lll. Approximation Algorithms: Covering Problems
Thomas Sauerwald

Easter 2020

] UNIVERSITY OF

Outline

Introduction

5l
E:E Il. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-

tant to be abandoned.

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. Ifinputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

_[We will call these approximation algorithms.]

i
E:E Il. Covering Problems Introduction

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. Gzor example, O((1/€)? - ,,s)_)

Il. Covering Problems Introduction 4

Outline

Vertex Cover

5l
E:E Il. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V e
such that if (u,v) € E(G),thenue V' orve V.

N

\
[This is an NP-hard problem.] o

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources
= Extensions: weighted vertices or hypergraphs (~~ Set-Covering Problem)

Il. Covering Problems Vertex Cover

Exercise: Be creative and design your own algorithm for
VERTEX-COVER!

Il. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

i
I1l. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER (G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v

7 return C
Edges removed from E’:
1. {b,c}
2. {e,f}

3. {d,g}

N

[APPROX-VERTEX-COVER produces a set of size 6.]

Il. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

[The optimal solution has size S.J

Il. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER (G)

1 C, =0 A "vertex-based" Greedy that adds one vertex at each iteration

i vlghil:e g,i g fails to achieve an approximation ratio of 2 (Supervision Exercise)!

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either v or v

7 return C We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

Theorem 35.1 7
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]

Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)
= Let A C E denote the set of edges picked in line 4
= Key Observation: Ais a set of vertex-disjoint edges, i.e., A is a maiching

= Every optimal cover C* must include at least one endpoint: | [C*| > |A|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| < 2|C"|. ‘ O

S R
Il. Covering Problems Vertex Cover 9

Solving Special Cases

——— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

oo 00000000

bl
E:E Il. Covering Problems Vertex Cover

Vertex Cover on Trees

' There exists an optimal veriex cover which does not include any leaves. I

NN
[Exchange-Argument: Replace any leaf in the cover by its parent.]

bl
E:E Il. Covering Problems Vertex Cover

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C=0
2: while 3 leaves in G
3: Add all parents to C
4
5

Remove all leaves and their parents from G
: return C

N
[Clear: Running time is O(V), and the returned solution is a vertex cover.J

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

i
E:E I1l. Covering Problems Vertex Cover 12

Execution on a Small Example

VERTEX-COVER-TREES(G)
1:C=10
2: while 3 leaves in G
3: Add all parents to C
4 Remove all leaves and their parents from G
5. return C

S R
&:E IIl. Covering Problems Vertex Cover

Execution on a Small Example

After iteration 1

N

N
N
’ N ’
’ v,

,

~
1 ~
’ N

0 O
000 00
VERTEX-COVER-TREES(G)
1: C=0
2: while J leaves in G
3: Add all parents to C

4: Remove all leaves and their parents from G
5. return C

’
o

S R
&:E IIl. Covering Problems Vertex Cover

Execution on a Small Example

Q After iteration 2

a
O O
000 OO
VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C

Remove all leaves and their parents from G
return C

N
’ ~
1 ~

’ N

’
o

AN -

(Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.]

Il. Covering Problems Vertex Cover 13

Exact Algorithms

-
LSuch algorithms are called exact algorithms.

— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances where the minimum vertex cover is small, that is,

less or equal than some given integer k.

~

N

[Simple Brute-Force Search would take = (}) = ©(n¥) time.]

5l
E:E Il. Covering Problems Vertex Cover

Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or Gy (or both) have a vertex cover of size k — 1.

[\
A\

Proof: [Remlnlscent of Dynamic Programmmg.j

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
Removing u from C yields a vertex cover of G, which is of size k —1. O

Il. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

if E =0 return

if k=0and E # () return L

Pick an arbitrary edge (u,v) € E

Sy = VERTEX-COVER-SEARCH(G,, k — 1)
S> = VERTEX-COVER-SEARCH(Gy, k — 1)
if Sy # L return S; U {u}

if S; # L return S; U {v}

return L

N2 O RN

O\
[Correctness follows by the Substructure Lemma and induction.]

[N

Running time:
= Depth k, branching factor 2 = total number of calls is O(2)
= O(E) worst-case time for one call (computing G, or G, could take ©(E)!)
= Total runtime: O(2 - E).

[exponential in k, but much better than ©(n*) (i.e., still polynomial for k = O(log n))]

el e
E:E I1l. Covering Problems Vertex Cover 16

Outline

The Set-Covering Problem

E:E Ill. Covering Problems

The Set-Covering Problem

The Set-Covering Problem

Set Cover Problem S,

= Given: set X of size n and family of subsets 7 Py °

* Goal: Find a minimum-size subset C C F

Number of sets st. X= U S. L o
(and not elements) Sec
I 1 \ . .
[Only solvable if (Jg.» S = X!J S
—/

Remarks:
= generalisation of the vertex-cover problem and hence also NP-hard.
= models resource allocation problems, e.g., wireless coverage

o bl -

i
E:E I1l. Covering Problems The Set-Covering Problem

Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements.

GREEDY-SET-COVER (X,) Si -
1 U=X
2 €=9
3 whileU # 0 ° Sz °
4 select an S € ¥ that maximizes |[S N U | —
5 U=U-S§
6 € =CU{S} Y ® ®
7 return €
3 >
N

Greedy chooses Sy, S4, Ss and S;
(or Sg), which is a cover of size 4.

1

_;:E Il. Covering Problems

The Set-Covering Problem

Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements.

GREEDY-SET-COVER (X, ¥) Si _—

1 U=X d o |9

2 €=90
while U # ¢ ° Sz °

3
4 select an S € ¥ that maximizes |[S N U |
5 U=U-S§
6 € =TCU{s] ° ° °
7 return €
™ 3)
Can be easily implemented to run [\
in time polynomial in |X| and |F| [Optimal cover is C = {Ss, i, 85}]

How good is the approximation ratio?

E:E Il. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: S € F}) <In(n) + 1.

WH:ZL%SMM+U

Idea: Distribute cost of 1 for each added set over newly covered elements.

Definition of cost

If an element x is covered for the first time by set S; in iteration i, then

1
S\ (S1USU---USi4)|

Cx :

\

Notice that in the mathematical analysis, S; is the set chosen in itera-
tion i - not to be confused with the sets S;, Sy, . .., Ss in the example.

[

I1l. Covering Problems The Set-Covering Problem 20

lllustration of Costs for Greedy picking S, Sy, S5 and S;

T
1 1 1
6 6
S
1 1 1
6 6 6
S
1 1 1
o3 ® 3 ®;
1 1
o1 ol o}
S3
___J

1 1 1 1 1 1 1 1 1 1 1
stststststgtstgtgtatati=4

E:E Il. Covering Problems

The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢« := m
i\(o1US2U- US4

Proof.
= Each step of the algorithm assigns one unit of cost, so

Cl=> o (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so

D> =D o 2

Sec* xeS xeX

= Combining 1 and 2 gives

Cl< > > o< Y H(S) <IC7|- H(max{|S]: S € F}) -

Sec* xeS) Sec*
[Key Inequality: >3, g Cx < H(|S\).]

IIl. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

=

=

[Remaining uncovered elements in SJ [Sets chosen by the algorithmJ

~NJ —_
Forany Se Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
IS|=uy > uy >+ >y =0and u;_1 — u; counts the items in S covered first
time by S;.

K
1
cx = > (Ui—1 —Uuj)-
XEZS " ; TSN (S US U US)
Further, by definition of the GREEDY-SET-COVER:
[SI\N(S1USU---USi_1)| 2 [S\(S$1USU---USi_1)| = Uj_1.
Combining the last inequalities giveS'

Uj—1

PILE s e PP M

X€ES i=1 j=uj+1

S5

1

Uj—q

I/\
-\|_x

Ui+

k
Z (Ui—1) = H(u;)) = H(uo) — H(uk) = H(IS|). O

S R
Il. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

The same approach also gives an approximation ratio
of O(In(n)) if there exists a cost function ¢ : 7 — R*

Theorem 35.4 /&
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: S € F}) <In(n) + 1.

* |s the bound on the approximation ratio in Theorem 35.4 tight?

* |s there a better algorithm?

Lower Bound

Unless P=NP, there is no c-In(n) polynomial-time approximation algorithm
for some constant 0 < ¢ < 1.

I1l. Covering Problems The Set-Covering Problem 24

Example where the solution of Greedy is bad

Instance
Given any integer k > 3
There are n = 2¢*' — 2 elements overall (so k ~ log, n)

Sets 51, Sy, ..., Sk are pairwise disjoint and each set contains
2,4,...,2" elements

Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4,n=30:
o o [] o [] o o [] o [] o [] [] o [] 7'1)
o o [) o [) o o [) o [) o [) [) o [) Tz)
SAEIAN Ss AN Sa J

The Set-Covering Problem 25

Example where the solution of Greedy is bad

Instance
= Given any integer k > 3
= There are n = 2¢*' — 2 elements overall (so k ~ log, n)

= Sets S1, S, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2" elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4,n=30:
o o [] o [] o o [] o [] o [] [] o [] 7'1)
o o [) o [) o o [) o [) o [) [) o [) Tz)
SAEIAN Ss AN Sa Y,

(Solution of Greedy consists of k sets. J

_;:E Il. Covering Problems The Set-Covering Problem

25

Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2¢*' — 2 elements overall (so k ~ log, n)

= Sets S1, S, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2" elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4,n=30:

QOQOQQOQOQQQQOQﬂ)

o||®6 0|6 6 o o/ 66 o6 o o o o o o Tz)
Sy

AN Ss AN J

[Optimum consists of 2 sets. J

E:E Il. Covering Problems The Set-Covering Problem

25

Exercise: Consider the vertex cover problem, restricted to a
graph where every vertex has exactly 3 neighbours. Which
approximation ratio can we obtain?

1. 1 (i.e., | can solve it exactly!!!)
2.2

3.11/6=2-1/6

4. H(n) < log(n)

IIl. Covering Problems The Set-Covering Problem

26

	Introduction
	Vertex Cover
	The Set-Covering Problem

