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Introduction

= linear programming is a powerful tool in optimisation

= inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

= we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)
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What are Linear Programs?

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~——— Example: Political Advertising (from CLRS3)

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

= Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.
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Political Advertising Continued

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

g

= Possible Solution:

= $20,000 on advertising to building roads
= $0 on advertising to gun control

= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

' What is the best possible strategy? I
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Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= X, = number of thousands of dollars spent on advertising on gun control

= x3 = humber of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

= —2x1 +8x>+0x3 +10x4 > 50
= 5x; +2x2 + 0x3 + 0x4 > 100

= 3x;y —5x2 + 10x3 — 2x4 > 25

[Objeotive: Minimize x1 + X2 + X3 + Xa ]
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The Linear Program

Linear Program for the Advertising Problem

/1

minimize Xy  + Xo 4+ X3 + X4
subject to
—2X4 + 8x + 0x3 + 10x4 > 50
5x4 + 2X% + 0x3 + Ox, > 100
3Xq — 5xo + 10x3 — 2X4 > 25
X1, X2, X3, X4 > 0

‘[The solution of this linear program yields the optimal advertising strategy.

)

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,X2,...,Xn) = @1 X1 + @Xo + -+ - + @nXn.

= Linear Equality: f(x1, Xz, ..., Xn) = {Lmear o — ]
= Linear Inequality: f(x1, Xz, ..., Xn)

function subject to a set of linear constraints

= Linear-Progamming Problem: elther minimize or maximize a linear

o

.;,B 5 II. Linear Programming Introduction



A Small(er) Example

X1 Xo

maximize
subject to

VI

o

4X1

VIAIAI

R

2X2

2X1
5X1
X1, X2

and x, satisfying
all constraints is a feasible solution

Any setting of x4

{

i
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A Small(er) Example

maximize X1+ Xo
subject to
4X1 — X2 < 8
2X4 + X2 < 10
5X1 — 2X2 > -2
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

While the same approach also works for higher-dimensions, we

need to take a more systematic and algebraic procedure.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,f ¢ V

= Goal: Find a path of minimum weight

fromstotin G
[\N

[p = (v = s,w,...,w = t)such that}

w(p) = S, w(vk—1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

maximize a
subject to ——
Y d < do + w(uv) foreachedge (u,v)eE,
this is a maxi- b = 0 ~
mization problem! Solution d satisfies d, = miny. (u,v)€E {Bu + w(u,v) }]

i
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| = 19
O, ® ® ®

Maximum Flow as LP

maximize Dweviov = Devhs
subject to
fn < c(u,v) foreachu,veV,
Sweviw = Y ,eyfw foreachue V\ {s,t},
fw > 0 foreachu,ve V.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

S wyee U, Vi = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3

the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to ¢. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

(a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and

o
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Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize 2 uwyee AU, V)t
subject to
fw < c(u,v) foreachu,veV,
Sveviu =2 eyfw = 0 foreach u e V\ {s, t},
Zvevfsv - Zvevas = d,
fw > 0 foreach u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

Sl
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Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function ]
j=1

subject to

n
dap<b  fori=1,2,....m
n+ m Constraints } =

x>0 forj=1,2,....,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximize c'x {Inner product of two vectors ]
subject to

Ax<b { Matrix-vector product j
x>0
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program

which is in standard form

/1

[ Equivalence: a correspondence (not necessarily a bijection) between solutions. ]
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

| minimize —2x1  + 3x |
subject to
X1 + Xo = 7
X1 — 2X2 < 4
X1 ‘ > 0
|
i Negate objective function
\Z
| maximize 2xy  — 33X |
subject to
Xq =+ Xo = 7
X1 — 2X2 < 4
X1 > 0

ﬁla
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize
subject to

maximize
subject to

2X1 — 3X2
Xq + Xo = 7
X1 — 2X2 < 4

l X4 > 0 ‘

T
! Replace x> by two
\}( variables x; and x3’

non-negative

2x;  — [8x5  +  3x4
X1+ Xo  — x| = 7
X1 — 2x) + 2x)] < 4

l X1, Xé7 Xé/ > 0 ‘

II. Linear Programming
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize
subject to

maximize
subject to

21 — 3% + 3x)
X o+ X - X = 7
X — 2% 4+ 2x5 < 4
X1 X0, Xy > 0

! ﬁeplace each equality

\}( by two inequalities.

21 — 3% + 3x5
x4+ ox -  x) < 7
Xt 4+ Xp = Xy > 7
X1 — 2% + 2x5 < 4
X1, Xév Xél > 0
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x53 + 3x
subject to
X1+ Xy — Xy < 7
o o+ ox - x> 7]
Xy - 2% + 2x5 < 4
X1, {é? Xél 2 0
i Negate respective inequalities.
v
maximize 2xy — 3x3 + 3x4
subject to
Xy + Xy - X, < 7
—x - x} + X < 7]
Xy - 2x5 4+ 2x5 < 4
X1, Xé7 Xél > 0
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). J

A\
maximize 2xy — 33X + 3x3
subject to
XX+ X - x3 < 7
-X1 - X + x3 < =7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Zj’.’:1 a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ax
[ s measures the slack between } ' ; v

the two sides of the inequality.
>0.

= Denote slack variable of the ith inequality by x,.;
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Converting Standard Form into Slack Form (2/3)

maximize
subject to

maximize
subject to

2X1 — 33X + 3x3
X1+ X2 - X3
—-Xr = X2+ X3
Xq - 2Xo + 2x3
X1, X2, X3 |
I
l
|
A\
2X1
X4 7 — X1
X5 -7 + X1
X6 4 — X1

X1, X2, X3, Xa, X5, Xg

vV + +

IV A INIA

7

-7

3X2

X2
X2
2X2
0

4
0

Introduce slack variables

3X3

X3
X3
2X3

II. Linear Programming
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Converting Standard Form into Slack Form (3/3)

maximize 2x; — 33X + 3x3
subject to
Xy = 7 - Xy - X2 + X3
Xs = —7 + X1+ X2 - X3
X6 = 4 — X4 + 2Xo — 2X3
X1,X2,X3,X4,X5,Xe > 0

! Use variable z to denote objective function
\}( and omit the nonnegativity constraints.

z = 2xy  — 33X 4+ 3X3 ‘

X4 = 7 - Xq — Xo + X3

Xxs = -7 + X1+ X2 - X3

X6 = 4 — Xy + 2Xx — 2X3
/1

[This is called slack form.]

S R
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Basic and Non-Basic Variables

z = 2x; — 33X + 3x3

X4 = 7 - X1 — X2 + X3

Xxs = -7 + X1+ X2 - X3

Xe = 4 — X4 +  2X -  2X3
A

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, c, v) so that
Z=v+> Gx
JEN
x,-:b;—Za,;x,- fOFiEB,

JEN

and all variables are non-negative. W\
4[Variables/00efficients on the right hand side are indexed by B and N. ]

S R
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Slack Form (Example)

- X X 2%
z = 28 5 6 3
_ X3 X X
x = 8 + F + % 3
_ _ 8 2% Xe
X o= 4 3 3 T 3
xx = 18 - % + %
Slack Form Notation
» B={1,2,4}, N = {3,5,6}
aiz a5 aie 71/6 71/6 1/3
A= a3 dos Ao | = 8/3 2/3 —1/3
as3 dass Ase 1/2 71/2 0
b1 8 C3 —1/6
b=|b|=(4], c=[c|=[-1/8
bs 18 Co —2/3
= v =28

i
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If the slack form has an optimal solution, one of them occurs at a vertex.

\. J

Proof Sketch (informal and non-examinable):

= Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
= Jvector d s.t. x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.lo.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

= X + \d feasible, since A(x + \'d) = Ax = band
X+MNd>0

s cT(x+XNd)=cTx+c"Nd>cTx
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set. ]

——— Theorem N
If the slack form has an optimal solution, one of them occurs at a vertex.

\. J

Proof Sketch (informal and non-examinable):

= Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
= Jvector d s.t. x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.lo.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+Xd>x>0
= If A — oo, then cT(x + Ad) — oo
= This contradicts the assumption that there exists an
optimal solution. O
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Simplex Algorithm: Introduction

Simplex Algorithm
= classical method for solving linear programs (Dantzig, 1947)

= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.]

= Conversion (“pivoting”) is achieved by switching the roles of one

basic and one non-basic variable

i
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Extended Example: Conversion into Slack Form

maximize 3x;  + X + 2x3

subject to
X4 + x + 3x < 30
2X4 +  2Xx + 5x3 < 24
4 x + X + 2x3 < 36
> 0

X1,X2,X3‘

! . .
1 Conversion into slack form
|

Y
V4 = 3y  + Xo + 2X3
X4 = 30 — X1 — X2 — 3Xx3
Xs = 24 — 2x5 — 2x — b5x3
X6 = 36 — 4x4 — X2 — 2X3

II. Linear Programming Simplex Algorithm



Extended Example: Iteration 1
z = X1 4+ X 2Xx3
X2 = 30 -— X1 - Xo 3Xx3
Xs = 24 — 2x5 — 2Xx 5x3
X = 36 — 4x; - Xo 2X3
A

[Basic solution: (X1, Xz, ...,Xs) = (0,0, 0, 30,24, 36) ]
N

[This basic solution is feasible] [Objective value is 0.]

S|
&

N
/L

5
B
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Extended Example: Iteration 1

Increasing the value of x; would increase the objective value. ji

v
z = 3x;  + X2 + 2Xx3
Xxx2 = 30 -— Xy - Xo — 3Xx3
xs = 24 — 2x5 — 2x2 — 5x3
X = 36 — 4x; - Xo — 2X3

N

[The third constraint is the tightest and limits how much we can increase x; ;

N

\

P
Switch roles of x; and xs:
= Solving for x; yields:

Xo X3 X6
x=9-2_22_7
4 2 4

-

= Substitute this into x; in the other three equations

~

J
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Extended Example: Iteration 2
Increasing the value of x3 would increase the objective value.

N
z = 27 + 2 4 %—%
XS_G\%4XS+%

[Basic solution: (X1, Xz,...,Xs) = (9,0, 0,21, 6,0) with objective value 27]

el
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Extended Example: Iteration 2

_ X X3 _ 3%
z = 27 + 2 + 5 2
= _ X2 _ X3 _ Xs
o= 9 4 2 )
_ _ 3 _ 5 Xo
X = 21 4 2 v 7
_ _ 3 Xe
X5 = 6 5 4x3 + >
N
[The third constraint is the tightest and limits how much we can increase XS.J
A\
( N\
Switch roles of x; and xs:
= Solving for x3 yields:
3 3X2 X5 X6
X3=—— — — — —
2 8 4 8
= Substitute this into x3 in the other three equations
(. J

Sl
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Extended Example: Iteration 3

Increasing the value of x> would increase the objective value.

N
z:%Jrf_%_)és_qge
X4:64—9 %4-%_;‘_%

[Basic solution: (X7, %z, ..., %) = (2,0, %, £, 0,0) with objective value ! = 27.75]

5
el
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Extended Example: Iteration 3

_ 111 X _ x5 11X
Z = 7 T T 8 16
- 38 _ X X _ 5%
T % 6 8 16
3 _ %% _ X X
% 2 8 4 " 3
69 3x2 SXs X
" = 74 T 35 *t 7 16
NN
[The second constraint is the tightest and limits how much we can increase xz_e]
N S/
\
~

-
Switch roles of x> and x3:
= Solving for x; yields:

8X3 2X5 X6
Xo =4 — — — — —
3 3 g

= Substitute this into xz in the other three equations

- J

Sl
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Extended Example: lteration 4
TAII coefficients are negative, and hence this basic solution is optimal!

N
x4:18—§+%
N

[Basic solution: (x1,X2,...,Xs) = (8,4,0, 18,0, 0) with objective value 28 ]

el
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0, ) e (8,4,0)
0 (8.25,0,15) @ 28
27.75
X1
0.0.0)
27

[Exercise: How many basic solutions (including non-feasible ones) are there?]

S R
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Extended Example: Alternative Runs (1/2)

z
Xa
X5

Xe

X2

X4

Xe

X1

X2

Xa

30
24
36

18

31+ X2 4+ 2x3
X4 — Xo — 3x3
2X4 — 2Xo — 5X3
4x4 — X2 — 2x3
|
} Switch roles of x, and xs
\4
X, X
5X3 X5
A
_ % %
X2 2 Tt 2
X LS
?X1 + > + >
| Switch roles of x; and Xg
\4
B X _ 2%
6 6 3
X L X
5 T B 3
B 2% %
3 3 T3
X X
2 Tt 2

II. Linear Programming

Simplex Algorithm
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Extended Example: Alternative Runs (2/2)

z = 3xq + Xo + 2X3
X4 = 30 — X1 — Xo — 3x3
X5 = 24 — 2X4 — 2Xo — 5x3
X = 36 — 4x — X2 — 2X3

|
! Switch roles of x3 and xs

— 48 Hx X _ 2%
z = 5 +t 5 T 3 5
_ 78 X X2 3x
X4 = 3 + 5 + 5 + 5
o - 24 2a 2 _ 0%
3 - 5 5 5 5
132 164 Xo 2X3
X = < — —1 _ 22 £238
s 5 5 5 T 3
Switch roles of x4 and )g;,,—"/ \“\\ Switch roles of x, and x3
- >
_ 1 X2 x5 11X X3 X5 2xp
= 7 * 1 ] 16 z =2 - F - F - 73
— 33  _ X2 X 5Xs — X3 X _ X6
= % T T B 16 x = 8 4+ F + 3 3
_ 3 _ 3 00X X - _ &% 26 X
= 3 8 i 8 e = 4 3 3zt 3
_ 8 3 5 _ X6 = 18 - % X
= % T T T 3 76 X 2 T2
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 b = bijas

4 for cach j € N — { Rewrite “tight” equation
5 Qej = aij/ae g for enterring variable Xe.
6 dy = 1/a;.

7 // Compute the coefficients of the remaining constraints.

8 foreﬂchieB—{i} N

9 bi = bi —ajcb. { Substituting xe into

10 forcach j € N — e} other equations.

11 al/ = al/ Qjelej )
12 ll = _aleael

13 // Compute the objective function.

14 9 =v+cbh, . i )
15 foreach j € N — {e} | Substituting xe into

16 &) = ¢j = cCellyj objective function.

17 ¢ = —Coly J
18  // Compute new sets of basic and nonbasic variables. ~N
19 N = N —{eyU{l} Update non-basic

20 B =B—{ljU{e} and basic variables

21 return (N B.Ab.e D) J

S R
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X; = O for eachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = B,' — Z/é,/)(/,
jeN
we have X; = b; for each i € B. Hence X = be = by/a.
3. After substituting into the other constraints, we have

Xi = B,' =b; — a,-eBe. O
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?
* How do we choose the entering and leaving variables?

[ Example before was a particularly nice one! ]
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)

feasible basic solution (if it exists)

Returns a slack form with a ]

, while some index j € N has ;>0

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
Xl - bi
else x;, =0

.

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution. ]

II. Linear Programming
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢)
let A be a new vector of length m
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
9 choose an index / € B that minimizes A;
10 if A; ==o00

11 retnrn “nnbonnded”

0 ~J N N AW

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .’,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X+ X2 + X3
Xx = 8 — X3 - X
Xs = X2 — X3
i Pivot with x4 entering and x4 leaving
v
z = 8 + X3 — X4
Xy = 8 — X — X4
Xs = X2 — X3
[ Cycling: If additionally slack form at two } Pivot with x3 entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! |[¥
z = 8 4+ X2 - X2 - X
XY = 8 - X - X
X3 = Xo - X

i II. Linear Programming Simplex Algorithm 39



Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.

II. Linear Programming Simplex Algorithm
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
S

LReplace each b; by bi = bj + €, where ¢; > €ir1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most (") iterations.

A

Every set B of basic variables uniquely determines a slack
form, and there are at most (") unique slack forms.

II. Linear Programming Simplex Algorithm
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Outline

Finding an Initial Solution

g £y II. Linear Programming

Finding an Initial Solution
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Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo S 2
X1 — 5X2 S —4
X1, X2 > 0
|
i Conversion into slack form
\Z
z = 2xX1 — Xo
X3 = 2 - 2x1 + X2
X2 = -4 — Xq +  b5x
N

[Basic solution (X1, X2, X3, X+) = (0,0, 2, —4) is not feasible!]

S R
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Geometric lllustration

maximize 2X1
subject to

— Xo

— 5X2

VAN IA

2

—4 | Questions:

0 | = How to determine whether
there is any feasible solution?

= If there is one, how to determine
Ly an initial basic solution?

el e
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximize —xg, this is optimal for Laux
= “<": Suppose that the optimal objective value of Layx is 0
= Then X = 0, and the remaining solution values (X1, X2, ..., Xp) satisfy L. O

i
E:E II. Linear Programming Finding an Initial Solution
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

o

S B

Test solution with N = {1,2,...,n}, B={n+1,n+
2,...,n+m}, X; = b for i € B, X; = 0 otherwise.

let k be the index of the minimum b; -
ifhy >0 // is the initial basic solution feasible?
return ({1,2,....n} {n+1,n+2,..., n+m},Ab,c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x, X " "
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.
// L, has n + 1 nonbasic variables and m basic variables.
(N.B.A.b,c,v) = PVOT(N, B, A, b.c.v,1,0) ‘( Pivot step with x, leaving and x, entering. J
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
if the optimal solution to L, sets %o to 0 This pivot step does not change
if o is basic ) ) ) the value of any variable.
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x;y  — Xo
subject to
2xy - Xo < 2
X1 — 5X2 < —4
> 0

X1, X2
|
i Formulating the auxiliary linear program
|

A\

maximize - X
subject to
2xy - X — X < )
Xt — 9% - x < -4
Basic solution X1‘7 X2, Xo > 0
(D02 dinetisas ol i Converting into slack form
N v
V4 = _ Xo
X3 = 2 - 2x1 + X2 + X
X2 = -4 - X5 + 5 + X

S R
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Example of INITIALIZE-SIMPLEX (2/3)

z = — Xo
X3 = 2 —  2Xx + X2 +  Xo
X4 = -4 - Xy + 5% + X

|
i Pivot with xo entering and x4 leaving
v

z = -4 — x5 4+ 5 - x
Xo = 4 4+ x5 - 5 + X
X3 = 6 — X 4x, +  Xa
. . ” . . !
[Basm solution (4,0,0,6,0) is fea3|ble!] | Pivot with X, entering and x, leaving
v
Z = — Xo
4 _ Xo Xt X4
S - R
— 14 A0 _ sl 24
¥ = 5 7 5 5 T 3

[Optimal solution has xo = 0, hence the initial problem was feasible!j

Sl
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Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
— 4 X0 X X4
X = 5 % + o3 Tt 3
X3 = % 4+ X _ o2x %
— i Set xo = 0 and express objective function
[2X1 —xe=2x1—(§ -2+ 32+ g“)] ' by non-basic variables
- _4 X X
o % 2
— 4 A 24
X = 5 °* oD T35
X3 = % — % + ﬁ
e

[Basic solution (0, 2, ¥, 0), which is feasible!]

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Sl
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. isinfeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

el
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Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

( Standard Form ]
( Slack Form ]
No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

-

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

el e
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Linear Programming and Simplex: Summary and Outlook

Linear Programming
= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time .
(N

[

X1

-

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions

(not just vertices!)

i
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Test your Understanding

Which of the following statements are true?

1. In each iteration of the Simplex algorithm, the objective function
increases.

2. There exist linear programs that have exactly two optimal solutions.
3. There exist linear programs that have infinitely many optimal solutions.
4. The Simplex algorithm always runs in worst-case polynomial time.

II. Linear Programmin, Finding an Initial Solution
g 9 g
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