Advanced Algorithms

l. Course Intro and Sorting Networks
Thomas Sauerwald

Easter 2020




Outline

QOutline of this Course

bl - e

iy oy I. Course Intro and Sorting Networks Outline of this Course



List of Topics

IA Algorithms ] [ IB Complexity Theory j [II Advanced Algorithms]
i i

@59 | Course Intro and Sorting Networks Outline of this Course 3



List of Topics

IA Algorithms ] [ IB Complexity Theory j [II Advanced Algorithms]
i D

= |. Sorting Networks (Sorting, Counting)
= |I. Linear Programming

= |ll. Approximation Algorithms: Covering Problems

= |V. Approximation Algorithms via Exact Algorithms

= V. Approximation Algorithms: Travelling Salesman Problem
= VI. Approximation Algorithms: Randomisation and Rounding

@59 | Course Intro and Sorting Networks Outline of this Course 3



List of Topics

IA Algorithms ] [ IB Complexity Theory j [II Advanced Algorithms]
/ /

= |. Sorting Networks (Sorting, Counting)
= |I. Linear Programming

= |ll. Approximation Algorithms: Covering Problems

= |V. Approximation Algorithms via Exact Algorithms

= V. Approximation Algorithms: Travelling Salesman Problem
= VI. Approximation Algorithms: Randomisation and Rounding

= closely follow CLRS3 and use the same numberring

ALGORITHMS = however, slides will be self-contained
ST

=
@59 | Course Intro and Sorting Networks Outline of this Course 3



List of Topics

IA Algorithms ] [ IB Complexity Theory j [II Advanced Algorithms]
i i

= |. Sorting Networks (Sorting, Counting)
= |I. Linear Programming

= |ll. Approximation Algorithms: Covering Problems

= |V. Approximation Algorithms via Exact Algorithms

= V. Approximation Algorithms: Travelling Salesman Problem
= VI. Approximation Algorithms: Randomisation and Rounding

= closely follow CLRS3 and use the same numberring
ALGORITHMS = however, slides will be self-contained
ST

S R
&:E I. Course Intro and Sorting Networks Outline of this Course 3



Outline

Some Highlights

bl - e

iy oy I. Course Intro and Sorting Networks Some Highlights



Linear Programming and Simplex

|

maximize 3x;  + Xo +
subject to
X1 + X2 +
2X1 =+ 2X2 =+
4X1 + Xo +
X1, X2, X3

e

o B

2X3

3X3
5x3
2X3

IVIAINIA
w
o

I. Course Intro and Sorting Networks

Some Highlights



Linear Programming and Simplex
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X1, X2, X3 > 0
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The Original Article (1954)
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SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anxp 8. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;;), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,’”* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.
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Travelling Salesman Problem: The 42 (49) Cities

1. Manchester, N. H. 18. Carson City, Nev. 34. Birmingham, Ala.

2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.

3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.

4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.

5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.

6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.

7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.

8. Chicago, IIl. 25. Des Moines, Towa 41. Boston, Mass.

9. M?lwaukee} Wis: 26. Kansas City, Mo. 42, Portland, Me.

10. Minneapolis, Minn. 97 ooty Kans. A. Baltimore, Md.

1. P{erre, S.D. 28. Oklahoma City, Okla. B. Wilmington, Del.

12. Bismarck, N. D. . .

13. Helena, Mont. 29. Dallas, Tex. C. Philadelphia, Penn.

14 Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.

15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.

16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.

17. Salt Lake City, Utah  33. New Orleans, La. G. Providence, R. I.
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Computing the Optimal Tour

!E‘Eg

We are going to use our own implementation of the
Simplex-Algorithm along with a visulation to solve a series of linear
programs in order to solve the TSP instance optimally!
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There are a couple of exercises spread across the recordings
to test your understanding!
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Overview: Sorting Networks

(Serial) Sorting Algorithms

Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
= execute one operation at a time

can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

= we already know several (comparison-based) sorting algorithms:

o
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Sorting Networks
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Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size

= sequence of comparisons is set in advance Allows to sort n numbers

= Comparisons can be performed in parallel in sublinear time!
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Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size
= sequence of comparisons is set in advance [

= Comparisons can be performed in parallel

Allows to sort n numbers
in sublinear time!

[Simple concept, but surprisingly deep and complex theory!]
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y, returns two
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another

= special wires: ninput wires ay, ap, . . ., an and n output wires by, bo, ..., bp
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Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.
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Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another
= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., b

AN
[ Convention: use the same name for both a wire and its value. ]

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.
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Comparison Networks

A sorting network is a comparison network which

Comparison Network works correctly (that is, it sorts every input)

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wire connect output of one comparator to the input of another

= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., b
X —> > x’ = min(x, y) x L a3 oy min(x, y)
comparator 3 7
y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.
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Example of a Comparison Network (Figure 27.2, CLRS2)

a

a

as

by

b
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Example of a Comparison Network (Figure 27.2, CLRS2)

A horizontal line represents
a sequence of distinct wires

174
ay b
A C
a b,
E
as bs
B D
a by
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a sequence of distinct wires
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Example of a Comparison Network (Figure 27.2, CLRS2)

L

A horizontal line represents
a sequence of distinct wires

vV
a ——o
A C
az
E
as
B D
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b

I. Course Intro and Sorting Networks

Introduction to Sorting Networks



Example of a Comparison Network (Figure 27.2, CLRS2)

A horizontal line represents
a sequence of distinct wires
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ay b
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

vV

a
A C

az

E
as
D
as

J

by

b
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic
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a
A C
as T .
E
a |
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b
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Example of a Comparison Network (Figure 27.2, CLRS2)

[Interconnections between comparators

must be acyclic

J

UV
ay b
A C
a - o bo
E
as o by
a . by
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Example of a Comparison Network (Figure 27.2, CLRS2)

[Interconnections between comparators

must be acyclic
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UV
ay b
A C
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E
as o by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . T . bo

| e
as . bS
B ( D
as i by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . T — b

| e
as . bS
B ( D
as i by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . e —o— b

| e
as ’ - bs
B ( D
as i by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . e —o— b

| e
as ‘ bS
B ( D {
as 4 . by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . e —o— b

| e
as . ‘ bS
B D {
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

v

a by
A C

a . - o b

| e
a ———— o bs
B D{
as . e . by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

v

a by
A C

a . - o b

| e
a ———— o bs
B D{
as . . . by
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Example of a Comparison Network (Figure 27.2, CLRS2)

Interconnections between comparators
must be acyclic

174

a by
A C

a . o —o— b

e
Q3 ————— . ‘ bs
B D{
as 3 2 * b4

Tracing back a path must never cycle back on
itself and go through the same comparator twice.
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Example of a Comparison Network (Figure 27.2, CLRS2)

a

a

as

by

b
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Example of a Comparison Network (Figure 27.2, CLRS2)

9
a
A
5
a
2
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6
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Example of a Comparison Network (Figure 27.2, CLRS2)
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 2
a
5 A ¢ 6
a
2 5 E
as
6 b 9
as

by

b
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Example of a Comparison Network (Figure 27.2, CLRS2)

a

a

as

as

N

by

bs

b

[This network is in fact a sorting network (Exercise 1)]

I. Course Intro and Sorting Networks

Introduction to Sorting Networks



Example of a Comparison Network (Figure 27.2, CLRS2)

a b
A C
a b
a3 bs
B D
a by
N

This network would not be a sorting network (Exercise 2)]

© ——mmD
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2
a by
5 A 9 c 6 5
a» b2
2 2 5 E 6
a3 bs
6 B 6 D 9 9
a by
N
Depth of a wire:
SR
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

N

Depth of a wire:
= Input wire has depth 0

el e
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 ¢ 6 5

ao bo
2 2 5 E 6

as bs
6 B 6 b 9 9

as by

N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1

el e
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1

el e
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth 0
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1

el e
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth 0 1
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth 0 T
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth 0 1 1 2
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 C 6 5

ao bo
2 2 5 E 6

as bS
6 B 6 b 9 9

as by

depth 0 1 1 2 2
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1
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Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2

a b
5 A 9 ¢ 6 5

ao bo
2 2 5 E 6

as bs
6 B 6 b 9 9

as by

depth 0 1 1 2 2 3
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1

el e
@59 | Course Intro and Sorting Networks Introduction to Sorting Networks

an



Example of a Comparison Network (Figure 27.2, CLRS2)

9 5 2 2
ai b4
5 A 9 C 6 5
ao bo
2 2 5 E 6
as bS
6 B 6 D 9 9
as by
depth O 11 2 2 3
. Maximum depth of an output
D?ﬁ:;l?tfv?ixrﬁés depth 0 wire equals total running time

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dx, d,} + 1

el e
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.

Lemma 27.1
If a comparison network transforms the input a = (ai, a,...,an) into
the output b = (b1, bo, ..., by), then for any monotonically increasing

function f, the network transforms f(a) = (f(ai),f(a2),..., f(an)) into
f(b) = (f(b1), f(b2), . - -, f(bn)).
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.

Lemma 27.1
If a comparison network transforms the input a = (ai, a,...,an) into
the output b = (b1, bo, ..., by), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),..., f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

min(f (x), f(y)) = f(min(x, y))
max(f (x), f(y)) = f(max(x, y))

fx) ———

f) ———

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-

puts if it works correctly on binary inputs.

Lemma 27.1
If a comparison network transforms the input a = (ai, a,...,an) into
the output b = (b1, bo, ..., by), then for any monotonically increasing

function f, the network transforms f(a) = (f(a1),f(a2),..., f(as)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’'s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:

I. Course Intro and Sorting Networks Introduction to Sorting Networks



Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

€y <o
F(x) = 0 !fx < aj,
1 ifx>a.
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.
» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;

before a; in the output
= Define a monotonically increasing function f as:

€y <o
F(x) = 0 !fx < aj,
1 ifx>a.

= Since the network places a; before a;, by the previous lemma
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Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2”7 possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

€y <o
F(x) = 0 !fx < aj,
1 ifx>a.

= Since the network places a; before a;, by the previous lemma
= f(a)) is placed before f(a;)
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2”7 possible sequences

of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

€y <o
F(x) = 0 !fx < aj,
1 ifx>a.

= Since the network places a; before a;, by the previous lemma
= f(a)) is placed before f(a;)

= But f(g)) = 1 and f(a;) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly O
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&:E I. Course Intro and Sorting Networks Introduction to Sorting Networks 14



Some Basic (Recursive) Sorting Networks
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Some Basic (Recursive) Sorting Networks
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Some Basic (Recursive) Sorting Networks

! L

[ n-wire Sorting Network

abrhowN =
4
’—9
\

n—1 : I -

’ ]

These are Sorting Networks, but with depth ©(n).

n-wire Sorting Network |

n+1

Introduction to Sorting Networks



Outline

Batcher’s Sorting Network
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

o

[ Sequences of one or two numbers are defined to be bitonic. ]

i
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) ?
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) v
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) v
= (6,9,4,2,3,5) ?
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2)

v
= (6,9,4,2,3,5) v
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2) v
= (6,9,4,2,3,5) v
* (9,8,3,2,4,6) ?
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2) v
= (6,9,4,2,3,5) v
* (9,8,3,2,4,6) v
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) v
(6,9,4,2,3,5) v
* (9,8,3,2,4,6) v
(4,5,7,1,2,6) ?

o
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2) v
= (6,9,4,2,3,5) v
* (9,8,3,2,4,6) v
= (4 2,

o
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2) v

= (6,9,4,2,3,5) v

* (9,8,3,2,4,6) v

= (4 2]

= binary sequences: ?

o
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2) v

- (6,9,4,2,3,5) v

- (9,8,3,2,4,6) v

= (4 2,

= binary sequences: 0'1/0%, or, 1'0/1%, for i,j, k > 0.

el b
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.
N
LWe always assume that nis even.J

el b
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

bitonic

©C 00 = = =0 o
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

0 0
0 0 | bitonic,
1 0 clean
- 1 0
bitonic
1 1
0 0 I
bitonic
0 1
0 — 1
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

0 —1 0 0 —1 0
0 0\ bitonic, 0 0 bitoni
. 0 clean . | itonic
. 1 0 L 1 0
bitonic bitonic
1 1 1 1
0 0 bitoni 1 1| bitonic,
0 | itonic 1 1 clean
0 — | 0 — |
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

5

0 —1 0 0 0
0 0\ bitonic, 0 0 bitoni
. 0 clean . | itonic
. 1 0 - 1 0
bitonic bitonic
1 1 1 1
0 0 bitoni 1 1\ bitonic,
0 | itonic 1 1 clean
0 — | 0 — |

i
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Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

~

0 0 0 0
0 0\ bitonic, 0 0 bitoni
. 0 clean . | itonic
. 1 0 L 1 0
bitonic bitonic
1 1 1 1
0 0 bitoni 1 1| bitonic,
0 | itonic 1 1 clean
0 1 0 1

el b
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. ]
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. ]

divide compare combine
top bitonic,
clean
bitonic il
itoni
bitonic
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. ]

divide compare combine
0 top top 0 bitonic,
L clean
bitonic { ™ e - il | () n e —of
1
— — \ bitoni
0 bottom bottom i bitonic
L L1]
(@)
0 . 0
(] [1| / bitonic
0
bitonic { ™ T s ER (1 I I
1 bitonic,
T bottom clean
L ®) L
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. ]

top top 0 bitonic,
0 [0] [0] clean
bitonic { e S 11 I | 18 [ETER | I8 T
0 0] O I
| bottom bottom | bitonic
0 0
L © L
(o] ]
1 top top 0 bitonic,
i [0] [0] clean
bitonic { e S 11 I | 18 [ETER | I8 T
0 o] O I
bottom bottom | bitonic
0
L | ) L

el e
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0170, for some i, j, k > 0. J

top top 0 bitonic,
0 [0] [0] clean
bitonic { e S 11 I | 18 [ETER | I8 T
0 0] O I
| bottom bottom | bitonic
0 0
L © L
(o] ]
1 top top 0 bitonic,
i [0] [0] clean
bitonic { e S 11 I | 18 [ETER | I8 T
0 o] O I
bottom bottom | bitonic
0
L | ) L

N

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.
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The Bitonic Sorter

&

5

| Brronic-
| SORTER[n/2]
—| HALF- —
_ | CLEANER[n] |
| Brronic-
| SORTER[n/2]

(a)

bitonic

c oo~ =~~~ 0o o

— = o |~ |lole e |

— = e~ lole e |

9 9 oo o

(b)

-_ - - 0o oo o o

sorted

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-

ple zero-one values are shown on the wires.
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The Bitonic Sorter

- | Brronic-
— | SORTER[n/2]
—| HALF- —

_ | CLEANER[n] |

- | Brronic-
| | SORTER[n/2]

(a)

bitonic

— = o |~ |lole e |

— = e~ lole e |

9 9 oo o

c oo~ =~~~ 0o o

(b)

-_ - - 0o oo o o

sorted

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Recursive Formula for depth D(n):

D(n)

0 ifn=1,
D(n/2)+1 ifn=2%
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The Bitonic Sorter

— — o 0 0 ' o
— BiToNIC- — 0 0 u 0
| SORTER[n/2] | 1 0 0 0
—| HALF- — bitoni 1 0 0 I 0 d
__| CLEANER([7] L itonic ! 1 1 I o sorte
— BITONIC- — 0 0 o 1
— SORTER[n/2] | 0 1 1 1
— - 0 1 ] 1

(a) (b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Henceforth we will always

Recursive Formula for depth D(n): EELITE UEL 18 A pOuEr a2

Z
0 ifn=1,

P =1 pnj2) +1 ifn= 2t
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The Bitonic Sorter

— | Brronic-
— | SORTER[n/2]
—| HALF- 1

_ | CLEANER[n] |

— | Brronic-
| | SORTER[n/2]

Recursive Formula for depth D(n):

(a)

bitonic sorted

c oo~ =~~~ 0o o
— = o |~ |lole e |
— = e~ lole e |
9 9 oo o
-— - - 0 oo oo

(b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-

ple zero-one values are shown on the wires.

D(n) =

Henceforth we will always
assume that n is a power of 2.
z
0 ifn=1,
D(nj2) +1 if n=2%

BITONIC-SORTER[N] has depth log n and sorts any zero-one bitonic sequence.
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER(n]
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER(n]

Basic ldea:
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER(n]

Basic ldea:

= consider two given sequences X = 00000111, Y = 00001111
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER(n]

Basic ldea:

= consider two given sequences X = 00000111, Y = 00001111
» concatenating X with Y* (the reversal of Y) = 0000011111110000

bl - e

g I. Course Intro and Sorting Networks Batcher’s Sorting Network

21



Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111
» concatenating X with Y* (the reversal of Y) = 0000011111110000

S
L This sequence is bitonic! ]
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequence

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

» concatenating X with Y* (the reversal of Y) = 0000011111110000
S

LThis sequence is bitonic! ]

Hence in order to merge the sequences X and Y, it suf-
fices to perform a bitonic sort on X concatenated with Y.
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (an/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @z, . .., @n2, @n, @n—1, - - -, @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

i
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (an/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @z, . .., @n2, @n, @n—1, - - -, @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs i and n — i + 1 for
i=1,2,...,n/2
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (an/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @z, . .., @n2, @n, @n—1, - - -, @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

= First part of MERGER[n] compares inputs i and n — i + 1 for
i=1,2,...,n/2

a O, 0 p, a O, 0 p,
red a 0 0 p bitoni a 0 0 2\ pitoni
sorte . 1 0 itonic a 1 0 by itonic
1 0 1 0
a, b, o a, b,
bitonic
as 0 I 1 bs N 1 1 by
0 1 0 0
a b a
sorted 6 0 0 ¢\ bitonic ! 0 1 "\ bitonic
a7 by dg bg
ag —La L py as 0 o L b
(a) (b)
Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER|[n], for n = 8.
(a) The first stage of MERGER[#] transforms the two monotonic input sequences (ay, az, ..., ay/2)

and (@ /241, dp/242, - - - » Gn) into two bitonic sequences (by, by, ...
..., bp). (b) The equivalent operation for HALF-CLEANER[n].
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quences (by, b2, ..., by/2) and (bp, by—1, ..., bpja41)-
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (an/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @z, . .., @n2, @n, @n—1, - - -, @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

= First part of MERGER[n] compares inputs i and n — i + 1 for
i=1,2,...,n/2
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Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER|[n], for n = 8.
(a) The first stage of MERGER[#] transforms the two monotonic input sequences (ay, az, ..., ay/2)

and (@ /241, dp/242, - - - » Gn) into two bitonic sequences (by, by, ...
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (an/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @z, . .., @n2, @n, @n—1, - - -, @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs i and n — j + 1 for
i=1,2,...,n/2
= Remaining part is identical to BITONIC-SORTER([n]

a, 0, 0 b, a, 0, 0 b,
0 0 0 0
a b a
sorted z 1 0, bitonic Uz 1 0 bj bitonic
1 0 1 0
a, b, o a, b,
as 0 Il b bitonic ) 1 1 by
0 1 0 0
a b a
sorted ¢ 0 0 ¢V bitonic ! 0 1 "\ bitonic
a7 by dg bg
ag —La L py as 0 o L b
(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER|[n], for n = 8.
(a) The first stage of MERGER[#] transforms the two monotonic input sequences (ay, az, ..., ay/2)
and (ap /241, Gn/2+2, - - -, an) into two bitonic sequences (b, by, ..., by 2) and (by 241, buja+2,
..., bp). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
(a1, @z, ..., Apj2—1, nj2, ns Ap—1, - - -, Ap/2+2, An/2+1) is transformed into the two bitonic se-
quences (by, b2, ..., by/2) and (bp, by—1, ..., byja41)-

i
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Construction of a Merging Network (2/2)

L 0 0 0 I 0

BiTONIC- — orted 0 0 0 0
SORTER[1/2] | sorte; 1 1 1 0

L 1 0 0 I 1

sorted

1 - ! i
BiToNIC- — J 1 1 1 1
SORTER[n/2] | sortedq 1 1 1

— 1 1 1] 1

(@) (b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[7n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to
compare inputs i andn —i+1fori = 1,2,...,n/2. Here,n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[#7/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.
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Construction of a Sorting Network

] 1 Brronic-
Main Components - || Sorter(n/2]
| HALF- I
1. BITONIC-SORTER[N] o
- || BrronNic-
= sorts any bitonic sequence 1. | Sortzr(n2]

= depth logn

bl - e
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Construction of a Sorting Network

BrToNIC-
SORTER[n/2]

Main Components

| HALF- &

1. BITONIC-SORTER([N] Gt
= sorts any bitonic sequence 1. || Soumadna)
= depth logn — —

2. MERGER([N] —
= merges two sorted input sequences Sommain |
= depth logn 1 =

2. Soneeninz) |

bl - e
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Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([N]
= sorts any bitonic sequence
= depth logn

2. MERGER[n]

= merges two sorted input sequences
= depth logn

Batcher’s Sorting Network
= SORTER(N] is defined recursively:

= If n = 2K, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.

Then merge them using MERGER([n].

= If n =1, network consists of a single wire.

HALF-
CLEANER[n]

BrTONIC-

SORTER[n/2]

BrroNic-

SORTER[n/2]

Brronic-
SORTER[11/2]

Bironic-
SORTER[/2]

SoRTER[n/2]

SORTER[1/2]

Y ¥
G-
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Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([N]
= sorts any bitonic sequence
= depth logn

2. MERGER[n]

= merges two sorted input sequences
= depth logn

Batcher’s Sorting Network
= SORTER(N] is defined recursively:

= If n = 2K, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.

Then merge them using MERGER([n].

= If n =1, network consists of a single wire.

AN

[can be seen as a parallel version of merge sort]

HALF-
CLEANER[n]

BrTONIC-

SORTER[n/2]

BrroNic-

SORTER[n/2]

Brronic-
SORTER[11/2]

Bironic-
SORTER[/2]

SoRTER[n/2]

SORTER[1/2]
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Unrolling the Recursion (Figure 27.12)

"] SortEr [n/2]

MERGER[n]

"] SortEr [n/2]
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Unrolling the Recursion (Figure 27.12)

o SORTER[n/2]

MERGER[n]

o SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[4] [

MERGER[2]

MERGER[2]

nne

MERGER[4] [

MERGER[8]

S R
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25



Unrolling the Recursion (Figure 27.12)

MERGER[8]

| Sorter [n/2] [ MERGER[4] :
T -

o ] MERGER[n] [

| Sorter [n/2] [ MERGER[4] :
1 0 0 0
T I°

1 Q I 1 0

S SRS E I°

1 Q Q I 0
T I°

0 Q I Q 1

5 PR RO S -

depth 1 2 23 4 4 4 45 5 6
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Unrolling the Recursion (Figure 27.12)

o [ MERGER[2] [ [

| Sorter [n/2] [ MERGER[4] || |

] [ MERGER[2]

o MERGER[n] [ ] MERGER[8]

o MERGER[2]

| Sorter [n/2] [ MERGER[4] || |

] [ MERGER[2]
1 0 0 0

041 Lo L o Recursionfor D(n):
1 0 I 1 0

0t L 1 Lo 0 ifn=1,
. 0 o D(n)= . P
0 Il 1 4 ) X D(n/2) + logn if n= 2%
0 0 I 0 1

Y e !

depth 1 2 23 4 4 4 45 5 6
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Unrolling the Recursion (Figure 27.12)

o [ [ MERGER[2] [ [

| Sorter [n/2] [ MERGER[4] [ [

] [ [ MERGER[2] [ [

o T MERGER[n] [ T MERGER[8] [

o [ MERGER[2] [

| Sorter [n/2] [ MERGER[4] [ [

: : : MERGER[2] : :

1 0 0 0

04 é 1 Lo L o Recursionfor D(n):

1 1 0

0 s L Lo 0 if n =1,
1 0 0 ! 0 D(n) = ) B
0 Il 1 4 ) X D(n/2) + logn if n= 2%
0 0 I 0 1 . 5

040 1 1, Solution: D(n) = ©(log? n).
depth 1 2 23 4 4 4 45 5 6

[
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Unrolling the Recursion (Figure 27.12)

o [ [ MERGER[2] [ [

| Sorter [n/2] [ MERGER[4] [ [

] [ [ MERGER[2] [ [

o T MERGER[n] [ T MERGER[8] [

o [ MERGER[2] [

| Sorter [n/2] [ MERGER[4] [ [

] [ [ MERGER[2] : :
1 0 0 0

041 Lo L o Recursionfor D(n):
1 I 0 I I 1 I 0

0 ——t ! 0 0 ifn=1,
1 0 0 ! 0 D(n) = ) B
0 Il 1 4 ) X D(n/2) + logn if n= 2%
0 Q I 0 1 . 5

040 1 1, Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 4556

SORTER[n] has depth ©(log? n) and sorts any input.
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Outline

Bonus Material: Construction of an Optimal Sorting Network
(non-examinable)

bl - e
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

el b
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n). ]
N

[Quite elaborate construction, and involves huges constants.}
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2smallerkeysin by, ..., b,z andthe n/2 larger keysin b, /241, .. ., bn.

bl - e
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n). ]

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2smallerkeysin by, ..., b,z andthe n/2 larger keysin b, /241, .. ., bn.
NN

[ Perfect halver of depth log n exist ~ yields sorting networks of depth ©((log n)?). ]
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2smallerkeysin by, ..., b,z andthe n/2 larger keysin b, /241, .. ., bn.

Approximate Halver

An (n, €)-approximate halver, e < 1, is a comparison network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bn/241, - - -, bn and at most ek of its k largest keys in by, ..., by 2.

bl - e

Gy I. Course Intro and Sorting Networks Bonus Material: Construction of an Optimal Sorting Network (non-examinable)

27



A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparison network that, given any input, places the
n/2smallerkeysin by, ..., b,z andthe n/2 larger keysin b, /241, .. ., bn.

Approximate Halver

An (n,e)-approximate halver, e < 1, is a comparison network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bn241, - - -, bn and at most ek of it@k largest keys in by, ..., by2.

We will prove that such networks can be constructed in constant depth!

el b
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Expander Graphs

~——— Expander Graphs
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings
= For every subset S C V being in one part,

IN(S)| > min{p-[S|,n/2 —|S|}
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Expander Graphs

~——— Expander Graphs
A bipartite (n, d, u)-expander is a graph with:
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= the edge-set is union of d perfect matchings
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Expander Graphs

~——— Expander Graphs
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings
= For every subset S C V being in one part,

IN(S)| > min{y - S|, n/2 ~ |S]}
AN

Specific definition tailored for sorting L R
network - many other variants exist!

I. Course Intro and Sorting Networks Bonus Material: Construction of an Optimal Sorting Network (non-examinable) 28



Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings
= For every subset S C V being in one part,

IN(S)| > min{y - S|, n/2 ~ |S]}

Expander Graphs:
= probabilistic construction “easy”: take d (disjoint) random matchings

= explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

* many applications in networking, complexity theory and coding theory
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From Expanders to Approximate Halvers
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Existence of Approximate Halvers (non-examinable)

Proof:
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Existence of Approximate Halvers (non-examinable)

Proof:
= X := keys with the k smallest inputs
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

= Forevery u e N(Y): 3 comparat. (u,v),veY
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

! |
= Forevery u e N(Y): 3 comparat. (u,v),veY b
* Let ut, v; be their keys after the comparator ur
Let uy, vy be their keys at the output (note b
vg € X) |
o
| 1
| |
! !
! +
[
| 1
! |
-
! l
Vi \
! |
| 1
| }
! 1
! |
!
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

| |
= Forevery u e N(Y): 3 comparat. (u,v),veY b u
= Let ut, v be their keys after the comparator u: I ut d

Let uy, vy be their keys at the output (note Lo
vg € X) : |
|
| |
| 1
| |
| |
| +
(il
| 1
! |

|
B

|

Vi Vi 7]
! |
| 1
| I
! 1
! |
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

| |
= Forevery u e N(Y): 3 comparat. (u,v),veY b u
= Let ut, v be their keys after the comparator u: I ut d

Let uy, vy be their keys at the output (note Lo
vg € X) : |
|
| |
| 1
| |
| |
| +
(il
| 1
! |

|
B

|

Vi Vi 7]
! |
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| I
! 1
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[
s
E:E I. Course Intro and Sorting Networks Bonus Material: Construction of an Optimal Sorting Network (non-examinable) 30



Existence of Approximate Halvers (non-examinable)

Proof:
= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= Forevery u e N(Y): 3 comparat. (u,v),veY

I |
I T
' I | u u,
= Let ut, v be their keys after the comparator ur t d
Let uy, vy be their keys at the output (note Lo
vg € X) : |
* Further: uy < uy < v¢ < vy Do
I L
I I
| I
I +
=7
| 1
! |
|
A
|
Vi Vi Va
! I
| 1
I '
! l
! |
! "
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Existence of Approximate Halvers (non-examinable)

Proof:
= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= Forevery u e N(Y): 3 comparat. (u,v),veY

I |
I T
I |
= Let ut, v be their keys after the comparator u: I Ut Ud
Let uy, vy be their keys at the output (note Lo
vg € X) |
» Further: ug < up < v < Vg = Uy € X Lo
= Since u was arbitrary: P
| I
Y]+ IN(Y)I < k. -
(il
| 1
! |
|
A
|
Vi Vit Vd
! |
| 1
I '
! 1
! |
[
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Existence of Approximate Halvers (non-examinable)

Proof:

X := keys with the k smallest inputs

Y := wires in lower half with kK smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator

Let uy, vy be their keys at the output (note

vg € X)

Further: uy <y <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:

Ut

Ud

Vi

Vd
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Existence of Approximate Halvers (non-examinable)

Proof:

X := keys with the k smallest inputs

Y := wires in lower half with kK smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator

Let uy, vy be their keys at the output (note

vg € X)

Further: uy <y <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
[Y]+ IN(Y)

Ut

Ud

Vi

Vd
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Existence of Approximate Halvers (non-examinable)

Proof:

X := keys with the k smallest inputs

Y := wires in lower half with kK smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator

Let uy, vy be their keys at the output (note

vg € X)

Further: uy <y <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
Y]+ IN(Y) > | Y]+ min{u|Y],n/2 = Y|}

Ut

Ud

Vi

Vd
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Existence of Approximate Halvers (non-examinable)

Proof:

X := keys with the k smallest inputs

Y := wires in lower half with kK smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator

Let uy, vy be their keys at the output (note

vg € X)

Further: uy <y <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
Y]+ IN(Y) > | Y]+ min{u|Y],n/2 = Y|}
= min{(1 + )| Y|, n/2}.

Ut

Ud

Vi

Vd
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

= Forevery u e N(Y): 3 comparat. (u,v),veY u
t

Ud

= Let ut, v be their keys after the comparator u
Let uy, vy be their keys at the output (note
vg € X)

= Since u was arbitrary:
Y]+ IN(Y)I < k.

|
|
|
|
|
|
|
" Further: ug < ui < vi<vg=ugeX 1
|
|
|
|

= Since Gis a bipartite (n, d, )-expander:

Y[+ IN(Y)[ > [Y]+ min{u|Y],n/2 — Y]}

= min{(1 + p)|YI|,n/2}.

Vi

Vd

Combining the two bounds above yields:
(1 + Y| <k
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Existence of Approximate Halvers (non-examinable)

Proof:

= X := keys with the k smallest inputs
= Y := wires in lower half with kK smallest outputs -

= Forevery u e N(Y): 3 comparat. (u,v),veY u
t

Ud

= Let ut, v be their keys after the comparator u
Let uy, vy be their keys at the output (note
vg € X)

= Since u was arbitrary:
Y]+ IN(Y)I < k.

|
|
|
|
|
|
|
" Further: ug < ui < vi<vg=ugeX 1
|
|
|
|

= Since Gis a bipartite (n, d, )-expander:

Y[+ IN(Y)[ > [Y]+ min{u|Y],n/2 — Y]}

= min{(1 + p)|YI|,n/2}.

Vi

Vd

Combining the two bounds above yields:
(1 + Y| <k

O

[Here we used that k < n/zj
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Existence of Approximate Halvers (non-examinable)

Proof:

X := keys with the k smallest inputs

Y := wires in lower half with kK smallest outputs
For every u € N(Y): 3 comparat. (u,v),ve Y
Let u;, v; be their keys after the comparator

Let uy, vy be their keys at the output (note

vg € X)

Further: uy <y <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
Y]+ IN(Y) > | Y]+ min{u|Y],n/2 = Y|}
= min{(1 + p)|YI|,n/2}.
Combining the two bounds above yields:
(1 +w)|Y| < k.

Same argument =- at most ¢ - k,
e:=1/(pn+ 1), of the k largest input keys are
placed in b1,...,b,,/2. ]

Ut

Ud

Vi

Vd

= typical application of expander graphs in parallel algorithms
= Much more work needed to construct the AKS sorting network

]
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AKS network vs. Batcher’s network

Richard J. Lipton (Georgia Tech)
“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

Donald E. Knuth (Stanford)
“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”
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Outline

Counting Networks

bl - e
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Siblings of Sorting Network

Sorting Networks

= sorts any input of size n

= special case of Comparison Networks

comparator

2 |

<

L7

ﬁla
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Siblings of Sorting Network

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

Switching (Shuffling) Networks
= creates a random permutation of n items
= special case of Permutation Networks

comparator
T <
2 > 7
switch
7 ?
T \_ T :‘
N P e
e
2 7z i S N ?
— Y D

ﬁla
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Siblings of Sorting Network

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

Switching (Shuffling) Networks
= creates a random permutation of n items
= special case of Permutation Networks

Counting Networks

= balances any stream of tokens over n wires
= special case of Balancing Networks

comparator
L] P <
2| > |7
switch
7 ?
o
S
2 |27 | 2
— Y D
balancer
7 S
b~
518
2 | 4

ila

;,H,, I. Course Intro and Sorting Networks Counting Networks
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

bl - e
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network

i
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
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= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting
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Balancing Networks

= constructed in a similar manner like sorting networks
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Balancing Networks
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Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

© O

[Number of tokens differs by at most one]

O
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, .. ., Xn be the number of tokens (ever received) on the
designated input wires
2. Let y1,¥s,...,yn be the number of tokens (ever received) on the

designated output wires
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, .. ., Xn be the number of tokens (ever received) on the
designated input wires
2. Let y1,¥s,...,yn be the number of tokens (ever received) on the

designated output wires
3. Inaquiescent state: 37, xi =31, yi

0<yi—y<tforanyi<j.

4. A counting network is a balancing network with the step-property:

el b
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, .. ., Xn be the number of tokens (ever received) on the
designated input wires

2. Let y1,¥s,...,yn be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, xi =31, yi

4. A counting network is a balancing network with the step-property:

0<yi—y<tforanyi<j.

Bitonic Counting Network: Take Batcher’s Sorting Network and re-

place each comparator by a balancer.
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:
1. We have Y7231 = [£ 20, xi], and 2 xor = | 5 350, X
2. Ifzf’ﬂx,-fzizhv,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

bl

G 1. Course Intro and Sorting Networks

e

Counting Networks

36



Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

——— Key Lemma

have the step property, then so does the output y1, ..., ¥a.

Consider a MERGER[n]. Then if the inputs xi, ..., X,/2 and Xp/241, - -

. Xn

Proof (by induction on n being a power of 2)

i
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Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fziﬂy,,thenx,7y,for/71,...,

Y =", yi+1,then3lj=1,2,... ,nwithx; = y;+1and x; = y; for j # i.
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fzizhv,,thenx,7y,for/71,...,

Y =", yi+1,then3lj=1,2,... ,nwithx; = y;+1and x; = y; for j # i.

9 o690 oo o4

Proof (by induction on n being a power of 2)
= Case n = 2is clear, since MERGER(2] is a single balancer
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER|2] is a single balancer
"n>2:

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1

X2
X3
X4
X5 I
X6
X7
X8

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1

X2
X3
X4
X5 I
X6
X7
X8

—9 9 9o o4

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 1

Xo I
X3 22

X4 I
X5 I

X 3 |
x7

xg 2 |

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 A1

Xo I
X3 22

X4 I
X5 I

X 3 |
x7

xg 28

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 Z1
Xo 21’ I
X3 22
X4 zé I
% ! z
X |
X7 z"1
g 28

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z,/,/2 have the step property

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
Xg g I
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z,/,/2 have the step property
" letZ = Z"/Zz, and Z' = "2 2/

i=1 “i

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 Z1
Xo 21’ I
X3 22
X4 zé I
% 1 z
X 73 |
X7 z"1
g 28

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z,/,/2 have the step property
" letZ = z”/Z ziand Z' = 272 2/

i=1 “i
= Claim: |2~ Z'| < 1(since Z' = [ § 3275 xi| + [3 001 Xi1)

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 Z1
Xo 21’ I
X3 22
X4 zé I
% 1 z
X 73 |
X7 z"1
g 28

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z,/,/2 have the step property
" letZ = z”/Z ziand Z' = 272 2/

i=1 “i
= Claim: |2~ Z'| < 1(since Z' = [ § 3275 xi| + [3 001 Xi1)

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
Xg g I
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 Lletz,...,zypand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z,/,/2 have the step property

" LetZ:= Z"/Zz, and Z' = 32 7

= Claim: |2~ Z'| < 1(since Z' = [ § 3275 xi| + [3 001 Xi1)
" Case 1: If Z = Z’, then F2 implies the output of MERGER([N] is y; = Zy4 | (i—1)/2] ¥

el b
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Correctness of the Bitonic Counting Network (non-examinable)

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 Z1
%2 El
X3 22
u 7]
% ) 2
% BB
X7 z"1
Xg 2y I

Proof (by induction on n being a power of 2)

|

Case n = 2 is clear, since MERGER(2] is a single balancer
n>2: Letz,...,z;pand z, ..., z,, be the outputs of the MERGER[n/2] subnetworks

H=z,...,z,0and z{, . .. ,z,/,/2 have the step property
Let Z := Z"/Zz, and Z' = "2 2/

i=1 “i
2
Claim: |2 — 2’| < 1(since Z' = [ 75 xi| + [§ 527041 Xi1)
Case 1: If Z = Z’, then F2 implies the output of MERGER[n] is y; = z1.|(i—1)/2) v

Case 2: If|Z — Z'| =1, F3implies z; = z/ fori = 1,. .., n/2 except a unique j with z; # Z;.

Balancer between z; and z/-’ will ensure that the step property holds.

e
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Bitonic Counting Network in Action (Asychnronous Execution)
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Bitonic Counting Network in Action (Asychnronous Execution)

X X X n @@
. r®®

Y

X X y S s @

X4 3 Ya @
=z

Counting can be done as follows:
Add local counter to each output wire /, to
assign consecutive numbers i,i+n,i+2-n,...
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of log n BLOCK[n] networks each of which has depth log n

5 R
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.
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From Counting to Sorting [The converse is not true!]
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network =- all ones will be routed to the lower wires
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network =- all ones will be routed to the lower wires
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.

= Let C be a counting network, and S be the corresponding sorting network

= Consider an input sequence aj, a, . . .
= Define an input x1, xz, . .

,an€ {0,1}"to S

., X € {0,1}"to Cby x; = 1iff g = 0.
= Cis a counting network =- all ones will be routed to the lower wires
= S corresponds to C =- all zeros will be routed to the lower wires
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network =- all ones will be routed to the lower wires
= S corresponds to C =- all zeros will be routed to the lower wires

0 1 111 1 0
1]o o 1]1 0 0
C 41 1l1]lo. 0 0 1 S
0lojoojo 1 1

S R
&:E I. Course Intro and Sorting Networks Counting Networks 39



From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, &, ...,an € {0,1}"to S

= Define an input x1, X2,..., X, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network =- all ones will be routed to the lower wires
= S corresponds to C =- all zeros will be routed to the lower wires

= By the Zero-One Principle, Sis a sorting network. O
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Exercise: Consider a network which is a sorting network, but not a
counting network.

Hint: Try to find a simple network with 4 wires that corresponds to a
basic sequential sorting algorithm.
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