IV. Approximation Algorithms via Exact Algorithms
Thomas Sauerwald

Easter 2020

[ UNIVERSITY OF
QP CAMBRIDGE




Outline

The Subset-Sum Problem

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem



The Subset-Sum Problem

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.
N
LThis problem is NP—hardJ
t =13 tons
X1 = 10 [ )
[
Xo =4
X4 = 6
| _—>
X5 = 1

SR IV. Approximation via Exact Algorithms The Subset-Sum Problem



The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
* Goal: Find a subset S’ C S which maximizes 3=, , (o X < t.
LThis prol;l\em is NP—hardJ
t =13 tons
x1 =10 [ )
Xo =4

| _—>

&
I
o

X3+ Xa + x5 =12
| _—>

X
I
o

| _—>

&
I

SR IV. Approximation via Exact Algorithms The Subset-Sum Problem



An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < ¢

implementable in time O(|L;—+|) (like Merge-Sort) ]

EXACT-SUBSET-SUM (S, 1) [

I n=IS| Returns the merged list (in sorted

Lo = (0) order and without duplicates)

fori = 1ton r P

4 L; = MERGE-LISTS(L;_y, Li_1 + Xx;) (S+x:={s+x:s€8})
5 remove from L; every element that is greater than ¢

6 return the largest element in L,

W o

Example:

= S={1,45},t=10

= Lo =(0)

b L1_<0a1>

= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 4



An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < ¢

EXACT-SUBSET-SUM (S, 1)

1 = |S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS (L;_y, Lj—j~——
5 remove from L; every element th[can be shown by induction on ”J
6 return the largest g4

. Correctness: Ly contains all sums of {X1,Xz,..., Xn}
= Runtime: O(2' +22 42" = 0(2")

[There are 2 subsets of {x1, Xz, ..., X}. j B
and/or |L;| are small.

etter runtime if ¢ ]

i
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 4



Towards a FPTAS

l |dea: Don’'t need to maintain two values in L which are close to each other. l

Trimming a List
= Given a trimming parameter 0 < § < 1

= Trimming L yields smaller sublist L’ so that for every y € L: 3z € L':

L S V4 S y
[ = | =(10,11,12,15,20, 21,22, 23, 24, 29)
= 5=0.1
TRIM(L, §) L = [’ =(10,12,15, 20, 23, 29)
1 let m be the length of L
2 L= ()
3 last = y,
4 fori =2tom
5 if y; > last- (1 +6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

(TRIM works in time ©(m), if L is given in sorted order. ]

_;:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 5



lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

\ After the initialization (lines 1-3) \

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last - (1 + §) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

0=0.1

\ The returned list L' \

last

L=(10,11,12,15,20,21, 22,23, 24, 29)
L

L' = (10,12,15, 20,23, 29)

i
IV. Approximation via Exact Algorithms The Subset-Sum Problem



The FPTAS

APPROX-SUBSET-SUM(S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS (L;_y, Li—; + x;)

L; = TRIM(L;,€/2n)

1
2
3
4
5
6
7
8

remove from L; every element that is greater than ¢
let z* be the largest value in L,

return z*
S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1
2
3
4
5
6

n =S|
Lo = (0)
fori = Iton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

= We must bound the inaccuracy introduced by repeated trimming

= We must show that the algorithm is polynomial time

NS

[Solution is a careful choice of 5!]

i
E:E IV. Approximation via Exact Algorithms

The Subset-Sum Problem 7



Running through an Example (CLRS3)

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4

= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
* line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
* line 5: L, = (0, 102, 206}
= line 6: L, = (0, 102, 206)
= line 4: Ly = (0,102, 201,206, 303, 407)
= line 5: L3 = (0,102,201, 303 407)
= line 6: L3 = (0, 102 201 303)
= line 4: L4 = (0,101,102, 201,203, 302, 303, 404)
= line 5: Ly = (0,101,201 302 404)

line 6: Ly = (O, 101 201 302) Returned solution z* = 302, which is 2%
within the optimum 307 = 104 + 102 + 101

IV. Approximation via Exact Algorithms The Subset-Sum Problem 8



Reminder: Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c ¢C
m = Z_ ) < p(n).
ax( " ) p()

[ For many problems: iradeoff between runtime and approximation ratio. ]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(n2/e),)

= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)? - n3).)

IV. Approximation via Exact Algorithms The Subset-Sum Problem



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,..., x;, there exists an element z € L] s.t.:
R 3 2 e A— L
(1+¢/(2n))y (1+¢€/(2n)"
N y* € n
(Can be shown by induction on ij > <\ 1+ on) 7

N nosoo

and now using the fact that (1 + inz) 3 e¢/2 yields

v < /2 (Taylor approximation of ej
z =

<T14e/2+4 (/22 <14e

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is linear in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 + ¢/(2n)

= Possible Values after trimming are 0, 1, and up to |log . /(25 | additional values.
Hence,
| t+2 Int +
(e} = ——
Bite/(@n) In(1 + ¢/(2n))
2n(1 +¢/(2n)) Int
Lente/@m)int

[Forx> —1,In(1 + x) > ﬁj st
€

€

= This bound on |L;| is polynomial in the size of the input and in 1/e. O
1
(Need log(t) bits to represent t and n bits to represent Sj

S R
IV. Approximation via Exact Algorithms The Subset-Sum Problem 10



Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

= Goal: Find a subset S’ C S which maximizes > g Xi <t

i x;€

~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

\

[A more general problem than Subset-Sum]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes ). g Vi

2. satisfies 3, cq w; < t

P
LAIgorithm very similar to APPROX-SUBSET-SUM
— Theorem -

There is a FPTAS for the Knapsack problem. ]

il
E:E IV. Approximation via Exact Algorithms The Subset-Sum Problem 11



Outline

Parallel Machine Scheduling

E:E IV. Approximation via Exact Algorithms

Parallel Machine Scheduling



Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cy is the completion time of job Jx.

N T S

T T
T T T T t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parallel Machine Scheduling



Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Gj, where Cy is the completion time of job Jx.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

A 2 e
m e |

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
I
i
I
1
!
i
i
1
T

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 13



NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

NET G G

M1[ . Jo . _ ]i

T
T

O1éé456%59101112131415

I T
L T

Equivalent to the following Online Algorithm [CLRS3]:
Whenever a machine is idle, schedule the next job on that machine.

[
LIST SCHEDULING(J1, U2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?]

Sl

SR IV. Approximation via Exact Algorithms Parallel Machine Scheduling



List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cr..> max Dk.
max Z 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

. o1y
Cmax > E;pk

Proof:
b. The total processing times of all n jobs equals Y _;_, p«
= One machine must have a load of at least % - S°7_, p«

_;:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling



List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1 n
ma><<_ .
C _m;kar max Pk

1<k<n

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Cnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yields: (Using Ex 35-5 a. &b.j

n

1 & 1 < 1 N X
Cj—P/‘SE;Ck:E;Pk = Cigmkz;pk+1?f§npk§2'cmax

DC_ ) |
][ K Ji j
D ) D

I

G —pi Cinax

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 16



Improving Greedy

The problem of the List-Scheduling Approach were the large jobs]

—~—~—
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Js, . . ., Jn, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=0
: end for
cforj=1ton
i = argming <<, Ck
Si=Su{j}, Ci=Ci+p
: end for
creturn Sy, ..., Sy

—_
o

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 17



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
N

[This can be shown to be tight (see next inde).J
Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then C.. > 2 - pmy1-
= As in the analysis for list scheduling, we have

* 1 * 3
Crax = Cj = (C/ - P/) + Pi < Cmax + ECmax = —Crax- |

2
)
(This is for the case i > m + 1 (otherwise, an even stronger inequality holds)j
[ oC )C )
X z )
) !

M;

)

Ci — pi Cinax

J AN

O T )
N
P

S R
&:E IV. Approximation via Exact Algorithms Parallel Machine Scheduling 18



Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: AT P
TR T .
T P S
O R AR A AN B
| 1 1l ‘\ | 1 1 ‘\ ‘1_\1_\1_\
Ms SRR EEEEREEE
M EREREREEEEEERE
4 : H \: H H \: \:6:\6:\5‘\5‘\5‘
My BEEREEEREEERRER
|
M, SEEEEREEEERE
,\/,1 L ‘l_,‘t_,“_ I Y S N L

0123456 7 8 91011121314151617 181920

S R
IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19



Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19

Crmax = 19

—

9 ) 5 ) 5 }

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling 19



Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:
= mmachines and n =2m + 1 jobs:
= two of length2m — 1,2m —2,..., m and one extra job of length m

m=5n=11: LPT gives Crax = 19
Optimum is C;,., = 15

Crax =15

)
)
8 ) 7 )
)
)

1

123 456 7 8 91011121314151617 181920

IV. Approximation via Exact Algorithms Parallel Machine Scheduling



Conclusion

——— Graham 1966
List scheduling has an approximation ratio of 2.

\

~——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\.

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°(/¥) . log P), where P := 37 __ py.

\.

Can we find a FPTAS (for polynomially bounded processing times)?
No!

=

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

20



Exercise (easy): Run the LPT algorithm on three machines and jobs
having processing times {3, 4,4, 3,5, 3,5}. Which allocation do you
get?

1. 13,3,5],[4,5],[4,3]
2. [5,3],[5.4].[4,3,3]
3. [3,3,3],[5,4],[5.4]

IV. Approximation via Exact Algorithms Parallel Machine Scheduling

21



Outline

Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

22



A PTAS for Parallel Machine Scheduling

Basic Idea: For (14 ¢)-approximation, don’t have to work with exact px’s.

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

[V
. . . 2
SUBROUTINE can be implemented in time n°(/<).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/¥) . log P), where P := 3>7__ py.

—2.

(polynomial in the size of the input Since 0 < Ci,, < P and C.,, is integral,
Proof (using Key Lemma): | binary search terminates after O(log P) steps. }
PTAS(d1, o, ..., dn,m) ———=
1: Do binary search to find smallest T s.t. Crax < (1 +€) - max{ T, Cyax}-
2: Return solution computed by SUBROUTINE(J1, Ja, ..., Jn,m, T)

5

el b
< B

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 23



Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1. Either: Return a solution with Crnax < (1 +€) - max{T, Cr.x}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmaii = {i: pi < e- T} and Jiarge = [N] \ Ismall-
Given a solution for Jige only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + ¢) - max{ T, Cy..}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jimai, then makespan is at most (1 +¢€) - T.
= Otherwise, let i € Jiman be the last job added to M;.

1 < 1<
Cj—PfSEZPk = CjSpi‘FEZpk

N k=1 k=1
(the “well-known” formula) <
<

e- T+ C:,ax
(1+¢) -max{T,Ch..} O

IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable) 24



Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

b2
2 {Can assume there are no jobs with p; > T!J

N
Let b be the smallest integer with 1/b < e. Define processing times p! = [’J’T] -

= Everyp,f:a~b—T2fora:b,b+1,...,b

. 2 .
Let C be all (sp, Spy1,- -, Sp2) with Zf’:jsj~/~ l2 < T<[ with makespan < T.

Assignments to one machine]

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines requir chedule
all jobs with makespan < T: Assign some jobs to one machine, and then
use as few machines as possible for the rest.
£(0,0,...,0) =0 E

. /
f(Mps Npyts s Np2) =1+ (sb,sbﬂr?!h,sbz)ec f(Nb — Sby Mpi1 = Sbyty -+ M2 — Sp2)-
15-T re=05 15.T
125-T . 125-T
1-T b=2 1-T
0.75-T 0.75- T + |p;
05T I ———————— 05T ph
025-T .p5 025-T
0 . . 0
Jlarge smaII Jlarge

i
E:? IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25




Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule Jiee With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] ‘15
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
f(nbvnb+11"'anb2):1+ min f(nb_sb’nb+1_sb+15"'>nb2_sb2)‘

(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+b- “max (pl —P,/)

’EJIarge

;
§T+b~E§(1+e)~T. O

E:E IV. Approximation via Exact Algorithms Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

25




	The Subset-Sum Problem
	Parallel Machine Scheduling
	Bonus Material: A PTAS for Parallel Machine Scheduling (non-examinable)

