VI. Approx. Algorithms: Randomisation and Rounding
Thomas Sauerwald

Easter 2020

UNIVERSITY OF
P CAMBRIDGE

Outline

Randomised Approximation

i
.n;,

VI. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c cC*
ma(g,c),mm

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

[extends in the natural way to randomised algorithms]

Approximation Schemes L

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)

= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

t’n‘n
B

VI. Randomisation and Rounding Randomised Approximation 3

Outline

MAX-3-CNF

g oy VI. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

7
v

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
N
[x1 =1,%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

' Idea: What about assigning each variable uniformly and independently at random? '

VI. Randomisation and Rounding MAX-3-CNF 5

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

. i 11 1 1
Pr[clause i is not satisfied] = -

2 2 8
- . 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
7
= E[Y,-]:Pr[Y,-:1]~1:§_

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y]:E{zm:yl} :iE[Yi]=ig=z-m. 0
i=1 i=1 i=1

8

(Linearity of Expectations) (maximum number of satisfiable clauses is m)

S R
VI. Randomisation and Rounding MAX-3-CNF

6

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

A1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

VI. Randomisation and Rounding MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
!

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]= E[Y|x1_1]+— E[Y | xy =0].
Y is defined as in S
the previous proof. J [One of the two conditional expectations is at least E | Y]!]
GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n
2: ComputeE[Y\x1:v1. JXi—1 = Vj_1, x5 =1]
3: Compute E[Y | x1 =v1,...,X—1 = Vj—1, X, = 0]
4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vy, va,..., vy

VI. Randomisation and Rounding MAX-3-CNF 8

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm ,
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... X1 =v_,x=1] =D E[Yi[xi=vi,...,x_1=Vi_q,5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIxi=Vi,...,X_1=V_1,5=V| 2E[Y[Xx3=vy,...,X_1=Vj_1]
SE[Y|x1=v,....X_2=V_2]
7
>E[Y]=£-m O

S R
VI. Randomisation and Rounding MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AX1VXe VX)) A (X1 VXe VX)) AN(XTV X3V Xa) A (X1 V X2V Xa) A
VX VXE)AKT VX VX)AI VX2V X3)A (X1 VX3V Xa)A(XeV X5V Xs)

????| 8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
o o T
ST\E SE SE A AR AT
I \ Il \ 4 \! I \ I \ Il \!
o - o - (@) - [« - [« - o -

0000 0010 m 0100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IANTATAGGVX)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2:O X2:1 Xg:O X2:1
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
AV Av-R A ¥ AV Y AV-R A ¥
I \ Il \ 4 \! I \ I \ Il \!
o - (o) - S - (e} - (<) -

-~ o
oooo 0010(0011] (0100 1010|[1011] [1100

el
6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KGV Xq)

????|.8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
¥ NFAYS < [\¥ YAV NVAYS

AT AV ST AYS
AN\ LR AR S SR N N A S N A N

&
1l
(e} (o] (e} - (e}

el
VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x; =0 xy =1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-R A v- Ry A v- Ry A vy A v- R A V- AV
I \ Il \ 4 \!

I \! I \ I \ I \ Il \!
-

(e} - (e} - (e} - (@) - [e) - [« - [« - o
EnEn o))
9 9

6 VI. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
Xy = 0 X1 = 1
0???| 8.625 17?7 8.875
X2 =0 Xo =1 X2 =0 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1
A7 AV-I A v- Ry A v- R A vy A v- R A V- AV
I \ Il \ 4 \! I A\ I \ I \ I \ Il \!
o - (o) - S - o - o - (e} - (<) - () -
o) (o9or) o) (o) (o))
9 9
el
MAX-3-CNF 10

VI. Randomisation and Rounding

Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AX1VXe VX)) A (X1 VXe VX)) AN(XTV X3V Xa) A (X1 V X2V Xa) A
VX VXE)AKT VX VX)AI VX2V X3)A (X1 VX3V Xa)A(XeV X5V Xs)

????|.8.75
x1 =0 x1 =1
0???| 8.625 17?7 8.875

X2 =0 Xo =1 X2 =0 Xo =1

00??| 8 01??| 9.25 10??| 9 11??] 8.75
x3=0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 xz3 =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5
A7 ARy A v Av- R AV A vy A Vo A ¥
I \ Il \ 4 \! I A\ I \ I \ I \ Il \!
(e} -

o - o B~ - o - - o > o > o
EnEn @) (@(er)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. j

el
6 VI. Randomisation and Rounding MAX-3-CNF 10

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any e > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-CNF unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!J

Gy VI. Randomisation and Rounding MAX-3-CNF

Outline

Weighted Vertex Cover

a8 VI Randomisation and Rounding

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

A\

[This is (still) an NP-hard problem.]

Applications:

w

4
()
2
(O—@
3 1

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

i VI. Randomisation and Rounding Weighted Vertex Cover

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]

Sl
E:E VI. Randomisation and Rounding Weighted Vertex Cover 14

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© O ©
1 1 1 1
)
[Optimal solution has weight 4]

VI. Randomisation and Rounding Weighted Vertex Cover 14

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
) weight of a minimum weight-cover.
Linear Program
—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]'

i VI. Randomisation and Rounding Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=49
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

[Y N O R

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

A

L
[is polynomial-time because we can solve the linear program in polynomial time]

S R
VI. Randomisation and Rounding Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =x(e) = % x(d) =1,x(c) = O] [x(a) =x(b) =x(e) =1, x(d) =1, x(c) = 0]
|74 =

3 3 3
b b b

4 4 4
(@) @ (@)
Rounding
—_— e

() O
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

kel - tad
@' VI Randomisation and Rounding Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
Z" < w(C)
= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)
= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z = wx(v) > S w(v)- % - %W(C). 0

veV veV:x(v)>1/2

i
E:? VI. Randomisation and Rounding Weighted Vertex Cover 18

Outline

Weighted Set Cover

@59 VI. Randomisation and Rounding

Weighted Set Cover

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem Si .
= Given: set X and a family of subsets F, d hd o)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F Y o e
Sum over the costs | S:t. X = U S.

of all sets in C sec L4 L4 L4

' Ss Ss

S1 S S5 84 S5 S
Remarks: c:2 33 5 12
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

Gy VI. Randomisation and Rounding Weighted Set Cover 20

Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of
the weighted SET-COVER problem (solution on next slide!)

VI. Randomisation and Rounding Weighted Set Cover 21

Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dovs) = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreachSeF
Linear Program
minimize > e(S)y(S)
ser
subject to Soys) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F

ﬁla

;,H,, VI. Randomisation and Rounding

Weighted Set Cover

21

Back to the Example

[] [] []
S

[]
&

[

S1 32 Ss 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
N\

7\

[The strategy employed for Vertex-Cover would take all 6 sets!j
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!j

kel - bed
@@ VI Randomisation and Rounding Weighted Set Cover 22

Randomised Rounding

S1 Sz 83 S4 SS SG
c: 2 3 3 5 1 2
y(): 1/2 12 12 1/2 1 12

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

(S) = {1 with probability y(S)

y(S forall S ¢ F.
y 0 otherwise.

= Therefore, E[y(S)] = y(S).

bl - e

Gy VI. Randomisation and Rounding Weighted Set Cover

23

Randomised Rounding

S1 Sg 83 84 SS SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 A1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

E[c(C)]=) c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

Pr{ers]M—l.

e
Sec

ﬁla

;,! 5 VI. Randomisation and Rounding Weighted Set Cover

23

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)] =E {Z 1S€C'C(S):|
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J[Pris¢cl= [(1-x8)

SeF: xeS SEF: xeS

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1 O

VI. Randomisation and Rounding Weighted Set Cover 24

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g €(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

/
—

[Problem: Need to make sure that every element is covered!j

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. '

WEIGHTED SET COVER-LP(X, F,¢)
1: compute y, an optimal solution to the linear program

22C=10

3: repeat 2In ntimes

4: foreach S e F

5 let C = C U {S} with probability y(S) __~_

6: return C clearly runs in polynomial—time!j

VI. Randomisation and Rounding Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that
1 2Ilnn 1
Pr[X%USecs]S (E) :ﬁ
= This implies for the event that all elements are covered:

Pr(X =UsccS]=1-Pr { U x QUSECS}:|

xeX

(Priavs) < Pria]+Pr(8] o 1 S prixgusecs] > 1-n 11
n? n
xeX
= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - y(S).
= Linearity = E[c(C)] < 2In(n) - 3> gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*) O

i
E:? VI. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

A\
[By Markov's inequality, Pr [c(C) < 4In(n) - ¢(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

VI. Randomisation and Rounding Weighted Set Cover 26

Outline

MAX-CNF

@59 VI. Randomisation and Rounding

MAX-CNF

27

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (x1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

bl - e
'!:‘,' VI. Randomisation and Rounding MAX-CNF 28

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
Pr[clause i is satisfied] =1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y := YT, Y; be the number of satisfied clauses. Then,

i=1 i=1 i=1

E[Y]=E

VI. Randomisation and Rounding MAX-CNF 29

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

(The same as randomised rounding!]

— 0-1 Integer Program

o m These auxiliary variables are used to
maximize 212" [reflect whether a clause is satisfied or not 1
i
subjectto > y+ > (1-y) = z,-V foreachi=1,2,...,m
jec;t jec;
1 z € {0,1} foreachi=1,2,....,m
y, € {0,1} foreachj=1,2,...,n

negated variables of clause i.

[C; is the index set of the un-]

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (y*, z") be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y*

VI. Randomisation and Rounding MAX-CNF 30

Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

*

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - Z)) -z

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L

= Pr[clause i is satisfied] =1 — [[Pr[yjisfalse | =1 -] (1 -)

=1 j=1

¢
4 *
Arithmetic vs. geometric mean: >1_ 21'21(1 Y)
a+...+a l
% > Yar x ... X ax.

Sy ‘ zZ*
=1 (1= 21—(1——’>.
¢ ;

VI. Randomisation and Rounding MAX-CNF

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > <1 - (1 - —)) - zf.

Proof of Lemma (2/2):
= So far we have shown:

*\ £
z.
Pr[clause i is satisfied] > 1 — (1 - —’)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function

with g(0) = 0 and g(1) =1 — (1 - %)Z — 4. 9(2)

= g(z)>p-z foranyze[0,1] 1-(1-1)

= Therefore, Pr[clause i is satisfied] > 8¢ - z/". O

VI. Randomisation and Rounding MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢
Pr[clause i is satisfied] > (1 - (1 - —)) - zf.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~

\

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=Y E[]> i<17(172i)li)-27‘22m:(1—:—9)~z7‘2 (pj_e).ow

= = / i=1 AN
. LP solution at least
X
By Lemma [Smce (1—=1/x) < 1/e] [as good as optimu]

VI. Randomisation and Rounding MAX-CNF

31

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (e, n, m) >
i: Let b € {0, 1} be the flip of fair coin Vu\ m
2: If b = 0 then perform random guessing = ‘\A
3: If b = 1 then perform randomised rounding & e oo
4: return the computed solution N oé 2

Algorithm sets each variable x; to TRUE with prob. 3 - 3 + 3 - /"
Note, however, that variables are not independently assigned!

VI. Randomisation and Rounding MAX-CNF 32

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n, m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - z;*
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2—¢ = o, > ay - zr.

= Algorithm 2 satisfies it with probability 3, - z;".

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % co - ZF 4+ % “Be- 2}

* Note 222t — 3/4for ¢ € {1,2}, and for ¢ > 3, 2222 > 3/4 (see figure)
= = HYBRID-MAX-CNF(p. n, m) satisfies it with prob. at least 3/4 - z O

i VI. Randomisation and Rounding MAX-CNF 33

MAX-CNF Conclusion

Summary

= Since ax = B2 = 3/4, we cannot achieve a better approximation
ratio than 4 /3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

VI. Randomisation and Rounding MAX-CNF

34

Exercise (easy): Consider any minimsation problem, where x is the
optimal cost of the LP relaxation, y is the optimal cost of the IP and z
is the solution obtained by rounding up the LP solution. Which of the
follwing statements are true?

1.x<y<z
2. y<x<z
3. y<z<x.

VI. Randomisation and Rounding MAX-CNF 35

Exercise (trickier): Consider a version of the SET-COVER problem,
where each element x € X has to be covered by at least two
subsets. Design and analyse an efficient approximation algorithm.
Hint: You may use the result that if X, Xs, ..., X, are independent
Bernoulli random variables with X := "7, X;, E[X] > 2, then

PriX>2]>1/4-(1—-e").

VI. Randomisation and Rounding MAX-CNF

36

Outline

Conclusion

bl - e

@59 VI. Randomisation and Rounding

Conclusion

37

Spectrum of Approximations

MAX-CLIQUE

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

SCHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX poly-APX

S R
VI. Randomisation and Rounding Conclusion 38

Topics Covered

I. Sorting and Counting Networks

= 0/1-Sorting Principle, Bitonic Sorting, Batcher’'s Sorting Network

Bonus Material: A Glimpse at the AKS network

= Balancing Networks, Counting Network Construction, Counting vs. Sorting
Il. Linear Programming

= Geometry of Linear Programs, Applications of Linear Programming

= Simplex Algorithm, Finding a Feasible Initial Solution

= Fundamental Theorem of Linear Programming

[ll. Approximation Algorithms: Covering Problems
= Intro to Approximation Algorithms, Definition of PTAS and FPTAS
= (Unweighted) Vertex-Cover: 2-approx. based on Greedy
= (Unweighted) Set-Cover: O(log n)-approx. based on Greedy

IV. Approximation Algorithms via Exact Algorithms
= Subset-Sum: FPTAS based on Trimming and Dynamic Programming
= Scheduling: 2-approx. based on Simple Greedy, 4/3-approx. using LPT
Bonus Material: A PTAS for Machine Scheduling based on Rounding and Dynamic Programming
V. The Travelling Salesman Problem
= |Inapproximability of the General TSP problem
= Metric TSP: 2-approx. based on MST, 3/2-approx. based on MST + matching

VI. Approximation Algorithms: Rounding and Randomisation

= MAX3-CNF: 8/7-approx. based on Guessing, Derandomisation with Greedy
= (Weighted) Vertex-Cover: 2-approx. based on Deterministic Rounding

= (Weighted) Set-Cover: O(log n)-approx. based on Randomised Rounding

= MAX-CNF: 4 /3-approx. based on Guessing + Randomised Rounding

5
i VI. Randomisation and Rounding Conclusion 39

[Thank you and Best Wishes for the Exam!]

VI. Randomisation and Rounding Conclusion

40

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover
	Weighted Set Cover
	MAX-CNF
	Conclusion

