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Performance Ratios for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C∗ satisfy:

max

(
C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

Call such an algorithm randomised ρ(n)-approximation algorithm.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes
extends in the natural way to randomised algorithms

For example, O(n2/ε).

For example, O((1/ε)2 · n3).
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MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·

Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?
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Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:

For every clause i = 1, 2, . . . ,m, define a random variable:
Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

Pr [ clause i is not satisfied ] =
1
2
·

1
2
·

1
2

=
1
8

⇒ Pr [ clause i is satisfied ] = 1−
1
8

=
7
8

⇒ E [Yi ] = Pr [Yi = 1 ] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y ]

= E

[ m∑
i=1

Yi

]
=

m∑
i=1

E [Yi ] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m
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Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.
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Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]!

Algorithm: Assign x1 so that the conditional
expectation is maximized and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximized
5: return the assignment v1, v2, . . . , vn
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Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y ] =
7
8
·m.

computable in O(1)
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Run of GREEDY-3-CNF(ϕ,n,m)
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Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

((((
(((x1 ∨ x2 ∨ x3) ∧((((

(((x1 ∨ x2 ∨ x4) ∧((((
(((x1 ∨ x2 ∨ x4) ∧ (��x1 ∨ x3 ∨ x4) ∧((((

(((x1 ∨ x2 ∨ x3) ∧ (��x1 ∨ x2 ∨ x3) ∧ (��x1 ∨ x2 ∨ x3) ∧ (��x1 ∨ x2 ∨ x3) ∧((((
(((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧���
�(x2 ∨ x3)∧ (��x2 ∨ x3)∧���

�(x2 ∨ x3)∧1∧ (��x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧���
�(x3 ∨ x4) ∧ 1 ∧ 1 ∧ (��x3) ∧ 1 ∧ 1 ∧ (��x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

VI. Randomisation and Rounding MAX-3-CNF 10



MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation algo-
rithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!
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Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-CNF

Conclusion
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The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such that
if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources
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The Greedy Approach from (Unweighted) Vertex Cover

35.1 The vertex-cover problem 1109
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [ fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.
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The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [ f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time
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Example of APPROX-MIN-WEIGHT-VC
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so
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The Weighted Set-Covering Problem

Given: set X and a family of subsets F ,
and a cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted vertex-cover problem

models resource allocation problems
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Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of
the weighted SET-COVER problem (solution on next slide!)

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0,1} for each S ∈ F

0-1 Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0,1] for each S ∈ F

Linear Program
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Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2

y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!
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Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [ c(C) ] =
∑
S∈F

c(S) · y(S)

The probability that an element x ∈ X is covered satisfies

Pr

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma
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Proof of Lemma

Let C ⊆ F be a random subset with each set S being included indepen-
dently with probability y(S).

The expected cost satisfies E [ c(C) ] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies Pr [ x ∈ ∪S∈CS ] ≥ 1− 1
e .

Lemma

Proof:

Step 1: The expected cost of the random set C

X

E [ c(C) ]

= E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

Pr [S ∈ C ] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

Pr [ x 6∈ ∪S∈CS ]

=
∏

S∈F : x∈S

Pr [S 6∈ C ] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!
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The Final Step

Let C ⊆ F be a random subset with each set S being included indepen-
dently with probability y(S).

The expected cost satisfies E [ c(C) ] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies Pr [ x ∈ ∪S∈CS ] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!
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Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, Pr [ c(C) ≤ 4 ln(n) · c(C∗) ] ≥ 1/2.

Hence with probability at least 1 − 1
n −

1
2 > 1

3 ,
solution is within a factor of 4 ln(n) of the optimum.

probability could be further
increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:

Step 1: The probability that C is a cover

X
By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

Pr [ x 6∈ ∪S∈CS ] ≤
(

1
e

)2 ln n

=
1

n2
.

This implies for the event that all elements are covered:

Pr [X = ∪S∈CS ] = 1− Pr

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

Pr [ x 6∈ ∪S∈CS ] ≥ 1− n ·
1

n2
= 1−

1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [ c(C) ] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

Pr [A ∪ B ] ≤ Pr [A ] + Pr [B ]
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MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

Pr [ clause i is satisfied ] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [ Y ] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [ Yi ] ≥
m∑

i=1

1
2

=
1
2
·m.
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First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [ Y ] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [ Yi ] ≥
m∑

i=1

1
2

=
1
2
·m.
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj ) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y∗, z∗) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y∗
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Analysis of Randomised Rounding

For any clause i of length `,

Pr [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z∗i .

Lemma
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Analysis of Randomised Rounding

For any clause i of length `,

Pr [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z∗i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ Pr [ clause i is satisfied ] = 1−
∏̀
j=1

Pr [ yj is false ] = 1−
∏̀
j=1

(
1− y∗j

)

≥ 1−

∑`
j=1(1− y∗j )

`

`

= 1−

1−

∑`
j=1 y∗j
`

`

≥ 1−
(

1−
z∗i
`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .
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Analysis of Randomised Rounding

For any clause i of length `,

Pr [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z∗i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

Pr [ clause i is satisfied ] ≥ 1−
(

1−
z∗i
`

)`

For any ` ≥ 1, define g(z) := 1−
(
1− z

`

)`.

This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, Pr [ clause i is satisfied ] ≥ β` · z∗i . z

g(z)

0 1

1− (1− 1
3 )

3
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Analysis of Randomised Rounding

For any clause i of length `,

Pr [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z∗i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥

m∑
i=1

(
1−

(
1− 1

`i

)`i
)
· z∗i ≥
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Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 ·

1
2 + 1

2 · y
∗
i .

Note, however, that variables are not independently assigned!
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Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z∗i
For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z∗i .
Algorithm 2 satisfies it with probability β` · z∗i .
HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1

2 ·α` · z
∗
i + 1

2 · β` · z
∗
i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z∗i

`0
1 2 3 4

0.75

1

1

0.5
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MAX-CNF Conclusion

Since α2 = β2 = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
The 4/3-approximation algorithm can be easily derandomised

Idea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution

The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

Even MAX-2-CNF (every clause has length 2) is NP-hard!

Summary
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Exercise (easy): Consider any minimsation problem, where x is the
optimal cost of the LP relaxation, y is the optimal cost of the IP and z
is the solution obtained by rounding up the LP solution. Which of the
follwing statements are true?
1. x ≤ y ≤ z,
2. y ≤ x ≤ z,
3. y ≤ z ≤ x .
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Exercise (trickier): Consider a version of the SET-COVER problem,
where each element x ∈ X has to be covered by at least two
subsets. Design and analyse an efficient approximation algorithm.
Hint: You may use the result that if X1,X2, . . . ,Xn are independent
Bernoulli random variables with X :=

∑n
i=1 Xi , E [X ] ≥ 2, then

Pr [X ≥ 2 ] ≥ 1/4 · (1− e−1).
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Topics Covered

I. Sorting and Counting Networks
0/1-Sorting Principle, Bitonic Sorting, Batcher’s Sorting Network
Bonus Material: A Glimpse at the AKS network

Balancing Networks, Counting Network Construction, Counting vs. Sorting
II. Linear Programming

Geometry of Linear Programs, Applications of Linear Programming
Simplex Algorithm, Finding a Feasible Initial Solution
Fundamental Theorem of Linear Programming

III. Approximation Algorithms: Covering Problems
Intro to Approximation Algorithms, Definition of PTAS and FPTAS
(Unweighted) Vertex-Cover: 2-approx. based on Greedy
(Unweighted) Set-Cover: O(log n)-approx. based on Greedy

IV. Approximation Algorithms via Exact Algorithms
Subset-Sum: FPTAS based on Trimming and Dynamic Programming
Scheduling: 2-approx. based on Simple Greedy, 4/3-approx. using LPT
Bonus Material: A PTAS for Machine Scheduling based on Rounding and Dynamic Programming

V. The Travelling Salesman Problem
Inapproximability of the General TSP problem
Metric TSP: 2-approx. based on MST, 3/2-approx. based on MST + matching

VI. Approximation Algorithms: Rounding and Randomisation
MAX3-CNF: 8/7-approx. based on Guessing, Derandomisation with Greedy
(Weighted) Vertex-Cover: 2-approx. based on Deterministic Rounding
(Weighted) Set-Cover: O(log n)-approx. based on Randomised Rounding
MAX-CNF: 4/3-approx. based on Guessing + Randomised Rounding
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Thank you and Best Wishes for the Exam!
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