N; i++)

C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id

// P is the number of cores

for(i = 0; i < tid*N/P; i++)

C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)

// tid is the thread id

C[tid] = A[tid] + B[tid]

0 1 2 3 4 5 6 7 8 9 1510

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

15

= loop iteration

Time

T0

T0

T1

T2

T3

T0

T1

T2

T3

T15

4 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Parallel programming frameworks

 These are some of more relevant frameworks for

creating parallelized code

CUDA

OpenCL

OpenACC
OpenMP

CPU GPU

Metal

OpenCL

 OpenCL is a framework for writing parallelized code for

CPUs, GPUs, DSPs, FPGAs and other processors

 Initially developed by Apple, now supported by AMD, IBM,

Qualcomm, Intel and Nvidia (reluctantly)

 Versions

 Latest: OpenCL 2.2

 OpenCL C++ kernel language

 SPIR-V as intermediate representation for kernels

 Vulcan uses the same Standard Portable Intermediate Representation

 AMD, Intel

 Mostly supported: OpenCL 1.2

 Nvidia, OSX

OpenCL platforms and drivers

 To run OpenCL code you need:

 Generic ICD loader

 Included in the OS

 Installable Client Driver

 From Nvidia, Intel, etc.

 This applies to Windows and Linux, only one platform on Mac

 To develop OpenCL code you need:

 OpenCL headers/libraries

 Included in the SDKs

 Nvidia – CUDA Toolkit

 Intel OpenCL SDK

 But lightweight options are also available

Programming OpenCL

 OpenCL natively offers C99 API

 But there is also a standard OpenCL C++ API wrapper

 Strongly recommended – reduces the amount of code

 Programming OpenCL is similar to programming shaders

in OpenGL

 Host code runs on CPU and invokes kernels

 Kernels are written in C-like programming language

 In many respects similar to GLSL

 Kernels are passed to API as strings and compiled at runtime

 Kernels are usually stored in text files

 Kernels can be precompiled into SPIR from OpenCL 2.1

Example: Step 1 - Select device

Get all

Platforms

Select

Platform

Get all

Devices

Select

Device

Example: Step 2 - Build program

Create

context

Load sources

(usually from files)

Create

Program
Build

Program

Example: Step 3 - Create Buffers and

copy memory

Create

Buffers

Create

Queue

Enqueue

Memory Copy

Example: Step 4 - Execute Kernel and

retrieve the results

Create

Kernel

Set Kernel

Arguments

Enqueue

Kernel

Enqueue

memory copy

Our Kernel was

OpenCL API Class Diagram

 Platform – Nvidia CUDA

 Device – GeForce 780

 Program – collection of

kernels

 Buffer / Image – device

memory

 Sampler – how to

interpolate values for

Image

 Command Queue – put a

sequence of operations

there

 Event – to notify that

something has been done

From: OpenCL API 1.2 Reference Card

Platform model

 The host is whatever the OpenCL library runs on

 Usually x86 CPUs for both NVIDIA and AMD

 Devices are processors that the library can talk to

 CPUs, GPUs, DSP,s and generic accelerators

 For AMD

 All CPUs are combined into a single device (each core is a compute unit

and processing element)

 Each GPU is a separate device

14

Execution model

 Each kernel executes on 1D, 2D or 3D array (NDRange)

 The array is split into work-groups

 Work items (threads) in each work-group share some local

memory

 Kernel can querry

 get_global_id(dim)

 get_group_id(dim)

 get_local_id(dim)

 Work items are not

bound to any memory

entity

(unlike GLSL shaders)

Memory model

 Host memory

 Usually CPU memory, device does

not have access to that memory

 Global memory [__global]

 Device memory, for storing large

data

 Constant memory [__constant]

 Local memory [__local]

 Fast, accessible to all work-items

(threads) within a workgroup

 Private memory [__private]

 Accessible to a single work-item

(thread)

Memory objects

 Buffer

 ArrayBuffer in OpenGL

 Accessed directly via C pointers

 Image

 Texture in OpenGL

 Access via texture look-up function

 Can interpolate values, clamp, etc.

cl::Memory

cl::Buffer

cl::BufferGL cl::BufferRenderGL

cl::Image

cl::Image1D cl::Image2D cl::Image2D

cl::Image1DBuffer

This diagram is incomplete – there are more memory objects

Programming model

 Data parallel programming

 Each NDRange element is assigned to a work-item (thread)

 Task-parallel programming

 Multiple different kernels can be executed in parallel

 Each kernel can use vector-types of the device (float4, etc.)

 Command queue

 Provides means to both synchronize kernels and execute them in parallel

queue.enqueueWriteBuffer(buffer_A, CL_TRUE, 0, sizeof(int)*10, A);

CL_TRUE - Execute in-order

CL_FALSE – Execute out-of-order

Big Picture

19

Thread Mapping

 By using different mappings, the same thread can be

assigned to access different data elements

 The examples below show three different possible mappings of

threads to data (assuming the thread id is used to access an

element)

20

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread IDs

Mapping
int tid =

get_global_id(1) *

get_global_size(0) +

get_global_id(0);

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

int tid =

get_global_id(0) *

get_global_size(1) +

get_global_id(1);

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

int group_size =

get_local_size(0) *

get_local_size(1);

int tid =

get_group_id(1) *

get_num_groups(0) *

group_size +

get_group_id(0) *

group_size +

get_local_id(1) *

get_local_size(0) +

get_local_id(0)

*assuming 2x2 groupsFrom: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Thread Mapping

 Consider a serial matrix multiplication algorithm

 This algorithm is suited for output data decomposition

 We will create N x M threads

 Effectively removing the outer two loops

 Each thread will perform P calculations

 The inner loop will remain as part of the kernel

 Should the index space be MxN or NxM?

21 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Thread Mapping

 Thread mapping 1: with an MxN index space, the kernel would be:

 Thread mapping 2: with an NxM index space, the kernel would be:

 Both mappings produce functionally equivalent versions of the program

22

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Mapping for C

Mapping for C

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Thread Mapping

 This figure shows the execution of the two thread mappings

on NVIDIA GeForce 285 and 8800 GPUs

 Notice that mapping 2 is far superior in performance for both

GPUs

23 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Thread Mapping

 The discrepancy in execution times between the

mappings is due to data accesses on the global memory

bus

 Assuming row-major data, data in a row (i.e., elements in

adjacent columns) are stored sequentially in memory

 To ensure coalesced accesses, consecutive threads in the same

wavefront should be mapped to columns (the second

dimension) of the matrices

 This will give coalesced accesses in Matrices B and C

 For Matrix A, the iterator i3 determines the access pattern for row-

major data, so thread mapping does not affect it

24 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

http://developer.amd.com/partners/university-programs/

Reduction

 GPU offers very good

performance for tasks

in which the results are

stored independently

 Process N data items

and store in N memory

location

float reduce_sum(float* input, int length)
{
float accumulator = input[0];
for(int i = 1; i < length; i++)
accumulator += input[i];

return accumulator;
}

 But many common operations require reducing N values into 1 or few values

 sum, min, max, prod, min, histogram, …

 Those operations require an efficient implementation of reduction

 The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

 http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/

Reduction tree for the min operation
 barrier ensures that all threads

(work units) in the local group

reach that point before execution

continue

 Each iteration of the for loop

computes next level of the

reduction pyramid

__kernel
void reduce_min(__global float* buffer,

__local float* scratch,
__const int length,
__global float* result) {

int global_index = get_global_id(0);
int local_index = get_local_id(0);
// Load data into local memory
if (global_index < length) {

scratch[local_index] = buffer[global_index];
} else {

scratch[local_index] = INFINITY;
}
barrier(CLK_LOCAL_MEM_FENCE);
for(int offset = get_local_size(0) / 2;

offset > 0; offset >>= 1) {
if (local_index < offset) {

float other = scratch[local_index + offset];
float mine = scratch[local_index];
scratch[local_index] = (mine < other) ? mine :

other;
}
barrier(CLK_LOCAL_MEM_FENCE);

}
if (local_index == 0) {

result[get_group_id(0)] = scratch[0];
}

}

Multistage reduction

 The local memory is usually

limited (e.g. 50kB), which

restricts the maximum size of

the array that can be processed

 Therefore, for large arrays need

to be processed in multiple

stages

 The result of a local memory

reduction is stored in the array

and then this array is reduced

Two-stage reduction

 First stage: serial reduction by

N concurrent threads

 Number of threads < data items

 Second stage: parallel reduction

in local memory

__kernel
void reduce(__global float* buffer,

__local float* scratch,
__const int length,
__global float* result) {

int global_index = get_global_id(0);
float accumulator = INFINITY;
// Loop sequentially over chunks of input

vector
while (global_index < length) {

float element = buffer[global_index];
accumulator = (accumulator < element) ?

accumulator : element;
global_index += get_global_size(0);

}

// Perform parallel reduction
[The same code as in the previous example]

}

Reduction performance CPU/GPU

 Different reduction algorithm may be optimal for CPU and GPU

 This can also vary from one GPU to another

 The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-

optimization-case-study-simple-reductions/

Better way?

 Halide - a language for image processing and

computational photography

 http://halide-lang.org/

 Code written in a high-level language, then translated to

x86/SSE, ARM, CUDA, OpenCL

 The optimization strategy defined separately as a schedule

 Auto-tune software can test thousands of schedules and

choose the one that is the best for a particular platform

 (Semi-)automatically find the best

trade-offs for a particular platform

 Designed for image processing but

similar languages created for other

purposes

http://halide-lang.org/

OpenCL resources

 https://www.khronos.org/registry/OpenCL/

 Reference cards

 Google: “OpenCL API Reference Card”

 AMD OpenCL Programming Guide
 http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OC

L_Programming_Guide-2013-06-21.pdf

