
Computer Science Tripos
Syllabus and Booklist 2018–19

Contents

Introduction to Part IA 4
Entry to the Computer Science Tripos . 4
Computer Science Tripos Part IA . 4
Natural Sciences Part IA students . 4
The curriculum . 4

Michaelmas Term 2018: Part IA lectures 6
Paper 1: Foundations of Computer Science . 6
Paper 1: Object-Oriented Programming . 8
Paper 2: Digital Electronics . 10
Paper 2: Discrete Mathematics . 12
Paper 3: Databases . 14
Paper 3: Introduction to Graphics . 15
Scientific Computing Practical Course . 17

Lent Term 2019: Part IA lectures 18
Paper 1: Algorithms . 18
Paper 2: Operating Systems . 19
Paper 3: Machine Learning and Real-world Data 21

Easter Term 2019: Part IA lectures 23
Paper 1: Numerical Analysis . 23
Paper 2: Software and Security Engineering . 24
Paper 3: Interaction Design . 27

Preparing to Study Computer Science 28

Introduction to Part IB 29

Michaelmas Term 2018: Part IB lectures 30
Computer Design . 30
Concurrent and Distributed Systems . 32
ECAD and Architecture Practical Classes . 36
Paper 7: Economics, Law and Ethics . 37
Foundations of Data Science . 38
Paper 7: Further Graphics . 40

2

Further Java . 41
Group Project . 42
Programming in C and C++ . 43
Semantics of Programming Languages . 45
Unix Tools . 46

Lent Term 2019: Part IB lectures 48
Compiler Construction . 48
Computation Theory . 49
Computer Networking . 51
Paper 7: Further Human–Computer Interaction 52
Logic and Proof . 53
Paper 7: Prolog . 55

Easter Term 2019: Part IB lectures 57
Artificial Intelligence . 57
Complexity Theory . 59
Paper 7: Concepts in Programming Languages 60
Paper 7: Formal Models of Language . 62
Security . 64

Introduction to Part II 66

Michaelmas Term 2018: Part II lectures 68
Bioinformatics . 68
Business Studies . 69
Unit: Cloud Computing . 71
Unit: Data Science: principles and practice . 72
Denotational Semantics . 74
Information Theory . 75
LaTeX and MATLAB . 78
Unit: Metaprogramming . 78
Unit: Multicore Semantics and Programming . 80
Unit: Natural Language Processing . 81
Principles of Communications . 83
Quantum Computing . 84
Types . 85

Lent Term 2019: Part II lectures 88
Unit: Advanced Graphics and Image Processing 88
Comparative Architectures . 89
Computer Vision . 91
Cryptography . 93
Unit: Digital Signal Processing . 95
Unit: Digital Signal Processing with Computer Music 97
E-Commerce . 98
Unit: Mobile Robot Systems . 99
Mobile and Sensor Systems . 101
Optimising Compilers . 103

3

Unit: Probability and Computation . 104
Unit: Topics in Concurrency . 105

Easter Term 2019: Part II lectures 108
Advanced Algorithms . 108
Business Studies Seminars . 109
Hoare Logic and Model Checking . 109
Machine Learning and Bayesian Inference . 111

4 University of Cambridge

Introduction to Part IA

Entry to the Computer Science Tripos

The only essential GCE A level for admission to Cambridge to read for the Computer
Science Tripos is Mathematics. Also desirable are Further Mathematics and a physical
science (Physics, Chemistry or Geology) at A level, or at AS level if not taken at A level.
Some colleges may ask candidates to take the Advanced Extension Award or STEP
papers in Mathematics.

Computer Science Tripos Part IA

Part IA students taking the 75% Computer Science option will attend all lectures for
Papers 1, 2 and 3. In addition they attend the Mathematics course offered for Part IA of the
Natural Sciences Tripos (NST).

Students taking the 50% Computer Science option will take one of the following:

Part IA students accepted to read Computer Science with Mathematics will attend the
lectures for Papers 1 and 2 of the Computer Science Tripos in addition to Papers 1 and 2
of Part IA of the Mathematical Tripos.

Part IA students who take a Natural Science option selected from Chemistry, Evolution
and Behaviour, Earth Sciences, Physics, and Physiology of Organisms will attend Papers
1 and 2 of the Computer Science Tripos as well as the Mathematics course offered for
Part IA of the Natural Sciences Tripos (NST).

An A level in a science subject is desirable for students taking an NST option. Computer
Science students taking an NST option are expected to undertake practical work on the
same basis as for the Natural Science Tripos.

Natural Sciences Part IA students

There is a Computer Science option in the first year of the Natural Sciences Tripos,
counting as one quarter of the year’s work. Students taking this option attend all the
lectures and practicals for Paper 1.

The curriculum

This document lists the courses offered by the Computer Laboratory for Papers 1, 2 and 3
of Part IA of the Computer Science Tripos. Separate booklets give details of the syllabus
for the second- and third-year courses in Computer Science.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/timetables/

http://www.cl.cam.ac.uk/teaching/timetables/

Computer Science Tripos Part IA 5

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

For further copies of this booklet and for answers to general enquiries about Computer
Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 763505
fax: 01223 334678
e-mail: teaching-admin@cl.cam.ac.uk

http://www.cl.cam.ac.uk/library/
mailto:teaching-admin@cl.cam.ac.uk

6 University of Cambridge

Michaelmas Term 2018: Part IA lectures

Paper 1: Foundations of Computer Science

Lecturers: Professor A. Mycroft, Dr A. Prorok

No. of lectures and practicals: 12 + 5 (NST students will take 4 practicals)

Suggested hours of supervisions: 3

This course is a prerequisite for Programming in Java and Prolog (Part IB).

Aims

The main aim of this course is to present the basic principles of programming. As the
introductory course of the Computer Science Tripos, it caters for students from all
backgrounds. To those who have had no programming experience, it will be
comprehensible; to those experienced in languages such as C, it will attempt to correct
any bad habits that they have learnt.

A further aim is to introduce the principles of data structures and algorithms. The course
will emphasise the algorithmic side of programming, focusing on problem-solving rather
than on hardware-level bits and bytes. Accordingly it will present basic algorithms for
sorting, searching, etc., and discuss their efficiency using O-notation. Worked examples
(such as polynomial arithmetic) will demonstrate how algorithmic ideas can be used to
build efficient applications.

The course will use a functional language (ML). ML is particularly appropriate for
inexperienced programmers, since a faulty program cannot crash and ML’s unobtrusive
type system captures many program faults before execution. The course will present the
elements of functional programming, such as curried and higher-order functions. But it will
also introduce traditional (procedural) programming, such as assignments, arrays and
references.

Lectures

• Introduction to Programming. The role of abstraction and representation.
Introduction to integer and floating-point arithmetic. Declaring functions. Decisions
and booleans. Example: integer exponentiation.

• Recursion and Efficiency. Examples: Exponentiation and summing integers.
Overloading. Iteration versus recursion. Examples of growth rates. Dominance and
O-Notation. The costs of some representative functions. Cost estimation.

• Lists. Basic list operations. Append. Naı̈ve versus efficient functions for length and
reverse. Strings.

• More on lists. The utilities take and drop. Pattern-matching: zip, unzip. A word on
polymorphism. The “making change” example.

Computer Science Tripos Part IA 7

• Sorting. A random number generator. Insertion sort, mergesort, quicksort. Their
efficiency.

• Datatypes and trees. Pattern-matching and case expressions. Exceptions. Binary
tree traversal (conversion to lists): preorder, inorder, postorder.

• Dictionaries and functional arrays. Functional arrays. Dictionaries: association
lists (slow) versus binary search trees. Problems with unbalanced trees.

• Functions as values. Nameless functions. Currying. The “apply to all” functional,
map. Examples: matrix transpose and product. The predicate functionals filter

and exists.

• Sequences, or lazy lists. Non-strict functions such as IF. Call-by-need versus
call-by-name. Lazy lists. Their implementation in ML. Applications, for example
Newton-Raphson square roots.

• Queues and search strategies. Depth-first search and its limitations. Breadth-first
search (BFS). Implementing BFS using lists. An efficient representation of queues.
Importance of efficient data representation.

• Polynomial arithmetic. Addition, multiplication of polynomials using ideas from
sorting, etc.

• Elements of procedural programming. Address versus contents. Assignment
versus binding. Own variables. Arrays, mutable or not. Introduction to linked lists.

Objectives

At the end of the course, students should

• be able to write simple ML programs;

• understand the fundamentals of using a data structure to represent some
mathematical abstraction;

• be able to estimate the efficiency of simple algorithms, using the notions of
average-case, worse-case and amortised costs;

• know the comparative advantages of insertion sort, quick sort and merge sort;

• understand binary search and binary search trees;

• know how to use currying and higher-order functions;

• understand how ML combines imperative and functional programming in a single
language.

8 University of Cambridge

Recommended reading

* Paulson, L.C. (1996). ML for the working programmer. Cambridge University Press
(2nd ed.).
Okasaki, C. (1998). Purely functional data structures. Cambridge University Press.

For reference only:
Gansner, E.R. & Reppy, J.H. (2004). The Standard ML Basis Library. Cambridge
University Press. ISBN: 0521794781

Paper 1: Object-Oriented Programming

Lecturer: Dr A.C. Rice

No. of lectures and practicals: 12 + 5

Suggested hours of supervisions: 3

Aims

The goal of this course is to provide students with an understanding of Object-Oriented
Programming. Concepts are demonstrated in multiple languages, but the primary
language is Java.

Lecture syllabus

• Types, Objects and Classes Moving from functional to imperative. Functions,
methods. Control flow. values, variables and types. Primitive Types. Classes as
custom types. Objects vs Classes. Class definition, constructirs. Statioc data and
methods.

• Designing Classes Identifying classes. UML class diagrams. Modularity.
Encapsulation/data hiding. Immutability. Access modifiers. Parameterised types
(Generics).

• Pointers, References and Memory Pointers and references. Reference types in
Java. The call stack. The heap. Iteration and recursion. Pass-by-value and
pass-by-reference.

• Inheritance Inheritance. Casting. Shadowing. Overloading. Overriding. Abstract
Methods and Classes.

• Polymorphism and Multiple Inheritance Polymorphism in ML and Java. Multiple
inheritance. Interfaces in Java.

• Lifecycle of an Object Constructors and chaining. Destructors. Finalizers. Garbage
Collection: reference counting, tracing.

Computer Science Tripos Part IA 9

• Java Collections and Object Comparison Java Collection interface. Key classes.
Collections class. Iteration options and the use of Iterator. Comparing primitives and
objects. Operator overloading.

• Error Handling Types of errors. Limitations of return values. Deferred error
handling. Exceptions. Custom exceptions. Checked vs unchecked. Inappropriate
use of exceptions. Assertions.

• Copying Objects. Shallow and deep copies. Copy constructors. Cloning in Java.
Cloneable as a marker interface in Java.

• DesignLanguage evolution Need for languages to evolve. Generics in Java. Type
erasure. Introduction to Java 8: Lambda functions, functions as values, method
references, streams.

• Design Patterns Introduction to design patterns. Open-closed principle. Examples
of Singleton, Decorator, State, Composite, Strategy, Observer. [2 lectures]

Objectives

At the end of the course students should

• be familiar with the main features and limitations of the Java language;

• be able to write a Java program to solve a well specified problem;

• understand the principles of OOP;

• be able to demonstrate good object-oriented programming skills in Java;

• be able to describe, recognise, apply and implement selected design patterns in
Java;

• be familiar with common errors in Java and its associated libraries;

• understand a Java program written by someone else;

• be able to debug and test Java programs;

• be familiar with major parts of Java 8 SE libraries;

• understand how to read Javadoc library documentation and reuse library code.

Recommended reading

No single text book covers all of the topics in this course. For those new to OOP, the best
introductions are usually found in the introductory programming texts for OOP languages
(such as Java, python or C++). Look for those that are for people new to programming
rather than those that are designed for programmers transitioning between languages (the
Deitel book is highlighted for this reason). The web is also a very useful resource — look
for Java tutorials.

10 University of Cambridge

* Deitel, H.M. & Deitel, P.J. (2009). Java: How to Program. Prentice Hall (8th ed.).
Flanagan, D. (2005). Java in a nutshell : a desktop quick reference. O’Reilly (5th ed.).
Flanagan, D. (2004). Java examples in a nutshell : a tutorial companion to Java in a
nutshell. O’Reilly (3rd ed.).
Gamma, E., Helm, R., Johnson, R. & Vlissides, A. (1995). Design patterns: elements of
reusable object-oriented software. Addison-Wesley.
Bloch, J. & Gafter, N. (2005). Java puzzlers. Addison-Wesley.

Paper 2: Digital Electronics

This course is not taken by NST students.

Lecturer: Dr I.J. Wassell

No. of lectures and practical classes: 12 + 7

Suggested hours of supervisions: 3

This course is a prerequisite for Operating Systems and Computer Design (Part IB), ECAD
and Architecture Practical Classes (Part IB).

Aims

The aims of this course are to present the principles of combinational and sequential
digital logic design and optimisation at a gate level. The use of n and p channel MOSFETs
for building logic gates is also introduced.

Lectures

• Introduction. Semiconductors to computers. Logic variables. Examples of simple
logic. Logic gates. Boolean algebra. De Morgan’s theorem.

• Logic minimisation. Truth tables and normal forms. Karnaugh maps.
Quine-McCluskey method.

• Binary adders. Half adder, full adder, ripple carry adder, fast carry generation.

• Combinational logic design: further considerations. Multilevel logic. Gate
propagation delay. An introduction to timing diagrams. Hazards and hazard
elimination. Other ways to implement combinational logic.

• Introduction to practical classes. Prototyping box. Breadboard and Dual in line
(DIL) packages. Wiring. Use of oscilloscope.

• Sequential logic. Memory elements. RS latch. Transparent D latch. Master–slave
D flip-flop. T and JK flip-flops. Setup and hold times.

• Sequential logic. Counters: Ripple and synchronous. Shift registers.

Computer Science Tripos Part IA 11

• Synchronous State Machines. Moore and Mealy finite state machines (FSMs).
Reset and self starting. State transition diagrams. Elimination of redundant states.

• Further state machines. State assignment: sequential, sliding, shift register, one
hot. Implementation of FSMs.

• Electronics, Devices and Circuits. Current and voltage, resistance, basic circuit
theory, the potential divider. Solving non-linear circuits. Materials, semiconductors
and the p-n junction, i.e., the diode. n and p channel MOSFETs and n-MOSFET
logic, e.g., n-MOSFET inverter. Switching speed and power consumption problems
in n-MOSFET logic. CMOS logic. Logic families. Noise margin. Analogue interfacing
and operational amplifiers. [3 lectures]

Objectives

At the end of the course students should

• understand the relationships between combination logic and boolean algebra, and
between sequential logic and finite state machines;

• be able to design and minimise combinational logic;

• appreciate tradeoffs in complexity and speed of combinational designs;

• understand how state can be stored in a digital logic circuit;

• know how to design a simple finite state machine from a specification and be able to
implement this in gates and edge triggered flip-flops;

• understand how to use MOSFETs to build digital logic circuits.

• understand the effect of finite load capacitance on the performance of digital logic
circuits.

• understand basic analogue interfacing.

Recommended reading

* Harris, D.M. & Harris, S.L. (2013). Digital design and computer architecture. Morgan
Kaufmann (2nd ed.). The first edition is still relevant.
Katz, R.H. (2004). Contemporary logic design. Benjamin/Cummings. The 1994 edition is
more than sufficient.
Hayes, J.P. (1993). Introduction to digital logic design. Addison-Wesley.

Books for reference:

Horowitz, P. & Hill, W. (1989). The art of electronics. Cambridge University Press (2nd ed.)
(more analog).
Weste, N.H.E. & Harris, D. (2005). CMOS VLSI Design – a circuits and systems
perspective. Addison-Wesley (3rd ed.).
Mead, C. & Conway, L. (1980). Introduction to VLSI systems. Addison-Wesley.

12 University of Cambridge

Crowe, J. & Hayes-Gill, B. (1998). Introduction to digital electronics.
Butterworth-Heinemann.
Gibson, J.R. (1992). Electronic logic circuits. Butterworth-Heinemann.

Paper 2: Discrete Mathematics

This course is not taken by NST students.

Lecturers: Professor G. Winskel and Professor F. Stajano

No. of lectures: 24 (continued into Lent term)

Suggested hours of supervisions: 6

This course is a prerequisite for all theory courses as well as: Probability, Security,
Artificial Intelligence, Compiler Construction and the following Part II courses: Machine
Learning and Bayesian Inference and Cryptography

Aims

The course aims to introduce the mathematics of discrete structures, showing it as an
essential tool for computer science that can be clever and beautiful.

Lectures

• Proof [5 lectures].

Proofs in practice and mathematical jargon. Mathematical statements: implication,
bi-implication, universal quantification, conjunction, existential quantification,
disjunction, negation. Logical deduction: proof strategies and patterns, scratch work,
logical equivalences. Proof by contradiction. Divisibility and congruences. Fermat’s
Little Theorem.

• Numbers [5 lectures].

Number systems: natural numbers, integers, rationals, modular integers. The
Division Theorem and Algorithm. Modular arithmetic. Sets: membership and
comprehension. The greatest common divisor, and Euclid’s Algorithm and Theorem.
The Extended Euclid’s Algorithm and multiplicative inverses in modular arithmetic.
The Diffie-Hellman cryptographic method. Mathematical induction: Binomial
Theorem, Pascal’s Triangle, Fundamental Theorem of Arithmetic, Euclid’s infinity of
primes.

• Sets [9 lectures].

Extensionality Axiom: subsets and supersets. Separation Principle: Russell’s
Paradox, the empty set. Powerset Axiom: the powerset Boolean algebra, Venn and
Hasse diagrams. Pairing Axiom: singletons, ordered pairs, products. Union axiom:
big unions, big intersections, disjoint unions. Relations: composition, matrices,
directed graphs, preorders and partial orders. Partial and (total) functions.
Bijections: sections and retractions. Equivalence relations and set partitions.

Computer Science Tripos Part IA 13

Calculus of bijections: characteristic (or indicator) functions. Finite cardinality and
counting. Infinity axiom. Surjections. Enumerable and countable sets. Axiom of
choice. Injections. Images: direct and inverse images. Replacement Axiom:
set-indexed constructions. Set cardinality: Cantor-Schoeder-Bernstein Theorem,
unbounded cardinality, diagonalisation, fixed-points. Foundation Axiom.

• Formal languages and automata [5 lectures].

Introduction to inductive definitions using rules and proof by rule induction. Abstract
syntax trees.

Regular expressions and their algebra.

Finite automata and regular languages: Kleene’s theorem and the Pumping Lemma.

Objectives

On completing the course, students should be able to

• prove and disprove mathematical statements using a variety of techniques;

• apply the mathematical principle of induction;

• know the basics of modular arithmetic and appreciate its role in cryptography;

• understand and use the language of set theory in applications to computer science;

• define sets inductively using rules and prove properties about them;

• convert between regular expressions and finite automata;

• use the Pumping Lemma to prove that a language is not regular.

Recommended reading

Biggs, N.L. (2002). Discrete mathematics. Oxford University Press (Second Edition).
Davenport, H. (2008). The higher arithmetic: an introduction to the theory of numbers.
Cambridge University Press.
Hammack, R. (2013). Book of proof. Privately published (Second edition). Available at:
http://www.people.vcu.edu/ rhammack/BookOfProof/index.html

Houston, K. (2009). How to think like a mathematician: a companion to undergraduate
mathematics. Cambridge University Press.
Kozen, D.C. (1997). Automata and computability. Springer.
Lehman, E.; Leighton, F.T.; Meyer, A.R. (2014). Mathematics for computer science.
Available on-line.
Velleman, D.J. (2006). How to prove it: a structured approach. Cambridge University
Press (Second Edition).

http://www.people.vcu.edu/~rhammack/BookOfProof/index.html

14 University of Cambridge

Paper 3: Databases

This course is only taken by Part IA and Part IB Paper 3 students

Lecturer: Dr T.G. Griffin

No. of lectures and practical classes: 8 + 4

Suggested hours of supervisions: 3

Prerequisite courses: None

Aims

This course introduces basic concepts for database systems as seen from the perspective
of application designers. That is, the focus is on the abstractions supported by database
management systems and not on how those abstractions are implemented.

The database world is currently undergoing swift and dramatic transformations largely
driven by Internet-oriented applications and services. Today many more options are
available to database application developers than in the past and so it is becoming
increasingly difficult to sort fact from fiction. The course attempts to cut through the fog
with a practical approach that emphasises engineering tradeoffs that underpin these
recent developments and also guide our selection of “the right tool for the job.”

This course covers three approaches. First, the traditional mainstay of the database
industry — the relational approach — is described with emphasis on eliminating logical
redundancy in data. Then two representatives of recent trends are presented —
graph-oriented and document-oriented databases. The lectures are tightly integrated with
the associated practical sessions where students gain hands-on experience with all three
of these approaches.

Lectures

• Introduction. What is a database system? What is a data model? A central tradeoff
in the choice of data representation: optimise for ease of updating or for fast query
response. On-Line Transaction Processing (OLTP) versus On-line Analytical
Processing (OLAP). Application independent versus application specific data
representations. [1 lecture]

• Conceptual modeling The Entity-Relationship (ER) approach as an
implementation-independent technique for modeling data. [1 lecture]

• The relational model Implementing ER models with relational tables. Relational
algebra and SQL. Update anomalies caused by logical redundancy. Minimise logical
redundancy with normalised data representation. What is transitive closure? Why
SQL struggles with transitive closure. [2 lectures]

• The graph-oriented model The NoSQL movement. Implementing ER models in a
graph-oriented database. Graph databases: optimised for computing transitive
closure. Path-oriented queries. [2 lectures]

Computer Science Tripos Part IA 15

• The document-oriented model Semi-structured data (XML, JSON).
Document-oriented databases. Embracing data redundancy: representing data for
fast, application-specific, access. [1 lecture]

• The multi-dimensional model. Data cubes, star schema, data warehouse.
[1 lecture]

Objectives

At the end of the course students should

• be able to design entity-relationship diagrams to represent simple database
application scenarios

• know how to convert entity-relationship diagrams to relational- and graph-oriented
implementations

• understand the fundamental tradeoff between the ease of updating data and the
response time of complex queries

• understand that no single data architecture can be used to meet all data
management requirements

• be familiar with recent trends in the database area.

Recommended reading

Lemahieu, W., Broucke, S. van den & Baesens, B. (2018) Principles of database
management. Cambridge University Press.

Paper 3: Introduction to Graphics

This course is only taken by Part IA and Part IB Paper 3 students.

Lecturer: Dr R.K. Mantiuk and Professor P. Robinson

No. of lectures and practical classes: 8 + 4

Suggested hours of supervisions: 2

Prerequisite courses: None

This course is a prerequisite for Further Graphics

Aims

To introduce the necessary background, the basic algorithms, and the applications of
computer graphics and graphics hardware.

16 University of Cambridge

Lectures

• Background. What is an image? Resolution and quantisation. Storage of images in
memory. [1 lecture]

• Rendering. Perspective. Reflection of light from surfaces and shading. Geometric
models. Ray tracing. [2 lectures]

• Graphics pipeline. Polygonal mesh models. Transformations using matrices in 2D
and 3D. Homogeneous coordinates. Projection: orthographic and perspective. [1
lecture]

• Graphics hardware and modern OpenGL. GPU rendering. GPU frameworks and
APIs. Vertex processing. Rasterisation. Fragment processing. Working with meshes
and textures. Z-buffer. Double-buffering and frame synchronization. [3 lectures]

• Colour. Perception of colour. Colour spaces. [1 lecture]

Objectives

By the end of the course students should be able to:

• understand and apply in practice basic concepts of ray-tracing: ray-object
intersection, reflections, refraction, shadow rays, distributed ray-tracing, direct and
indirect illumination;

• describe and explain the following algorithms: Gouraud and Phong shading, z-buffer,
texture mapping, double buffering, mip-map, bump- and normal-mapping;

• use matrices and homogeneous coordinates to represent and perform 2D and 3D
transformations; understand and use 3D to 2D projection, the viewing volume, and
3D clipping;

• implement OpenGL code for rendering of polygonal objects, control camera and
lighting, work with vertex and fragment shaders;

• describe a number of colour spaces and their relative merits.

Recommended reading

* Shirley, P. & Marschner, S. (2009). Fundamentals of Computer Graphics. CRC Press
(3rd ed.).
Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer graphics:
principles and practice. Addison-Wesley (2nd ed.).
Kessenich, J.M., Sellers, G. and Shreiner, D (2016). OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, [seventh edition and later]

Computer Science Tripos Part IA 17

Scientific Computing Practical Course

This is a practical course taken by Part IA CST students only. It is taught through one
introductory lecture, followed by an online course which is equivalent in content to
approximately 5 lectures. Students will normally work though the online component at their
own pace. The course will be entirely examined through practical exercises.

Lecturer: Dr D. Wischik

No. of lectures: 1 (plus an online course with roughly 5 lectures worth of material in the
Lent term)

Suggested hours of supervisions: none

Prerequisite courses: Foundations of Computer Science, NST Mathematics

This course is a prerequisite for Foundations of Data Science (Part IB)

Aims

This course is a hands-on introduction to using computers to investigate scientific models
and data.

Syllabus

• Python notebooks. Overview of the Python programming language. Use of
notebooks for scientific computing.

• Numerical computation. Writing fast vectorized code in numpy. Optimization and
fitting. Simulation.

• Working with data. Data import. Common ways to summarize and plot data, for
univariate and multivariate analysis.

Objectives

At the end of the course students should

• be able to import data, plot it, and summarize it appropriately

• be able to write fast vectorized code for scientific / data work

18 University of Cambridge

Lent Term 2019: Part IA lectures

Paper 1: Algorithms

Lecturers: Professor F. Stajano and Dr D. Wischik

No. of lectures and practical classes: 24 + 3 (NST students take 1 practical)

Suggested hours of supervisions: 6

Prerequisite courses: Foundations of Computer Science, Object-Oriented Programming

This course is a prerequisite for: Artificial Intelligence, Complexity Theory, Further
Graphics, Prolog and the following Part II courses: Advanced Algorithms and Machine
Learning and Bayesian Inference

Aims

The aim of this course is to provide an introduction to computer algorithms and data
structures, with an emphasis on foundational material.

Lectures

• Sorting. Review of complexity and O-notation. Trivial sorting algorithms of quadratic
complexity. Review of merge sort and quicksort, understanding their memory
behaviour on statically allocated arrays. Heapsort. Stability. Other sorting methods
including sorting in linear time. Median and order statistics. [Ref: CLRS3 chapters 1,
2, 3, 6, 7, 8, 9] [about 4 lectures]

• Strategies for algorithm design. Dynamic programming, divide and conquer,
greedy algorithms and other useful paradigms. [Ref: CLRS3 chapters 4, 15, 16]
[about 3 lectures]

• Data structures. Elementary data structures: pointers, objects, stacks, queues,
lists, trees. Binary search trees. Red-black trees. B-trees. Hash tables. Priority
queues and heaps. [Ref: CLRS3 chapters 6, 10, 11, 12, 13, 18] [about 5 lectures]

• Graph algorithms. Graph representations. Breadth-first and depth-first search.
Topological sort. Minimum spanning tree. Kruskal and Prim algorithms.
Single-source shortest paths: Bellman-Ford and Dijkstra algorithms. All-pairs
shortest paths: matrix multiplication and Johnson’s algorithms. Maximum flow:
Ford-Fulkerson method, Max-Flow Min-Cut Theorem. Matchings in bipartite graphs.
[Ref: CLRS3 chapters 22, 23, 24, 25, 26] [about 7 lectures]

• Advanced data structures. Binomial heap. Amortized analysis: aggregate
analysis, potential method. Fibonacci heaps. Disjoint sets. [Ref: CLRS3 chapters
17, 19, 20, 21] [about 4 lectures]

• Geometric algorithms. Intersection of segments. Convex hull: Graham’s scan,
Jarvis’s march. [Ref: CLRS3 chapter 33] [about 1 lecture]

Computer Science Tripos Part IA 19

Objectives

At the end of the course students should:

• have a thorough understanding of several classical algorithms and data structures;

• be able to analyse the space and time efficiency of most algorithms;

• have a good understanding of how a smart choice of data structures may be used to
increase the efficiency of particular algorithms;

• be able to design new algorithms or modify existing ones for new applications and
reason about the efficiency of the result.

Recommended reading

* Cormen, T.H., Leiserson, C.D., Rivest, R.L. & Stein, C. (2009). Introduction to
Algorithms. MIT Press (3rd ed.). ISBN 978-0-262-53305-8
Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley. ISBN 978-0-321-57351-3.
Kleinberg, J. & Tardos, É. (2006). Algorithm design. Addison-Wesley. ISBN
978-0-321-29535-4.
Knuth, D.A. (2011). The Art of Computer Programming. Addison-Wesley. ISBN
978-0-321-75104-1.

Paper 2: Operating Systems

This course is not taken by NST students.

Lecturer: Dr. R. Mortier

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Computer Fundamentals, Digital Electronics

This course is a prerequisite for Concurrent & Distributed Systems (Part IB), Security and
Mobile and Sensor Systems (Part II).

Aims

The overall aim of this course is to provide a general understanding of the structure and
key functions of the operating system. Case studies will be used to illustrate and reinforce
fundamental concepts.

Lectures

• Introduction to operating systems. Abstract view of an operating system.
Elementary computer architecture. OS evolution: multi-programming, time-sharing.
[1 lecture]

20 University of Cambridge

• Protection. Dual-mode operation. Protecting I/O, memory, CPU. Kernels and
micro-kernels. Virtual machines and containers. Subjects and objects.
Authentication. Access matrix: ACLs and capabilities. Combined scheme. Covert
channels. [1 lecture]

• Processes. Job/process concepts. Lifecycle. Process management. Inter-process
communication. [1 lecture]

• Scheduling. Scheduling basics: CPU-I/O interleaving, (non-)preemption, context
switching. Scheduling algorithms: FCFS, SJF, SRTF, priority scheduling, round
robin. Combined schemes. [2 lectures]

• Memory management. Processes in memory. Logical addresses. Partitions: static
versus dynamic, free space management, external fragmentation. Segmented
memory. Paged memory: concepts, internal fragmentation, page tables. Demand
paging/segmentation. Replacement strategies: OPT, FIFO, LRU (and
approximations), NRU, LFU/MFU, MRU. Working set schemes. [3 lectures]

• I/O subsystem. General structure. Polled mode versus interrupt-driven I/O.
Application I/O interface: block and character devices, buffering, blocking versus
non-blocking I/O. Other issues: caching, scheduling, spooling, performance.
[1 lecture]

• File management. File concept. Directory and storage services. File names and
meta-data. Directory name-space: hierarchies, DAGs, hard and soft links. File
operations. Access control. Existence and concurrency control. [1 lecture]

• Unix case study. History. General structure. Unix file system: file abstraction,
directories, mount points, implementation details. Processes: memory image, life
cycle, start of day. The shell: basic operation, commands, standard I/O, redirection,
pipes, signals. Character and block I/O. Process scheduling. [2 lectures]

Objectives

At the end of the course students should be able to

• describe the general structure and purpose of an operating system;

• explain the concepts of process, address space, and file;

• compare and contrast various CPU scheduling algorithms;

• understand the differences between segmented and paged memories, and be able
to describe the advantages and disadvantages of each;

• compare and contrast polled, interrupt-driven and DMA-based access to I/O devices.

Computer Science Tripos Part IA 21

Recommended reading

* Bacon, J. & Harris, T. (2003). Operating systems. Addison-Wesley (3rd ed.).
Silberschatz, A., Peterson, J.L. & Galvin, P.C. (2008). Operating systems concepts. Wiley
(8th ed.).
Anderson, T. & Dahlin, M. (2014). Operating Systems: Principles & Practice. Recursive
Books (2nd ed.).
Leffler, S. (1989). The design and implementation of the 4.3BSD Unix operating system.
Addison-Wesley.
McKusick, M.K., Neville-Neil, G.N. & Watson, R.N.M. (2014) The Design and
Implementation of the FreeBSD Operating System. Pearson Education. (2nd ed.).
Solomon, D. & Russinovich, M. (2000). Inside Windows 2000. Microsoft Press (3rd ed.).

Paper 3: Machine Learning and Real-world Data

This course is only taken by Part IA and Part IB Paper 3 students.

Lecturers: Professor S.H. Teufel, Dr P. Buttery and Professor A. Copestake

No. of lectures and practical classes: 16

Suggested hours of supervisions: 4

Prerequisite courses: NST Mathematics

Aims

This course introduces students to machine learning algorithms as used in real-world
applications, and to the experimental methodology necessary to perform statistical
analysis of large-scale data from unpredictable processes. Students will perform 3
extended practicals, as follows:

• Statistical classification: Determining movie review sentiment using Naive Bayes (7
sessions);

• Sequence Analysis: Hidden Markov Modelling and its application to a task from
biology (predicting protein interactions with a cell membrane) (4 sessions);

• Analysis of social networks, including detection of cliques and central nodes (5
sessions).

Syllabus

• Topic One: Statistical Classification [7 sessions].
Introduction to sentiment classification.
Naive Bayes parameter estimation.
Statistical laws of language.
Statistical tests for classification tasks.
Cross-validation and test sets.
Uncertainty and human agreement.

22 University of Cambridge

• Topic Two: Sequence Analysis [4 sessions].
Hidden Markov Models (HMM) and HMM training.
The Viterbi algorithm.
Using an HMM in a biological application.

• Topic Three: Social Networks [5 sessions].
Properties of networks: Degree, Diameter.
Betweenness Centrality.
Clustering using betweenness centrality.

Objectives

By the end of the course students should be able to:

• understand and program two simple supervised machine learning algorithms;

• use these algorithms in statistically valid experiments, including the design of
baselines, evaluation metrics, statistical testing of results, and provision against
overtraining;

• visualise the connectivity and centrality in large networks;

• use clustering (i.e., a type of unsupervised machine learning) for detection of cliques
in unstructured networks.

Recommended reading

Jurafsky, D. & Martin, J. (2008). Speech and language processing. Prentice Hall.
Easley, D. and Kleinberg, J. (2010). Networks, crowds, and markets: reasoning about a
highly connected world. Cambridge University Press.

Computer Science Tripos Part IA 23

Easter Term 2019: Part IA lectures

Paper 1: Numerical Analysis

Lecturer: Dr Bogdan Roman

No. of lectures: 12

Suggested hours of supervisions: 4

Aims

This course will introduce (IEEE) floating point representation and arithmetic, and core
topics in the field of Numerical Analysis. Examples of their application in practice will be
presented along with code snippets.

Lectures

The website will announce the list of examinable topics by the last lecture.

• Fundamentals. Floating-point (IEEE) data representation, arithmetic and
associated issues (underflow, overflow, errors, loss of significance, etc.)

• Root-finding and stopping criteria. Iteration, bisection and secant, Newton’s and
gradient methods, order of convergence, condition number, partial derivatives,
backwards stability and chaos.

• Linear Systems. Gaussian elimination and pivoting, factorization techniques, linear
least squares, eigenvalues and eigenvectors.

• Implementations. Taylor, Chebychev, splines, implementation of scientific functions,
Cordic.

• Finite-Differences, Monte Carlo, Fluid Flow. Numerical simulation of SHM,
charge/discharge, waves and other examples, steady state by linear flow circuit
analysis.

• Adaptive Methods and Custom Encodings. Arbitrary precision and adaptive
floating point, non-linear representations and quantisation, interval arithmetic,
simulated annealing.

Objectives

The course should enable students to

• convert decimal numbers to/from IEEE floating-point format, understand the
properties of floating-point arithmetic and identify implementations issues;

24 University of Cambridge

• understand and use some core concepts and algorithms in Numerical Analysis;

• decide computation energy/accuracy tradeoffs, and to be familiar with a range of
examples of Numerical Analysis in Computer Science

Recommended reading

Faul, A.C. (2016). A concise introduction to Numerical Analysis. CRC Press.
Overton, M.L. (2001). Numerical computing with IEEE floating point arithmetic. SIAM.

Further reading (goes beyond the course):

Goldberg, D. (1991). What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, vol. 23, pp. 5–48.

Paper 2: Software and Security Engineering

Lecturer: Dr. A.R. Beresford

No. of lectures: 11

Suggested hours of supervisions: 3

This course is a prerequisite for the Group Project.

Aims

This course aims to introduce students to software and security engineering, and in
particular to the problems of building large systems, safety-critical systems and systems
that must withstand attack by capable opponents. Case histories of failure are used to
illustrate what can go wrong, and current software and security engineering practice is
studied as a guide to how failures can be avoided.

Lectures

• What is a security policy or a safety case? Definitions and examples; one-way
flows for both confidentiality and safety properties; separation of duties. Top-down
and bottom-up analysis methods. What architecture can do, versus benefits of
decoupling policy from mechanism.

• Predicting user behaviour. Predicting and mitigating user errors. The hierarchy of
harms. Attitudes to risk: expected utility, prospect theory, framing, status quo bias,
gender. The characteristics of human memory; forgetting passwords versus
guessing them.

• Security protocols; how to enforce policy using cryptography and structured human
interaction. Man-in-the-middle attacks. The role of verification and its limitations.

Computer Science Tripos Part IA 25

• Bugs of different types: design errors, implementation errors affecting arithmetic,
logic, syntax, and concurrency. Code injection attacks. Defensive programming:
secure coding, contracts. Fuzzing.

• The software crisis. Examples of large-scale project failure, such as the London
Ambulance Service system and the NHS National Programme for IT. Intrinsic
difficulties with complex software.

• The software life cycle. The software life cycle. Getting the specification right;
requirements analysis methods; modular design; the role of prototyping; the waterfall
and spiral models.

• Designing for Testability. Identifying different types of tests and how to use them
effectively. Writing a good unit test; understanding techniques for measuring test
quality.

• Modern development practice and quality assurance. Tools to support code
management, code review and test case generation. Continuous integration,
refactoring, release engineering, patch strategies. The need for code indexing, code
ownership, library management, design documentation and the maintenance of
safety and security ratings.

• Software-as-a-Service. The Software-as-a-Service architecture, including a/b
testing, phased release of client and server components and rearchitecting systems
while in operation.

• Critical systems: where real-time performance, safety or security is essential.
Examples of catastrophic failure; problems with usability and human error for both
safety engineering and security engineering.

• Real-world challenges in combining safety and security. Project planning tools;
PERT and GANTT charts. Open source: advantages and drawbacks. Evaluation
and assurance; maintaining a security rating or a safety case.

Objectives

At the end of the course students should know how writing programs with tough assurance
targets, in large teams, or both, differs from the programming exercises they have engaged
in so far. They should understand the different models of software development described
in the course as well as the value of various development and management tools. They
should understand the development life cycle and its basic economics. They should
understand the various types of bugs, vulnerabilities and hazards, how to find them, and
how to avoid introducing them. Finally, they should be prepared for the organizational
aspects of their Part IB group project.

Recommended reading

Howard, M. & LeBlanc, D. (2003). Writing secure code. Microsoft Press.

26 University of Cambridge

Anderson, R. (2008). Security engineering (Part 1 and Chapters 25-26). Wiley. Available
at: http://www.cl.cam.ac.uk/users/rja14/book.html
Leveson, N. (1994). Safeware. Addison-Wesley.

Further reading:

Brooks, F.P. (1975). The mythical man month. Addison-Wesley.
Reason, J. (2008). The human contribution. Ashgate Publishing.
Maguire, S. (1993). Writing solid code. Microsoft Press. Report of the inquiry into the
London Ambulance Service (SW Thames RHA, 40 Eastbourne Terrace, London W2 3QR,
February 1993).
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

http://www.cl.cam.ac.uk/users/rja14/book.html
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

Computer Science Tripos Part IA 27

Paper 3: Interaction Design

This course is only taken by Part IA and Part IB Paper 3 students.

Lecturer: Dr H. Gunes

No. of lectures and practical classes: 8 + 8

Suggested hours of supervisions: 2

Prerequisite courses: Java

This course is a prerequisite for Human-Computer Interaction (Part II)

Aims

The aim of this course is to provide an introduction to interaction design, with an emphasis
on understanding and experiencing the user interface design process from requirements
and data gathering to implementation and evaluation, while gaining an understanding of
the background to human factors. This course focuses equally on design and
implementation.

Lectures

• Course overview and requirements analysis. Introduction to the course and the
practicals. Identifying potential users and understanding their tasks. Identifying and
establishing non-functional and functional requirements.

• Data gathering. Data collection and quantitative/qualitative analysis techniques.

• Design and prototyping. Participatory design process. Conceptual versus physical
design. Concept development. Prototyping and different kinds of prototypes.
Personas and storyboards.

• Case studies from the industry. Guest lecture (the schedule of this lecture is
subject to change).

• Cognitive aspects. Attention, perception/recognition, memory, context and
grouping, and their implications for interaction design. Cognitive frameworks.

• Evaluation. Introduction, evaluation techniques, and an evaluation case study.

• Student (group) presentations

Objectives

By the end of the course students should

• have a thorough understanding of the iterative design process and be able to apply it
to interaction design;

28 University of Cambridge

• be able to design new user interfaces that are informed by principles of human visual
perception and cognition;

• be able to construct user interfaces using Java with a strong emphasis on users,
usability and appearance;

• be able to evaluate existing or new user interfaces using multiple techniques;

• be able to compare and contrast different design techniques and to critique their
applicability to new domains.

Recommended reading

* Preece, J., Rogers, Y. & Sharp, H. (2015). Interaction design. Wiley (4th ed.).

Preparing to Study Computer Science

For general advice about preparing for the Computer Science course at Cambridge and for
details of the pre-arrival course, please see: http://www.cl.cam.ac.uk/freshers/

http://www.cl.cam.ac.uk/freshers/

Computer Science Tripos Part IB 29

Introduction to Part IB

This document lists the courses offered by the Computer Laboratory for Part IB of the
Computer Science Tripos. Separate booklets give details of the syllabus for other Parts of
the Computer Science Tripos.

Some courses are specific to either Paper 3 or Paper 7, and have been marked as such in
this booklet. Those students following the 75% Computer Science option, who have taken
Paper 3 in Part IA, will attend lectures for the Paper 7 courses. Those students taking the
50% Computer Science option, will attend the Paper 3 courses instead. The remaining
courses are taken by all Part IB students.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/timetables/

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

For copies of the other syllabus booklets and for answers to general enquiries about
Computer Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 763505
fax: 01223 334678
e-mail: teaching-admin@cl.cam.ac.uk

http://www.cl.cam.ac.uk/teaching/timetables/
http://www.cl.cam.ac.uk/library/
mailto:teaching-admin@cl.cam.ac.uk

30 University of Cambridge

Michaelmas Term 2018: Part IB lectures

Computer Design

Lecturers: Professor S.W. Moore and Dr T.M. Jones

No. of lectures: 18 (plus 4 via a web-based tutor)

Suggested hours of supervisions: 5

Prerequisite course: Digital Electronics

Companion course: Electronic Computer Aided Design (ECAD)

This course is a prerequisite for the Part II course Comparative Architectures.

Aims

The aims of this course are to introduce a hardware description language (SystemVerilog)
and computer architecture concepts in order to design computer systems. The parallel
ECAD+Arch practical classes will allow students to apply the concepts taught in lectures.

The course starts with a web-based SystemVerilog tutor which is a prerequisite for the
ECAD+Arch practical classes. There are then eighteen lectures in three six-lecture parts.
Part 1 goes from gates to a simple processor. Part 2 looks at instruction set and computer
architecture. Part 3 analyses the architecture of modern systems-on-chip.

Lectures

Part 0 - SystemVerilog Web tutor

• This web tutor is a prerequisite to starting the ECAD+Arch laboratory sessions
[equivalent to approximately 4 lectures]

Part 1 - Gates to processors [lecturer: Simon Moore]

• Introduction and motivation. [1 lecture] Current technology, technology trends,
ECAD trends, challenges.

• Logic modelling, simulation and synthesis. [1 lecture] Logic value and delay
modelling. Discrete event and device simulation. Automatic logic minimization.

• SystemVerilog FPGA design. [1 lecture] Practicalities of mapping SystemVerilog
descriptions of hardware (including a processor) onto an FPGA board. Tips and
pitfalls when generating larger modular designs.

• Chip, board and system testing. [1 lecture] Production testing, fault models,
testability, fault coverage, scan path testing, simulation models.

• Building a simple computer. [2 lectures]

Computer Science Tripos Part IB 31

Part 2 - Instruction sets and introduction to computer architecture [lecturer: Simon Moore]

• Historical perspective on computer architecture. [1 lecture] EDSAC versus
Manchester Mark I.

• RISC machines. [1 lecture] Introduction to ARM and MIPS RISC processor designs.

• CISC and virtual machines [1 lecture] The Intel x86 instruction set and the Java
Virtual Machine (JVM).

• Memory hierarchy. [1 lecture] Caching, etc.

• Hardware support for operating systems. [1 lecture] Memory protection,
exceptions, interrupts, etc.

• Pipelining and data paths. [1 lecture]

Part 3 - Systems-on-chip [lecturer: Timothy Jones]

• Overview of Systems-on-Chip (SoCs) and DRAM. [1 lecture] High-level SoCs,
DRAM storage and accessing.

• Multicore Processors. [2 lectures] Communication, cache coherence, barriers and
synchronisation primitives.

• Graphics processing units (GPUs) [2 lectures] Basic GPU architecture and
programming.

• Future Directions [1 lecture] Where is computer architecture heading?

Objectives

At the end of the course students should

• be able to read assembler given a guide to the instruction set and be able to write
short pieces of assembler if given an instruction set or asked to invent an instruction
set;

• understand the differences between RISC and CISC assembler;

• understand what facilities a processor provides to support operating systems, from
memory management to software interrupts;

• understand memory hierarchy including different cache structures and coherency
needed for multicore systems;

• understand how to implement a processor in SystemVerilog;

• appreciate the use of pipelining in processor design;

• have an appreciation of control structures used in processor design;

32 University of Cambridge

• have an appreciation of system-on-chips and their components;

• understand how DRAM stores data;

• understand how multicore processors communicate;

• understand how GPUs work and have an appreciation of how to program them.

Recommended reading

* Patterson, D.A. & Hennessy, J.L. (2017). Computer organization and design: The
hardware/software interface RISC-V edition. Morgan Kaufmann.
ISBN 978-0-12-812275-4.

Recommended further reading:

Harris, D.M. & Harris, S.L. (2012). Digital design and computer architecture. Morgan
Kaufmann. ISBN 978-0-12-394424-5.
Hennessy, J. & Patterson, D. (2006). Computer architecture: a quantitative approach.
Elsevier (4th ed.). ISBN 978-0-12-370490-0. (Older versions of the book are also still
generally relevant.)
Pointers to sources of more specialist information are included in the lecture notes and on
the associated course web page.

Concurrent and Distributed Systems

Lecturer: Dr R.M. Mortier, Dr E. Kalyvianaki and Dr A. Madhavapeddy

No. of lectures: 16

Suggested hours of supervisions: 4

Prerequisite courses: Operating Systems, Object-Oriented Programming

This course is a pre-requisite for Mobile and Sensor Systems (Part II).

Aims

This course considers two closely related topics, Concurrent Systems and Distributed
Systems, over 16 lectures. The aim of the first half of the course is to introduce
concurrency control concepts and their implications for system design and implementation.
The aims of the latter half of the course are to study the fundamental characteristics of
distributed systems, including their models and architectures; the implications for software
design; some of the techniques that have been used to build them; and the resulting
details of good distributed algorithms and applications.

Lectures: Concurrency

• Introduction to concurrency, threads, and mutual exclusion Introduction to
concurrent systems; threads; interleaving; preemption; parallelism; execution

Computer Science Tripos Part IB 33

orderings; processes and threads; kernel vs. user threads; M:N threads; atomicity;
mutual exclusion; and mutual exclusion locks (mutexes).

• Further mutual exclusion, semaphores, producer-consumer, and MRSW
Hardware foundations for atomicity; locks and invariants; semaphores; condition
synchronisation; N-resource allocation; two-party and generalised
producer-consumer; Multi-Reader, Single-Write (MRSW) locks.

• CCR, monitors, and concurrency in practice Conditional critical regions (CCR);
monitors; condition variables; signal-wait vs. signal-continue semantics; concurrency
in practice (kernels, pthreads, Java).

• Safety and liveness Safety vs. liveness; deadlock; the Dining Philosophers;
resource allocation graphs; deadlock prevention, avoidance, detection, and recovery;
livelock; priority inversion; priority inheritance.

• Concurrency without shared data; transactions Active objects; message
passing; tuple spaces; CSP; and actor models. Composite operations; transactions;
ACID; isolation; and serialisability.

• Further transactions History graphs; good and bad schedules; isolation vs. strict
isolation; 2-phase locking; rollback; timestamp ordering (TSO); and optimistic
concurrency control (OCC).

• Crash recovery, lock-free programming, and transactional memory Write-ahead
logging, checkpoints, and recovery. Lock-free programming and
software-transactional memory (STM).

• Concurrent systems case study. Concurrency in the FreeBSD kernel; kernel
synchronisation prior to parallelism; Giant-locked kernels; fine-grained locking;
primitives and strategies; lock order checking; network-stack work flows;
performance scalability; the impact of evolving hardware.

Lectures: Distributed Systems

• Introduction to distributed systems; RPC Avantages and challenges of distributed
systems; “middleware”; transparency goals; client-server systems; failures and retry
semantics (all-or-nothing; at-most-once; at-least-once). Remote procedure call
(RPC); marshalling; interface definition languages (IDLs); SunRPC; external data
representation (XDR).

• Network File System and Object-Oriented Middleware Network File System
(NFS); NFSv2; NFSv3; scoping; the implications of a stateless design; performance
optimisations. Object-oriented middleware (OOM); Corba ORBs, IDL; DCOM.

• Practical RPC systems; clocks Remote method invocation (RMI); remote classes
vs. serialisable classes; distributed garbage collection; XML-RPC; SOAP and web
services; REST. Physical clocks; UTC; computer clocks; clock synchronisation.

• Clock synchronisation; logical clocks Clock drift and compensation; Cristian’s
Algorithm; Berkeley Algorithm; Network Time Protocol (NTP). Logical time,
“happens-before”; Lamport clocks; vector clocks.

34 University of Cambridge

• Consistent cuts, process groups, and mutual exclusion Consistent global state;
consistent cuts. Process groups; FIFO ordering; receiving vs. delivering; causal
ordering; total ordering. Distributed mutual exclusion; central lock servers; token
passing; totally ordered multicast.

• Elections, consensus, and distributed transactions Leader elections; ring-based
algorithm; the Bully algorithm. Consensus. Distributed transactions; atomic commit
protocols; 2-phase commit. Replication and consistency.

• Replication in distributed systems, CAP, case studies Replication and
consistency (cont); strong consistency; quorum systems; weak consistency; FIFO
consistency; eventual consistency; Amazone’s Dynamo; session guarantees;
Consistency, Availability and Partitions (CAP); Google datacentre technologies
(MapReduce).

• Further case studies, PubSub, security, NASD/AFS/Coda Google datacentre
technologies (BigTable, Spanner). Access control and the access-control matrix;
ACLs vs capabilities; cryptographic capabilities; role-based access control (RBAC);
single-system sign-on. NASD, AFS, and Coda.

Objectives

At the end of Concurrent Systems portion of the course, students should:

• understand the need for concurrency control in operating systems and applications,
both mutual exclusion and condition synchronisation;

• understand how multi-threading can be supported and the implications of different
approaches;

• be familiar with the support offered by various programming languages for
concurrency control and be able to judge the scope, performance implications and
possible applications of the various approaches;

• be aware that dynamic resource allocation can lead to deadlock;

• understand the concept of transaction; the properties of transactions, how they can
be implemented, and how their performance can be optimised based on optimistic
assumptions;

• understand how the persistence properties of transactions are addressed through
logging; and

• have a high-level understanding of the evolution of software use of concurrency in
the operating-system kernel case study.

At the end of the Distributed Systems portion of the course, students should:

• understand the difference between simple concurrent systems and distributed
systems;

Computer Science Tripos Part IB 35

• understand the fundamental properties of distributed systems and their implications
for system design;

• understand notions of time synchronisation, including logical clocks, vector clocks,
and physical time;

• be familiar with various approaches to data and service replication, as well as the
concept of data consistency;

• understand the effects of large scale on the provision of fundamental services and
the tradeoffs arising from scale;

• appreciate the implications of individual node and network communications failures
on distributed computation;

• be aware of a variety of tools used by distributed-system creators, such as RPC and
object-oriented middleware (OOM);

• be familiar with a range of distributed algorithms;

• be familiar with a number of case studies in distributed-system design including: the
Network File System (NFS), the Network Time Protocol (NTP), Java Remote Method
Invocation (RMI), CORBA, the AFS and Coda filesystems, Network-Attached Secure
Disks (NASD), and Google’s MapReduce, BigTable, and Spanner systems.

Recommended reading

* Bacon, J. & Harris, T. (2003). Operating systems: distributed and concurrent software
design. Addison-Wesley.
Bacon, J. (1997). Concurrent systems. Addison-Wesley.
Tanenbaum, A.S. & van Steen, M. (2002). Distributed systems. Prentice Hall.
Coulouris, G.F., Dollimore, J.B. & Kindberg, T. (2005, 2001). Distributed systems, concepts
and design. Addison-Wesley (4th, 3rd eds.).

36 University of Cambridge

ECAD and Architecture Practical Classes

Lecturer: Dr. T. Markettos, Professor S.W. Moore & Dr R. Mullins

No. of practical classes: 8

Prerequisite course: Digital Electronics

Companion course: Computer Design

This course is a prerequisite for the Part II course Comparative Architectures.

Aims

The aims of this course are to enable students to apply the concepts learned in the
Computer Design course. In particular a web based tutor is used to introduce the
SystemVerilog hardware description language, while the remaining practical classes will
then allow students to implement the design of components in this language.

Practical Classes

• Web tutor This first class uses a web based tutor to rapidly teach the SystemVerilog
language (this is part of the lectured component of Computer Design).

• FPGA design flow Test driven hardware development for FPGA including an
embedded processor and peripherals [3 classes]

• Embedded system implementation Embedded system implementation on FPGA
[3-4 classes]

Objectives

• Gain experience in electronic computer aided design (ECAD) through learning a
design-flow for field programmable gate arrays (FPGAs).

• Learn how to interface to peripherals like a touch screen.

• Learn how to debug hardware and software systems in simulation.

• Understand how to construct and program a heterogeneous embedded system.

Recommended reading

* Harris, D.M. & Harris, S.L. (2007). Digital design and computer architecture: from gates
to processors. Morgan Kaufmann.

Pointers to sources of more specialist information are included on the associated course
web page.

Computer Science Tripos Part IB 37

Paper 7: Economics, Law and Ethics

This course is only taken by Part IB and Part II Paper 7 students.

Lecturers: Professor R.J. Anderson and Dr R.N.C. Clayton

No. of lectures: 8

Suggested hours of supervisions: 2

This course is a prerequisite for the Part II courses Business Studies and E-Commerce.

Aims

This course aims to give students an introduction to some basic concepts in economics,
law and ethics.

Lectures

• Game theory. The choice between cooperation and conflict. Prisoners’ Dilemma;
Nash equilibrium; hawk–dove; iterated games; evolution of strategies; application to
biology and computer science.

• Classical economics. Definitions: preference, utility, choice and budget. Pareto
efficiency; the discriminating monopolist; supply and demand; elasticity; utility; the
marginalist revolution; competitive equilibrium and the welfare theorems. Trade;
monopoly rents; public goods; oligopoly.

• Market failure. Asymmetric information: the market for lemons; adverse selection;
moral hazard; signalling; and brands. Transaction costs and the theory of the firm.
Real and virtual networks, supply-side versus demand-side scale economies,
Metcalfe’s law, the dominant firm model, price discrimination. Behavioural
economics: bounded rationality, heuristics and biases.

• Auctions. English auctions; Dutch auctions; all-pay auctions; Vickrey auctions. The
winner’s curse. The revenue equivalence theorem. Mechanism design and the
combinatorial auction. Problems with real auctions. Applicability of auction
mechanisms in computer science.

• Principles of law. Contract and tort; copyright and patent; binding actions; liabilities
and remedies; competition law; choice of law and jurisdiction.

• Law and the Internet. EU directives including distance selling, electronic
commerce, data protection, electronic signatures and copyright; their UK
implementation. UK laws that specifically affect the Internet.

• Ethics. Philosophies of ethics: authority, intuitionist, egoist and deontological
theories. Utilitarian and Rawlsian models. Insights from evolutionary psychology and
neorology. The Internet and social policy; current debates on privacy, surveillance,
censorship and export control.

38 University of Cambridge

Objectives

At the end of the course students should have a basic appreciation of economic and legal
terminology and arguments. They should understand some of the applications of
economic models to systems engineering and their interest to theoretical computer
science. They should also understand the main constraints that markets, legislation and
ethics place on firms dealing in information goods and services.

Recommended reading

* Shapiro, C. & Varian, H. (1998). Information rules. Harvard Business School Press.
Varian, H. (1999). Intermediate microeconomics – a modern approach. Norton.

Further reading:

Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations, available
at http://www.econlib.org/library/Smith/smWN.html

Thaler, R.H. (2016). Misbehaving. Penguin.
Galbraith, J.K. (1991). A history of economics. Penguin.
Poundstone, W. (1992). Prisoner’s dilemma. Anchor Books.
Pinker, S (2011). The Better Angels of our Nature. Penguin.
Anderson, R. (2008). Security engineering (Chapter 7). Wiley.
Nuffield Council on Bioethics (2015) The collection, linking and use of data in biomedical
research and health care.

Foundations of Data Science

Lecturer: Dr D.J. Wischik

No. of lectures and practical classes: 12 + 4

Suggested hours of supervisions: 3

Prerequisite courses: either Mathematics for Natural Sciences, or the equivalent from the
Maths Tripos

This course is a prerequisite for: Part II Machine Learning and Bayesian Inference,
Information Retrieval, Quantum Computing, Natural Language Processing.

Aims

This course introduces fundamental tools for describing and reasoning about data. There
are two themes: describing the behaviour of random systems; and making inferences
based on data generated by such systems. The course will survey a wide range of models
and tools, and it will emphasize how to design a model and what sorts of questions one
might ask about it.

http://www.econlib.org/library/Smith/smWN.html

Computer Science Tripos Part IB 39

Lectures

• Likelihood. Random variables. Random samples. Maximum likelihood estimation,
likelihood profile.

• Random variables. Rules for expectation and variance. Generating random
variables. Empirical distribution. Monte Carlo estimation; law of large numbers.
Central limit theorem.

• Inference. Estimation, confidence intervals, hypothesis testing, prediction.
Bootstrap. Bayesianism. Logistic regression, natural parameters.

• Feature spaces. Vector spaces, bases, inner products, projection. Model fitting as
projection. Linear modeling. Choice of features.

• Random processes. Markov chains. Stationarity and convergence. Drift models.
Examples, including estimation and memory.

• Probabilistic modelling. Independence; joint distributions. Descriptive,
discriminative, and causal models. Latent variable models. Random fields.

Objectives

At the end of the course students should

• be able to formulate basic probabilistic models, including discrete time Markov
chains and linear models

• be familiar with common random variables and their uses, and with the use of
empirical distributions rather than formulae

• be able to use expectation and conditional expectation, limit theorems, equilibrium
distributions

• understand different types of inference about noisy data, including model fitting,
hypothesis testing, and making predictions

• understand the fundamental properties of inner product spaces and orthonormal
systems, and their application to model representation

Recommended reading

* F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester (2005). A modern introduction
to probability and statistics: understanding why and how. Springer.

S.M. Ross (2002). Probability models for computer science. Harcourt / Academic Press.

M. Mitzenmacher & E. Upfal (2005). Probability and computing: randomized algorithms
and probabilistic analysis. Cambridge University Press.

40 University of Cambridge

Paper 7: Further Graphics

This course is only taken by Part IB and Part II Paper 7 students.

Lecturer: Dr A. Benton

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: Introduction to Graphics

This course is a prerequisite for: Advanced Graphics

Aims

This course explores the modern state of computer graphics, applying long-standing
techniques to cutting-edge hardware.

Lectures

The order and content of lectures is provisional and subject to change.

• Ray Marching. Signed distance fields and GPU-based realtime rendering. [1
lecture]

• Computational Geometry. Mathematics of surfaces. [1 lecture]

• Bezier curves and NURBS. These points of data make a beautiful line. [2 lectures]

• Subdivision Surfaces. Smooth modeling of continuous surfaces. [1 lecture]

• OpenGL. Polygonal and GPU rendering. [1 lecture]

• Global Illumination. Realistic global lighting techniques. [1 lecture]

• Virtual Reality. Technology and best practices for an emerging medium. [1 lecture]

Objectives

On completing the course, students should be able to

• use graphics hardware to render interactive images, both polygonal and implicit;

• understand the core technologies of ray tracing, rendering, and implicit surfaces;

• learn techniques of computational geometry and their applications to visualization;

• describe the underlying theory of splines and subdivision and define the
Catmull-Clark and Doo-Sabin subdivision methods;

• understand several global illumination technologies such as radiosity and ambient
occlusion;

Computer Science Tripos Part IB 41

Recommended reading

Students should expect to refer to one or more of these books, but should not find it
necessary to purchase any of them.

* Shirley, P. & Marschner, S. (2009). Fundamentals of Computer Graphics. CRC Press
(3rd ed.).

Watt, A. (1999). 3D Computer Graphics. Addison-Wesley (3rd ed).

Hughes, van Dam, McGuire, Skalar, Foley, Feiner & Akeley (2013). Computer Graphics:
Principles & Practice. Addison-Wesley (3rd edition)

Rogers, D.F. & Adams, J.A. (1990). Mathematical elements for computer graphics.
McGraw-Hill (2nd ed.).

Further Java

Lecturer: Dr A.R. Beresford and Dr A. Rice

No. of practical classes: 5 x 2-hour sessions (for which supervisions should be given)

Suggested hours of supervisions: 2

Prerequisite course: Object-Oriented Programming

Companion courses: Concurrent and Distributed Systems

This course is a prerequisite for the Group Project.

Aims

The goal of this course is to provide students with the ability to understand the advanced
programming features available in the Java programming language, completing the
coverage of the language started in the Programming in Java course. The course is
designed to accommodate students with diverse programming backgrounds; consequently
Java is taught from first principles in a practical class setting where students can work at
their own pace from a course handbook. Each practical class will culminate in an
assessed exercise.

Practical classes

• Communication and client applications. This class will introduce the Eclipse
development environment. Students will write a simple client to send and receive
data to a server via TCP.

• Serialisation, reflection and class loaders. This class will introduce object
serialisation. Students will use a class loader and reflection to inspect an object
which is only available at run-time.

42 University of Cambridge

• Concurrency and synchronisation. This class introduces the concurrency and
synchronisation primitives found in Java. Students will implement a thread-safe
first-in-first-out queue and learn about Java generics.

• Server applications. Students implement a server in Java which is capable of
communicating concurrently with mulitple clients.

• Vector clocks. This week students will use the concept of vector clocks to make
their client and server robust to message delays and reordering.

Objectives

At the end of the course students should

• understand different mechanisms for communication between distributed
applications and be able to evaluate their trade-offs;

• be able to use Java generics and annotations to improve software usability,
readability and safety;

• understand and be able to exploit the Java class-loading mechansim;

• understand and be able to use concurrency control correctly;

• be able to implement a vector clock algorithm and the happens-before relation.

Recommended reading

* Goetz, B. (2006). Java concurrency in practice. Addison-Wesley. Gosling, J., Joy, B.,
Steele, G., Bracha, G. & Buckley, A. (2014). The Java language specification, Java SE 8
Edition. Addison-Wesley.
http://docs.oracle.com/javase/specs/jls/se8/html/

Group Project

Lecturer: Professor A.F. Blackwell and Dr R. Mortier

No. of lectures: 1

Prerequisite courses: Software and Security Engineering, Further Java

Aims

The aim of this course is to give students a realistic introduction to software development
as practised in industry. This means working to rigid deadlines, with a team of colleagues
not of one’s own choosing, having to satisfy an external client that a design brief has been
properly interpreted and implemented, all within the constraints of limited effort and
technical resources.

http://docs.oracle.com/javase/specs/jls/se8/html/

Computer Science Tripos Part IB 43

Lectures

• Initial project briefing. Software engineering: design, quality and management,
application of course material. Introduction to possible design briefs. Formation of
groups, selection of tools, review meetings.

• Administrative arrangements. Announcement of group members. Deliverables:
functional specification and module design, module implementation and testing,
system integration, testing and documentation. Timetable. Advice on specific tools.
First project meeting.

• Presentation techniques. Public speaking techniques and the effective use of
audio-visual aids. Planning a talk; designing a presentation; common mistakes to
avoid.

Objectives

At the end of the course students should

• have a good understanding of how software is developed;

• have consolidated the theoretical understanding of software development acquired
in the Software Design course;

• appreciate the importance of planning and controlling a project, and of
documentation and presentation;

• have gained confidence in their ability to develop significant software projects and
Part IB students should be prepared for the personal project they will undertake in
Part II.

Programming in C and C++

Lecturer: Dr N. Krishnaswami and Professor A. Mycroft

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: None, though Operating Systems would be helpful.

Aims

The aims of this course are to provide a solid introduction to programming in C and to
provide an overview of the principles and constraints that affect the way in which the C
programming language has been designed and is used, including the differences
betweeen it and C++.

44 University of Cambridge

Lectures

• Introduction to the C language. Background and goals of C. Types and variables.
Expressions and statements. Functions. Multiple compilation units. Tooling for C
programming. [2 lectures]

• Further C concepts. Preprocessor. Pointers and pointer arithmetic. Data
structures. Dynamic memory management. Examples. [2 lectures]

• Memory Management Unique ownership. Object graphs and graph traversals.
Aliasing and deallocation. Mark and sweep algorithms. Reference counting. Arenas.
Stack allocation. Handles and compaction. [3 lectures]

• Memory Hierarchy and Cache Optimization Cache hierarchy. Data structure
layouts. Intrusive lists. Array-of-structs vs struct-of-array representations. [1 lecture]

• Linkers, loaders and debugging. Executable sections. Debug symbols. Inspecting
program state. [1 lecture]

• C semantics. Undefined vs implementation-defined behaviour. Common
optimisation problems. Buffer and integer overflows. Examples. [1 lecture]

• Introduction to C++. Goals of C++. Differences between C and C++. References
versus pointers. Overloading functions. [1 lecture]

• Objects in C++ Classes and structs. Exceptions. Destructors. Operator
overloading. Virtual functions. Casting. Multiple inheritance. Virtual base classes.
Templates and meta-programming. [1 lecture]

Objectives

At the end of the course students should

• be able to read and write C programs;

• understand the interaction between C programs and the host operating system;

• be familiar with the structure of C program execution in machine memory;

• understand the potential dangers of writing programs in C;

• understand the main differences between C and C++.

Recommended reading

* Kernighan, B.W. & Ritchie, D.M. (1988). The C programming language. Prentice Hall
(2nd ed.).

Computer Science Tripos Part IB 45

Semantics of Programming Languages

Lecturer: Professor P. Sewell

No. of lectures: 12

Suggested hours of supervisions: 3

This course is a prerequisite for the Part II courses Topics in Concurrency, Hoare Logic
and Model Checking and Types.

Aims

The aim of this course is to introduce the structural, operational approach to programming
language semantics. It will show how to specify the meaning of typical programming
language constructs, in the context of language design, and how to reason formally about
semantic properties of programs.

Lectures

• Introduction. Transition systems. The idea of structural operational semantics.
Transition semantics of a simple imperative language. Language design options. [2
lectures]

• Types. Introduction to formal type systems. Typing for the simple imperative
language. Statements of desirable properties. [2 lectures]

• Induction. Review of mathematical induction. Abstract syntax trees and structural
induction. Rule-based inductive definitions and proofs. Proofs of type safety
properties. [2 lectures]

• Functions. Call-by-name and call-by-value function application, semantics and
typing. Local recursive definitions. [2 lectures]

• Data. Semantics and typing for products, sums, records, references. [1 lecture]

• Subtyping. Record subtyping and simple object encoding. [1 lecture]

• Semantic equivalence. Semantic equivalence of phrases in a simple imperative
language, including the congruence property. Examples of equivalence and
non-equivalence. [1 lecture]

• Concurrency. Shared variable interleaving. Semantics for simple mutexes; a
serializability property. [1 lecture]

Objectives

At the end of the course students should

• be familiar with rule-based presentations of the operational semantics and type
systems for some simple imperative, functional and interactive program constructs;

46 University of Cambridge

• be able to prove properties of an operational semantics using various forms of
induction (mathematical, structural, and rule-based);

• be familiar with some operationally-based notions of semantic equivalence of
program phrases and their basic properties.

Recommended reading

* Pierce, B.C. (2002). Types and programming languages. MIT Press.
Hennessy, M. (1990). The semantics of programming languages. Wiley. Out of print, but
available on the web at
http://www.cs.tcd.ie/matthew.hennessy/splexternal2015/resources/sembookWiley.pdf

Winskel, G. (1993). The formal semantics of programming languages. MIT Press.

Unix Tools

Lecturer: Dr M.G. Kuhn

No. of lectures: 8

Suggested hours of supervisions: 0–1 (non-examinable course with exercises)

Prerequisite courses: Operating Systems.

This course is a recommended prerequisite for Security.

Aims

This course gives students who have already basic Unix/Linux experience some additional
practical software-engineering knowledge: how to use the shell and related tools as an
efficient working environment, how to automate routine tasks, and how version control and
automated-build tools can help to avoid confusion and accidents, especially when working
in teams. These are essential skills, both in industrial software development and student
projects.

Lectures

• Unix concepts. Brief review of Unix history and design philosophy, documentation,
terminals, inter-process communication mechanisms and conventions, shell,
command-line arguments, environment variables, file descriptors.

• Shell concepts. Program invocation, redirection, pipes, file-system navigation,
argument expansion, quoting, job control, signals, process groups, variables, locale,
history and alias functions, security considerations.

• Scripting. Plain-text formats, executables, #!, shell control structures and functions.
Startup scripts.

http://www.cs.tcd.ie/matthew.hennessy/splexternal2015/resources/sembookWiley.pdf

Computer Science Tripos Part IB 47

• Text, file and networking tools. sed, grep, chmod, find, ssh, rsync, tar, zip, etc.

• Revision control systems. diff, patch, RCS, Subversion, git.

• Software development tools. C compiler, linker, debugger, make.

• Perl. Introduction to a powerful scripting and text-manipulation language. [2 lectures]

Objectives

At the end of the course students should

• be confident in performing routine user tasks on a POSIX system, understand
command-line user-interface conventions and know how to find more detailed
documentation;

• appreciate how simple tools can be combined to perform a large variety of tasks;

• be familiar with the most common tools, file formats and configuration practices;

• be able to understand, write, and maintain shell scripts and makefiles;

• appreciate how using revision control systems and fully automated build processes
help to maintain reproducibility and audit trails during software development;

• know enough about basic development tools to be able to install, modify and debug
C source code;

• have understood the main concepts of, and gained initial experience in, writing Perl
scripts (excluding the facilities for object-oriented programming).

Recommended reading

Robbins, A. (2005). Unix in a nutshell. O’Reilly (4th ed.).
Schwartz, R.L., Foy, B.D. & Phoenix, T. (2011). Learning Perl. O’Reilly (6th ed.).

48 University of Cambridge

Lent Term 2019: Part IB lectures

Compiler Construction

Lecturer: Dr T.G. Griffin

No. of lectures: 16

Suggested hours of supervisions: 4

Prerequisite: Discrete Mathematics (Part IA)

This course is a prerequisite for Optimising Compilers (Part II).

Aims

This course aims to cover the main concepts associated with implementing compilers for
programming languages. We use a running example called SLANG (a Small LANGuage)
inspired by the languages described in 1B Semantics. A toy compiler (written in ML) is
provided, and students are encouraged to extend it in various ways.

Lectures

• Overview of compiler structure The spectrum of interpreters and compilers;
compile-time and run-time. Compilation as a sequence of translations from
higher-level to lower-level intermediate languages, where each translation preserves
semantics. The structure of a simple compiler: lexical analysis and syntax analysis,
type checking, intermediate representations, optimisations, code generation.
Overview of run-time data structures: stack and heap. Virtual machines. [1 lecture]

• Lexical analysis and syntax analysis. Lexical analysis based on regular
expressions and finite state automata. Using LEX-tools. How does LEX work?
Parsing based on context-free grammars and push-down automata. Grammar
ambiguity, left- and right-associativity and operator precedence. Using YACC-like
tools. How does YACC work? LL(k) and LR(k) parsing theory. [3 lectures]

• Compiler Correctness Recursive functions can be transformed into iterative
functions using the Continuation-Passing Style (CPS) transformation. CPS applied
to a (recursive) SLANG interpreter to derive, in a step-by-step manner, a correct
stack-based compiler. [3 lectures]

• Data structures, procedures/functions Representing tuples, arrays, references.
Procedures and functions: calling conventions, nested structure, non-local variables.
Functions as first-class values represented as closures. Simple optimisations: inline
expansion, constant folding, elimination of tail recursion, peephole optimisation.
[5 lectures]

• Advanced topics Run-time memory management (garbage collection). Static and
dynamic linking. Objects and inheritance; implementation of method dispatch.
Try-catch exception mechanisms. Compiling a compiler via bootstrapping.
[4 lectures]

Computer Science Tripos Part IB 49

Objectives

At the end of the course students should understand the overall structure of a compiler,
and will know significant details of a number of important techniques commonly used.
They will be aware of the way in which language features raise challenges for compiler
builders.

Recommended reading

* Aho, A.V., Sethi, R. & Ullman, J.D. (2007). Compilers: principles, techniques and tools.
Addison-Wesley (2nd ed.).
Mogensen, T. Æ. (2011). Introduction to compiler design. Springer.
http://www.diku.dk/ torbenm/Basics.

Computation Theory

Lecturer: Professor A.M. Pitts

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite course: Discrete Mathematics

This course is a prerequisite for Complexity Theory (Part IB).

Aims

The aim of this course is to introduce several apparently different formalisations of the
informal notion of algorithm; to show that they are equivalent; and to use them to
demonstrate that there are uncomputable functions and algorithmically undecidable
problems.

Lectures

• Introduction: algorithmically undecidable problems. Decision problems. The
informal notion of algorithm, or effective procedure. Examples of algorithmically
undecidable problems. [1 lecture]

• Register machines. Definition and examples; graphical notation. Register machine
computable functions. Doing arithmetic with register machines. [1 lecture]

• Universal register machine. Natural number encoding of pairs and lists. Coding
register machine programs as numbers. Specification and implementation of a
universal register machine. [2 lectures]

http://www.diku.dk/~torbenm/Basics

50 University of Cambridge

• Undecidability of the halting problem. Statement and proof. Example of an
uncomputable partial function. Decidable sets of numbers; examples of undecidable
sets of numbers. [1 lecture]

• Turing machines. Informal description. Definition and examples. Turing computable
functions. Equivalence of register machine computability and Turing computability.
The Church-Turing Thesis. [2 lectures]

• Primitive and partial recursive functions. Definition and examples. Existence of a
recursive, but not primitive recursive function. A partial function is partial recursive if
and only if it is computable. [2 lectures]

• Lambda-Calculus. Alpha and beta conversion. Normalization. Encoding data.
Writing recursive functions in the lambda-calculus. The relationship between
computable functions and lambda-definable functions. [3 lectures]

Objectives

At the end of the course students should

• be familiar with the register machine, Turing machine and lambda-calculus models of
computability;

• understand the notion of coding programs as data, and of a universal machine;

• be able to use diagonalisation to prove the undecidability of the Halting Problem;

• understand the mathematical notion of partial recursive function and its relationship
to computability.

Recommended reading

* Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to automata theory,
languages, and computation. Addison-Wesley (2nd ed.).
* Hindley, J.R. & Seldin, J.P. (2008). Lambda-calculus and combinators, an introduction.
Cambridge University Press (2nd ed.).
Cutland, N.J. (1980). Computability: an introduction to recursive function theory.
Cambridge University Press.
Davis, M.D., Sigal, R. & Weyuker, E.J. (1994). Computability, complexity and languages.
Academic Press (2nd ed.).
Sudkamp, T.A. (2005). Languages and machines. Addison-Wesley (3rd ed.).

Computer Science Tripos Part IB 51

Computer Networking

Lecturer: Dr A.W. Moore

No. of lectures: 20

Suggested hours of supervisions: 5

This course is a prerequisite for the Part II course Principles of Communication

Aims

The aim of this course is to introduce key concepts and principles of computer networks.
The course will use a top-down approach to study the Internet and its protocol stack.
Instances of architecture, protocol, application-examples will include email, web and
media-streaming. We will cover communications services (e.g., TCP/IP) required to
support such network applications. The implementation and deployment of
communications services in practical networks: including wired and wireless LAN
environments, will be followed by a discussion of issues of network-management.
Throughout the course, the Internet’s architecture and protocols will be used as the
primary examples to illustrate the fundamental principles of computer networking.

Lectures

• Introduction. Overview of networking using the Internet as an example. LANs and
WANs. OSI reference model, Internet TCP/IP Protocol Stack. Circuit-switching,
packet-switching, Internet structure, networking delays and packet loss. [3 lectures]

• Link layer and local area networks. Link layer services, error detection and
correction, Multiple Access Protocols, link layer addressing, Ethernet, hubs and
switches, Point-to-Point Protocol. [2 lectures]

• Wireless and mobile networks. Wireless links and network characteristics, Wi-Fi:
IEEE 802.11 wireless LANs. [1 lecture]

• Network layer addressing. Network layer services, IP, IP addressing, IPv4, DHCP,
NAT, ICMP, IPv6. [3 lectures]

• Network layer routing. Routing and forwarding, routing algorithms, routing in the
Internet, multicast. [3 lectures]

• Transport layer. Service models, multiplexing/demultiplexing, connection-less
transport (UDP), principles of reliable data transfer, connection-oriented transport
(TCP), TCP congestion control, TCP variants. [6 lectures]

• Application layer. Client/server paradigm, WWW, HTTP, Domain Name System,
P2P. [1.5 lectures]

• Multimedia networking. Networked multimedia applications, multimedia delivery
requirements, multimedia protocols (SIP), content distribution networks. [0.5 lecture]

52 University of Cambridge

Objectives

At the end of the course students should

• be able to analyse a communication system by separating out the different functions
provided by the network;

• understand that there are fundamental limits to any communications system;

• understand the general principles behind multiplexing, addressing, routing, reliable
transmission and other stateful protocols as well as specific examples of each;

• understand what FEC is;

• be able to compare communications systems in how they solve similar problems;

• have an informed view of both the internal workings of the Internet and of a number
of common Internet applications and protocols.

Recommended reading

* Peterson, L.L. & Davie, B.S. (2011). Computer networks: a systems approach. Morgan
Kaufmann (5th ed.). ISBN 9780123850591
Kurose, J.F. & Ross, K.W. (2009). Computer networking: a top-down approach.
Addison-Wesley (5th ed.).
Comer, D. & Stevens, D. (2005). Internetworking with TCP-IP, vol. 1 and 2. Prentice Hall
(5th ed.).
Stevens, W.R., Fenner, B. & Rudoff, A.M. (2003). UNIX network programming, Vol.I: The
sockets networking API. Prentice Hall (3rd ed.).

Paper 7: Further Human–Computer Interaction

This course is only taken by Part IB and Part II Paper 7 students.

Lecturer: Professor A.F. Blackwell and Luke Church

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: Interaction Design (Part IA)

Aims

This aim of this course is to provide an introduction to the theoretical foundations of
Human Computer Interaction, and an understanding of how these can be applied to the
design of complex technologies.

Computer Science Tripos Part IB 53

Lectures

• Theory driven approaches to HCI. What is a theory in HCI? Why take a theory
driven approach to HCI?

• Design of visual displays. Segmentation and variables of the display plane.
Modes of correspondence.

• Goal-oriented interaction. Using cognitive theories of planning, learning and
understanding to understand user behaviour, and what they find hard.

• Designing smart systems. Using statistical methods to anticipate user needs and
actions with Bayesian strategies.

• Designing efficient systems. Measuring and optimising human performance
through quantitative experimental methods.

• Designing meaningful systems. Qualitative research methods to understand
social context and requirements of user experience.

• Evaluating interactive system designs. Approaches to evaluation in systems
research and engineering, including Part II Projects.

• Designing complex systems. Worked case studies of applying the theories to a
hard HCI problem. Research directions in HCI.

Objectives

At the end of the course students should be able to apply theories of human performance
and cognition to system design, including selection of appropriate techniques to analyse,
observe and improve the usability of a wide range of technologies.

Recommended reading

* Preece, J., Sharp, H. & Rogers, Y. (2015). Interaction design: beyond human–computer
interaction. Wiley (Currently in 4th edition, but earlier editions will suffice).

Further reading:

Carroll, J.M. (ed.) (2003). HCI models, theories and frameworks: toward a
multi-disciplinary science. Morgan Kaufmann.

Logic and Proof

Lecturer: Professor L.C. Paulson

No. of lectures: 12

Suggested hours of supervisions: 3

This course is a prerequisite for the Part II courses Machine Learning and Bayesian
Inference, Hoare Logic & Model Checking and Natural Language Processing.

54 University of Cambridge

Aims

This course will teach logic, especially the predicate calculus. It will present the basic
principles and definitions, then describe a variety of different formalisms and algorithms
that can be used to solve problems in logic. Putting logic into the context of Computer
Science, the course will show how the programming language Prolog arises from the
automatic proof method known as resolution. It will introduce topics that are important in
mechanical verification, such as binary decision diagrams (BDDs), SAT solvers and modal
logic.

Lectures

• Introduction to logic. Schematic statements. Interpretations and validity. Logical
consequence. Inference.

• Propositional logic. Basic syntax and semantics. Equivalences. Normal forms.
Tautology checking using CNF.

• The sequent calculus. A simple (Hilbert-style) proof system. Natural deduction
systems. Sequent calculus rules. Sample proofs.

• First order logic. Basic syntax. Quantifiers. Semantics (truth definition).

• Formal reasoning in FOL. Free versus bound variables. Substitution. Equivalences
for quantifiers. Sequent calculus rules. Examples.

• Clausal proof methods. Clause form. A SAT-solving procedure. The resolution
rule. Examples. Refinements.

• Skolem functions, Unification and Herbrand’s theorem. Prenex normal form.
Skolemisation. Most general unifiers. A unification algorithm. Herbrand models and
their properties.

• Resolution theorem-proving and Prolog. Binary resolution. Factorisation.
Example of Prolog execution. Proof by model elimination.

• Satisfiability Modulo Theories. Decision problems and procedures. How SMT
solvers work.

• Binary decision diagrams. General concepts. Fast canonical form algorithm.
Optimisations. Applications.

• Modal logics. Possible worlds semantics. Truth and validity. A Hilbert-style proof
system. Sequent calculus rules.

• Tableaux methods. Simplifying the sequent calculus. Examples. Adding unification.
Skolemisation. The world’s smallest theorem prover?

Computer Science Tripos Part IB 55

Objectives

At the end of the course students should

• be able to manipulate logical formulas accurately;

• be able to perform proofs using the presented formal calculi;

• be able to construct a small BDD;

• understand the relationships among the various calculi, e.g. SAT solving, resolution
and Prolog;

• understand the concept of a decision procedure and the basic principles of
“satisfiability modulo theories”.

• be able to apply the unification algorithm and to describe its uses.

Recommended reading

* Huth, M. & Ryan, M. (2004). Logic in computer science: modelling and reasoning about
systems. Cambridge University Press (2nd ed.).
Ben-Ari, M. (2001). Mathematical logic for computer science. Springer (2nd ed.).

Paper 7: Prolog

This course is only taken by Part IB and Part II Paper 7 students.

Lecturer: Dr. A. Rice

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: Foundations of Computer Science, Algorithms

Aims

The aim of this course is to introduce programming in the Prolog language. Prolog
encourages a different programming style to Java or ML and particular focus is placed on
programming to solve real problems that are suited to this style. Practical experimentation
with the language is strongly encouraged.

Lectures

• Introduction to Prolog. The structure of a Prolog program and how to use the
Prolog interpreter. Unification. Some simple programs.

56 University of Cambridge

• Arithmetic and lists. Prolog’s support for evaluating arithmetic expressions and
lists. The space complexity of program evaluation discussed with reference to
last-call optimisation.

• Backtracking, cut, and negation. The cut operator for controlling backtracking.
Negation as failure and its uses.

• Search and cut. Prolog’s search method for solving problems. Graph searching
exploiting Prolog’s built-in search mechanisms.

• Difference structures. Difference lists: introduction and application to example
programs.

• Building on Prolog. How particular limitations of Prolog programs can be
addressed by techniques such as Constraint Logic Programming (CLP) and tabled
resolution.

Objectives

At the end of the course students should

• be able to write programs in Prolog using techniques such as accumulators and
difference structures;

• know how to model the backtracking behaviour of program execution;

• appreciate the unique perspective Prolog gives to problem solving and algorithm
design;

• understand how larger programs can be created using the basic programming
techniques used in this course.

Recommended reading

* Bratko, I. (2001). PROLOG programming for artificial intelligence. Addison-Wesley (3rd
or 4th ed.).
Sterling, L. & Shapiro, E. (1994). The art of Prolog. MIT Press (2nd ed.).

Further reading:

O’Keefe, R. (1990). The craft of Prolog. MIT Press. [This book is beyond the scope of this
course, but it is very instructive. If you understand its contents, you’re more than prepared
for the examination.]

Computer Science Tripos Part IB 57

Easter Term 2019: Part IB lectures

Artificial Intelligence

Lecturer: Dr S.B. Holden

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Algorithms. In addition the course requires some mathematics, in
particular some use of vectors and some calculus. Part IA Natural Sciences Mathematics
or equivalent and Discrete Mathematics are likely to be helpful although not essential.
Similarly, elements of Foundations of Data Science, Logic and Proof, Prolog and
Complexity Theory are likely to be useful.

This course is a prerequisite for the Part II courses Machine Learning and Bayesian
Inference and Natural Language Processing.

Aims

The aim of this course is to provide an introduction to some fundamental issues and
algorithms in artificial intelligence (AI). The course approaches AI from an algorithmic,
computer science-centric perspective; relatively little reference is made to the
complementary perspectives developed within psychology, neuroscience or elsewhere.
The course aims to provide some fundamental tools and algorithms required to produce AI
systems able to exhibit limited human-like abilities, particularly in the form of problem
solving by search, game-playing, representing and reasoning with knowledge, planning,
and learning.

Lectures

• Introduction. Alternate ways of thinking about AI. Agents as a unifying view of AI
systems. [1 lecture]

• Search I. Search as a fundamental paradigm for intelligent problem-solving. Simple,
uninformed search algorithms. Tree search and graph search. [1 lecture]

• Search II. More sophisticated heuristic search algorithms. The A* algorithm and its
properties. Improving memory efficiency: the IDA* and recursive best first search
algorithms. Local search and gradient descent. [1 lecture]

• Game-playing. Search in an adversarial environment. The minimax algorithm and
its shortcomings. Improving minimax using alpha-beta pruning. [1 lecture]

• Constraint satisfaction problems (CSPs). Standardising search problems to a
common format. The backtracking algorithm for CSPs. Heuristics for improving the
search for a solution. Forward checking, constraint propagation and arc consistency.
[1 lecture]

58 University of Cambridge

• Backjumping in CSPs. Backtracking, backjumping using Gaschnig’s algorithm,
graph-based backjumping. [1 lecture]

• Knowledge representation and reasoning I. How can we represent and deal with
commonsense knowledge and other forms of knowledge? Semantic networks,
frames and rules. How can we use inference in conjunction with a knowledge
representation scheme to perform reasoning about the world and thereby to solve
problems? Inheritance, forward and backward chaining. [1 lectures]

• Knowledge representation and reasoning II. Knowledge representation and
reasoning using first order logic. The frame, qualification and ramification problems.
The situation calculus. [1 lectures]

• Planning I. Methods for planning in advance how to solve a problem. The STRIPS
language. Achieving preconditions, backtracking and fixing threats by promotion or
demotion: the partial-order planning algorithm. [1 lecture]

• Planning II. Incorporating heuristics into partial-order planning. Planning graphs.
The GRAPHPLAN algorithm. Planning using propositional logic. Planning as a
constraint satisfaction problem. [1 lecture]

• Neural Networks I. A brief introduction to supervised learning from examples.
Learning as fitting a curve to data. The perceptron. Learning by gradient descent.
[1 lecture]

• Neural Networks II. Multilayer perceptrons and the backpropagation algorithm.
[1 lecture]

Objectives

At the end of the course students should:

• appreciate the distinction between the popular view of the field and the actual
research results;

• appreciate the fact that the computational complexity of most AI problems requires
us regularly to deal with approximate techniques;

• be able to design basic problem solving methods based on AI-based search,
knowledge representation, reasoning, planning, and learning algorithms.

Recommended reading

The recommended text is:

* Russell, S. & Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice Hall
(3rd ed.).
There are many good books available on artificial intelligence; one alternative is:

Poole, D. L. & Mackworth, A. K. (2010). Artificial intelligence: foundations of computational
agents. Cambridge University Press.

Computer Science Tripos Part IB 59

For some of the material you might find it useful to consult more specialised texts, in
particular:

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.
Cawsey, A. (1998). The essence of artificial intelligence. Prentice Hall.
Ghallab, M., Nau, D. & Traverso, P. (2004). Automated planning: theory and practice.
Morgan Kaufmann.
Bishop, C.M. (2006). Pattern recognition and machine learning. Springer.
Brachman, R.J & Levesque, H.J. (2004). Knowledge Representation and Reasoning.
Morgan Kaufmann.

Complexity Theory

Lecturer: Professor A. Dawar

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Algorithms, Computation Theory

Aims

The aim of the course is to introduce the theory of computational complexity. The course
will explain measures of the complexity of problems and of algorithms, based on time and
space used on abstract models. Important complexity classes will be defined, and the
notion of completeness established through a thorough study of NP-completeness.
Applications to cryptography will be considered.

Lectures

• Algorithms and problems. Complexity of algorithms and of problems. Lower and
upper bounds. Examples: sorting and travelling salesman.

• Time and space. Models of computation and measures of complexity. Time and
space complexity on a Turing machine. Decidability and complexity.

• Time complexity. Time complexity classes. Polynomial time problems and
algorithms. Problems on numbers, graphs and formulas.

• Non-determinism. Non-deterministic machines. The complexity class NP and its
various characterizations. Non-deterministic algorithms for satisfiability and other
problems in NP.

• NP-completeness. Reductions and completeness. NP-completeness of
satisfiability.

• More NP-complete problems. Graph-theoretic problems. Independent set, clique
and 3-colourability.

60 University of Cambridge

• More NP-complete problems. Sets, numbers and scheduling. Matching, set
covering and knapsack.

• coNP. Validity of boolean formulae and its completeness. NP ∩ coNP. Primality and
factorisation.

• Cryptographic complexity. One-way functions. The class UP.

• Space complexity. Deterministic and non-deterministic space complexity classes.
The reachability method. Savitch’s theorem.

• Hierarchy. The time and space hierarchy theorems and complete problems.

• Descriptive complexity. Logics capturing complexity classes. Fagin’s theorem.

Objectives

At the end of the course students should

• be able to analyse practical problems and classify them according to their
complexity;

• be familiar with the phenomenon of NP-completeness, and be able to identify
problems that are NP-complete;

• be aware of a variety of complexity classes and their interrelationships;

• understand the role of complexity analysis in cryptography.

Recommended reading

* Papadimitriou, Ch.H. (1994). Computational complexity. Addison-Wesley.
Goldreich, O. (2010). P, NP, and NP-Completeness: the basics of computational
complexity. Cambridge University Press. Sipser, M. (1997). Introduction to the theory of
computation. PWS.

Paper 7: Concepts in Programming Languages

This course is only taken by Part IB and Part II Paper 7 students.

Lecturer: Professor A. Mycroft

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: None.

Computer Science Tripos Part IB 61

Aims

The general aim of this course is to provide an overview of the basic concepts that appear
in modern programming languages, the principles that underlie the design of programming
languages, and their interaction.

Lectures

• Introduction, motivation, and overview. What is a programming language?
Application domains in language design. Program execution models. Theoretical
foundations. Language standardization. History.

• The ancestors: Fortran, Lisp, Algol and Pascal. Key ideas: procedural (Fortran),
declarative (Lisp), block structured (Algol and Pascal). Execution models (abstract
machines), data types, control structures, storage, arrays and pointers, procedures
and forms of parameter passing, scope, strict and lazy evaluation, garbage
collection. Programs as data (Lisp).

• Object-oriented languages — Concepts and origins: Simula (1964–67) and
Smalltalk (1971–80). Dynamic lookup. Abstraction. Subtyping. Inheritance.
JavaScript prototypal vs Java class-based inheritance.

• Languages for parallel processing. Shared-memory concurrency with spawn/sync
(OpenMP, Cilk, X10). Distributed-memory models (the actor model, Erlang).
External vs. internal iteration.

• Types. Types in programming languages. Type safety. Type systems—static vs.
dynamic. Type checking and type inference. Polymorphism. Overloading. Type
equivalence.

• Data abstraction and modularity: SML Modules (1984–97). Information hiding.
Modularity. Signatures, structures, and functors. Sharing.

• Combining functional and object-oriented features. Scala and Java 8. Generic
types and methods. Variance annotations. The expression problem. Value types and
deep copy.

• More-advanced concepts and idioms. Haskell monads, type classes.
Continuation passing style and call/cc. Dependent types.

Objectives

At the end of the course students should

• be familiar with several language paradigms and how they relate to different
application domains;

• understand the design space of programming languages, including concepts and
constructs from past languages as well as those that may be used in the future;

62 University of Cambridge

• develop a critical understanding of the programming languages that we use by being
able to identify and compare the same concept as it appears in different languages.

Recommended reading

Books:
* Mitchell, J.C. (2003). Concepts in programming languages. Cambridge University Press.
* Scott, M.L. (2009). Programming language pragmatics. Morgan Kaufmann.
Odersky, M. (2008). Scala by example. Programming Methods Laboratory, EPFL.
Pratt, T.W. & Zelkowitz, M.V. (2001). Programming languages: design and implementation.
Prentice Hall.

Papers:
Kay, A.C. (1993). The early history of Smalltalk. ACM SIGPLAN Notices, Vol. 28, No. 3.
Kernighan, B. (1981). Why Pascal is not my favorite programming language. AT&T Bell
Laboratories. Computing Science Technical Report No. 100.
Koenig, A. (1994). An anecdote about ML type inference. USENIX Symposium on Very
High Level Languages.
Landin, P.J. (1966). The next 700 programming languages. Communications of the ACM,
Vol. 9, Issue 3.
Odersky, M. et al. (2006). An overview of the Scala programming language. Technical
Report LAMP-REPORT-2006-001, Second Edition.
McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM, 3(4):184–195.
Stroustrup, B. (1991). What is Object-Oriented Programming? (1991 revised version).
Proceedings 1st European Software Festival.

Paper 7: Formal Models of Language

This course is only taken by Part IB and Part II Paper 7 students.

Lecturers: Dr P. Buttery

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: Discrete Maths; Compiler Construction;

Aims

This course studies formal models of language and considers how they might be relevant
to the processing and acquisition of natural languages. The course will extend knowledge
of formal language theory; introduce several new grammars; and use concepts from
information theory to describe natural language.

Computer Science Tripos Part IB 63

Lectures

• Natural language and the Chomsky hierarchy 1. Recap classes of language.
Closure properties of language classes. Recap pumping lemma for regular
languages. Discussion of relevance (or not) to natural languages (example
embedded clauses in English).

• Natural language and the Chomsky hierarchy 2. Pumping lemma for context free
languages. Discussion of relevance (or not) to natural languages (example
Swiss-German cross serial dependancies). Properties of minimally context sensitive
languages. Introduction to tree adjoining grammars.

• Language processing and context free grammar parsing 1. Recap of context
free grammar parsing. Language processing predictions based on top down parsing
models (example Yngve’s language processing predictions). Language processing
predictions based on probabilistic parsing (example Halle’s language processing
predictions).

• Language processing and context free grammar parsing 2. Introduction to
context free grammar equivalent dependancy grammars. Language processing
predictions based on Shift-Reduce parsing (examples prosodic look-ahead parsers,
Parsey McParseface).

• Grammar induction of language classes. Introduction to grammar induction.
Discussion of relevance (or not) to natural language acquisition. Gold’s theorem.
Introduction to context free grammar equivalent categorial grammars and their
learnable classes.

• Natural language and information theory 1. Entropy and natural language
typology. Uniform information density as a predictor for language processing.

• Natural language and information theory 2. Noisy channel encoding as a model
for spelling error, translation and language processing.

• Vector space models and word vectors. Introduction to word vectors (example
Word2Vec). Word vectors as predictors for semantic language processing.

Objectives

At the end of the course students should

• understand how known natural languages relate to formal languages in the Chomsky
hierarchy;

• have knowledge of several context free grammars equivalents;

• understand how we might make predictions about language processing and
language acquisition from formal models;

• know how to use information theoretic concepts to describe aspects of natural
language.

64 University of Cambridge

Recommended reading

* Jurafsky, D. & Martin, J. (2008). Speech and language processing. Prentice Hall.
Manning, C.D. & Schutze, H. (1999) Foundations of statistical natural language
processing. MIT Press.
Ruslan, M. (2003) The Oxford handbook of computational linguistics. Oxford University
Press.
Clark, A., Fox, C. & Lappin, S. (2010) The handbook of computational linguistics and
natural language processing. Wiley-Blackwell.
Kozen, D. (1997) Automata and computibility. Springer.

Security

Lecturer: Dr M.G. Kuhn

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Operating Systems; Computer Networking; Programming in C; Unix
Tools (recommended)

Aims

This course provides an overview of technical measures commonly used to enforce
security policies, to protect networked and multi-user information systems against
malicious user activity, mainly at the level of operating systems and network protocols. It
also discusses common security concepts and pitfalls for application programmers and
system architects, and strategies for exploiting and mitigating the resulting vulnerabilities.

Lectures

• Introduction. Malicious intent: safety vs. security engineering. Security policies,
targets, mechanisms. Aspects of confidentiality, integrity, availability, privacy.
Requirements across different applications.

• Operating-system security overview. Access-control matrix, trusted computing
base, domain separation, CPU modes, system calls, residual information protection,
virtual machines. [0.5 lecture]

• POSIX discretionary access control. User and group databases and identifiers,
file permission modes, ownership rights, sticky bit, group inheritance, set-uid,
elevation of privileges, root user, NFS root squash, chroot, POSIX.1e ACLs.

• Windows discretionary access control. NTFS access rights, security identifiers,
access-control entries and lists, inheritance, services, auditing, NFSv4 ACLs.

• Linux-specific mechanisms. PAM, LSM, Linux capabilities, AppArmor, seccomp,
eBPF, audit, cgroups, namespaces, containers.

Computer Science Tripos Part IB 65

• Running untrusted code. Mandatory access control, covert channels, SELinux,
type enforcement, iOS/macOS/Android app-store sandboxes, capabilities.

• Software vulnerabilities. buffer/integer overflows, ASLR, metacharacter
vulnerabilities: shell and SQL injection, side channels, race conditions,
environmental exploits, fuzzing.

• Cryptography overview. Private/public-key encryption, MACs, digital signatures,
certificates, key revocation, secure hash functions, key-establishment schemes, key
generation. [0.5 lecture]

• Entity authentication. Password verification, guessing user-generated secrets,
biometric identification, hardware tokens, challenge-response authentication
protocols, Kerberos, ssh, TLS.

• Network access. Ethernet hubs and switches, ARP/NDP/DHCP spoofing, 802.1q
VLAN tagging/trunking/hopping, port isolation, 802.1x, RADIUS, EAP, Wifi,
GSM/LTE.

• Internet protocols. TCP vs UDP, firewalls, iptables, IPSEC/IKE, VPNs, IP
options/fragmentation, DDoS.

• Email and DNS security. SMTP/RFC822 header forgery, spam, SPF, DKIM, DNS
vulnerabilities, DNSSEC.

• Web security. HTTP basics, HTTPS, SNI, HTTP authentication, cookies, single
sign-on (Ucam WebAuth, SAML), delegation (OAuth2), JavaScript, cross-site
scripting, cross-site request forgery, same-origin policy, CORS.

Objectives

By the end of the course, students should appreciate the importance of adversarial
thinking in systems design and have a good overview of the security mechanisms and
attributes of some of the most commonly used operating systems, networking
infrastructure and Internet applications. They should also understand commonly exploited
vulnerabilities of authentication mechanisms and know how to avoid some common
security pitfalls in software development.

Recommended reading

Gollmann, D. (2010). Computer security. Wiley (3rd ed.).
Dowd, M.; McDonald, J.; Schuh, J. (2007). The art of software security assessment.
Addison-Wesley.

66 University of Cambridge

Introduction to Part II

This document lists the courses offered by the Computer Laboratory for Part II of the
Computer Science Tripos. Separate booklets give details of the syllabus for other Parts of
the Computer Science Tripos.

Students taking the Part II 50% option of the CST will read papers 7, 8 and 9 and submit a
dissertation. Each of these four is marked out of 100 giving a total available credit in Part II
of 400 marks. Alternatively, those taking the Part II 75% option will take papers 8, 9,
submit a dissertation, and offer two units of assessment.

Some courses are specific to either Paper 7 or are Units of Assessment, and have been
marked as such in this booklet. Those students following the 75% Computer Science
option, who have taken Paper 7 in Part II, will additionally choose two of the units of
assessment. Those students taking the 50% Computer Science option, will attend the
Paper 7 courses instead. The remaining courses can be chosen by all Part II students.

The taught modules in Part II are examined in papers 7, 8 and 9 and you answer five
questions from each paper. There are no restrictions on which questions you answer. The
layout of the papers is announced just before the Michaelmas term starts, but it is
generally mostly the same as in previous years, varying only to accomodate new,
withdrawn or suspended courses. The units are assessed in a variety of ways, and details
can be found in the course descriptions.

It is up to you to make sure you read sufficient courses to be able to answer five questions
on each of the papers. Generally, you should aim to be able to answer at least six
questions on each paper. You are certainly not expected to go to all the Part II lectures
and be able to answer all of the questions on every paper — that would be more or less
impossible.

Here is a suggestion for how to plan your courses: In September, just before the start of
the year, look through the course list and strike out any course you know you won’t do (i.e.
remove the definite ‘no’s - there are always some). Then attend the first lecture of every
Part II course to get the feel for it and make a decision on whether to continue after
checking that dropping the course doesn’t leave you short on any paper. Work on the
basis of being able to answer 6 questions, with a 7th as a backup where you are confident
of scoring half marks (but probably no more).

It is the duty of your Director of Studies to advise you in course selection so do ask for
guidance.

The syllabus information given here is for guidance only and should not be considered
definitive. Current timetables can be found at
http://www.cl.cam.ac.uk/teaching/timetables/

For most of the courses listed below, a list of recommended books is given. These are
roughly in order of usefulness, and lecturers have indicated by means of an asterisk those
books which are most recommended for purchase by College libraries.

The Computer Laboratory Library aims to keep at least one copy of each of the course
texts in “The Booklocker” (see http://www.cl.cam.ac.uk/library/).

http://www.cl.cam.ac.uk/teaching/timetables/
http://www.cl.cam.ac.uk/library/

Computer Science Tripos Part II 67

For copies of the other syllabus booklets and for answers to general enquiries about
Computer Science courses, please get in touch with:

Teaching Administrator
University of Cambridge
Computer Laboratory
William Gates Building
J J Thomson Avenue
Cambridge
CB3 0FD

telephone: 01223 763505
fax: 01223 334678
e-mail: teaching-admin@cl.cam.ac.uk

mailto:teaching-admin@cl.cam.ac.uk

68 University of Cambridge

Michaelmas Term 2018: Part II lectures

Bioinformatics

Lecturer: Professor P. Lio’

No. of lectures: 12

Suggested hours of supervisions: 3

Aims

This course focuses on algorithms used in Bioinformatics and System Biology. Most of the
algorithms are general and can be applied in other fields on multidimensional and noisy
data. All the necessary biological terms and concepts useful for the course and the
examination will be given in the lectures. The most important software implementing the
described algorithms will be demonstrated.

Lectures

• Introduction to biological data: Bioinformatics as an interesting field in computer
science.

• Dynamic programming. Longest common subsequence, DNA global and local
alignment, linear space alignment, Nussinov algorithm for RNA, heuristics for
multiple alignment. (Vol. 1, chapter 5)

• Sequence database search. Blast. (see notes and textbooks)

• Genome sequencing. De Bruijn graph. (Vol. 1, chapter 3)

• Phylogeny. Distance based algorithms (UPGMA, Neighbour-Joining).
Parsimony-based algorithms. (Vol. 2, chapter 7)

• Clustering. Hard and soft K-means clustering, use of Expectation Maximization in
clustering, Hierarchical clustering, Markov clustering algorithm. (Vol. 2, chapter 8)

• Genomics Pattern Matching. Suffix Tree String Compression and the
Burrows-Wheeler Transform. (Vol. 2, chapter 9)

• Hidden Markov Models. The Viterbi algorithm, profile HMMs for sequence
alignment, classifying proteins with profile HMMs, soft decoding problem,
Baum-Welch learning. (Vol. 2, chapter 10)

Objectives

At the end of this course students should

• understand Bioinformatics terminology;

Computer Science Tripos Part II 69

• have mastered the most important algorithms in the field;

• be able to work with bioinformaticians and biologists;

• be able to find data and literature in repositories.

Recommended reading

* Compeau, P. & Pevzner, P.A. (2015). Bioinformatics algorithms: an active learning
approach. Active Learning Publishers.
Durbin, R., Eddy, S., Krough, A. & Mitchison, G. (1998). Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Press.
Jones, N.C. & Pevzner, P.A. (2004). An introduction to bioinformatics algorithms. MIT
Press.
Felsenstein, J. (2003). Inferring phylogenies. Sinauer Associates.

Business Studies

Lecturer: Jack Lang and Stewart McTavish

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite course: Economics, Law & Ethics

This course is a prerequisite for E-Commerce.

Aims

How to start and run a computer company; the aims of this course are to introduce
students to all the things that go to making a successful project or product other than just
the programming. The course will survey some of the issues that students are likely to
encounter in the world of commerce and that need to be considered when setting up a
new computer company.

See also Business Seminars in the Easter Term.

Lectures

• So you’ve got an idea? Introduction. Why are you doing it and what is it? Types of
company. Market analysis. The business plan.

• Money and tools for its management. Introduction to accounting: profit and loss,
cash flow, balance sheet, budgets. Sources of finance. Stocks and shares. Options
and futures.

• Setting up: legal aspects. Company formation. Brief introduction to business law;
duties of directors. Shares, stock options, profit share schemes and the like.
Intellectual Property Rights, patents, trademarks and copyright. Company culture
and management theory.

70 University of Cambridge

• People. Motivating factors. Groups and teams. Ego. Hiring and firing: employment
law. Interviews. Meeting techniques.

• Project planning and management. Role of a manager. PERT and GANTT charts,
and critical path analysis. Estimation techniques. Monitoring.

• Quality, maintenance and documentation. Development cycle. Productization.
Plan for quality. Plan for maintenance. Plan for documentation.

• Marketing and selling. Sales and marketing are different. Marketing; channels;
marketing communications. Stages in selling. Control and commissions.

• Growth and exit routes. New markets: horizontal and vertical expansion. Problems
of growth; second system effects. Management structures. Communication. Exit
routes: acquisition, floatation, MBO or liquidation. Futures: some emerging ideas for
new computer businesses. Summary. Conclusion: now you do it!

Objectives

At the end of the course students should

• be able to write and analyse a business plan;

• know how to construct PERT and GANTT diagrams and perform critical path
analysis;

• appreciate the differences between profitability and cash flow, and have some notion
of budget estimation;

• have an outline view of company formation, share structure, capital raising, growth
and exit routes;

• have been introduced to concepts of team formation and management;

• know about quality documentation and productization processes;

• understand the rudiments of marketing and the sales process.

Recommended reading

Lang, J. (2001). The high-tech entrepreneur’s handbook: how to start and run a high-tech
company. FT.COM/Prentice Hall.

Students will be expected to be able to use Microsoft Excel and Microsoft Project.

For additional reading on a lecture-by-lecture basis, please see the course website.

Students are strongly recommended to enter the CU Entrepreneurs Business Ideas
Competition http://www.cue.org.uk/

http://www.cue.org.uk/

Computer Science Tripos Part II 71

Unit: Cloud Computing

This course is only taken by Part II 75% students.

Lecturers: Dr E. Kalyvianaki and Dr A. Madhavapeddy

No. of lectures and practical classes: 10+3

Prerequisite courses: Operating Systems, Concepts in Programming Languages
Concurrent and Distributed Systems, Computer Networking and Unix Tools.

Capacity: 50

Aims

This module aims to teach students the fundamentals of Cloud Computing covering topics
such as virtualization, data centres, cloud resource management, cloud storage and
popular cloud applications including batch and data stream processing. Emphasis is given
on the different backend technologies to build and run efficient clouds and the way clouds
are used by applications to realise computing on demand. The course will include practical
tutorials on different cloud infrastructure technologies. Students will be assessed via a
Cloud-based coursework project.

Lectures

• Introduction to Cloud Computing

• Data centres

• Virtualization I

• Virtualization II

• Resource schedulers for Virtual Machines

• MapReduce

• MapReduce advanced

• Resource management for virtualized data centres

• Cloud storage

• Cloud-based data stream processing

Objectives

By the end of the course students should:

• understand how modern clouds operate and provide computing on demand;

• understand about cloud availability, performance, scalability and cost;

72 University of Cambridge

• know about cloud infrastructure technologies including virtualization, data centres,
resource management and storage;

• know how popular applications such as batch and data stream processing run
efficiently on clouds;

• know how to build and operate a testbed cloud.

Recommended reading

Marinescu, D.C. Cloud Computing, Theory and Practice. Morgan Kaufmann.
Barham, P., et. al. (2003). “Xen and the Art of Virtualization”. In Proceedings of SOSP
2003.
Charkasova, L., Gupta, D. & Vahdat, A. (2007). “Comparison of the Three CPU
Schedulers in Xen”. In SIGMETRICS 2007.
Dean, J. & Ghemawat, S. (2004). “MapReduce: Simplified Data Processing on Large
Clusters”. In Proceedings of OSDI 2004.
Zaharia, M, et al. (2008). “Improving MapReduce Performance in Heterogeneous
Environments”. In Proceedings of OSDI 2008.
Hindman, A., et al. (2011). “Mesos: A Platform for Fine-Grained Resource Sharing in Data
Center”. In Proceedings of NSDI 2011.
Schwarzkopf, M., et al. (2013). “Omega: Flexible, Scalable Schedulers for Large Compute
Clusters”. In EuroSys 2013.
Ghemawat, S. (2003). “The Google File System”. In Proceedings of SOSP 2003.
Chang, F. (2006). “Bigtable: A Distributed Storage System for Structured Data”. In
Proceedings of OSDI 2006.
Fernandez, R.C., et al. (2013). “Integrating Scale Out and Fault Tolerance in Stream
Processing using Operator State Management”. In SIGMOD 2013.

Unit: Data Science: principles and practice

This course is only taken by Part II 75% students.

Lecturers: Dr M. Rei, Dr E. Kochmar, Dr D. Wischik and Professor E.J. Briscoe

No. of lectures and practical classes: 12

Prerequisite courses: NST Mathematics, Machine Learning and Real-World Data and
Foundations of Data Science.

Capacity: 40-50

Aims

The course will develop core areas of Data Science (eg. models for regression and
classification) from several perspectives: conceptual formulation and properties, solution
algorithms and their implementation, data visualization for exploratory data analysis and
the effective presentation of modelling outputs. The lectures will be complemented by
practical classes using Python, scikit-learn and TensorFlow.

Computer Science Tripos Part II 73

Lectures

• Introduction. Motivation, applications, examples, loading common data formats,
calculating statistics over a dataset, logistics and overview of the course.

• Linear Regression. Defining a model, fitting a model, least squares regression,
linear regression, gradient descent, scikit-learn.

• Practical: Linear Regression

• Classification. Classification, perceptron, logistic regression, multi-class
classification, regularisation, kernels, exploratory data visualisation.

• Practical: Classification

• Deep Learning, part I. Training neural networks, applications, multilayer
perceptrons, stochastic gradient descent, backpropagation.

• Deep Learning, part II. Advanced architectures, convnets, RNNs, introduction to
TensorFlow.

• Practical: Deep Learning

• Visualization, part I. Scales and coordinates, depicting comparisons.

• Visualization, part II. Common plotting patterns, including dimension reduction.

• Practical: Visualization

• Challenges in Data Science. Summary of the course, overview of other relevant
techniques, ethics and privacy issues, bias in the training data, information about the
hand out test.

Objectives

By the end of the course students should be able to:

• demonstrate understanding and practical skills in Data Science;

• be able to specify and work with an analytical model;

• be able to effectively implement Data Science algorithms;

• understand how data visualization underpins exploring datasets as well as
communicating the findings of data science models.

74 University of Cambridge

Recommended reading

Bishop, C.M. (2008). Pattern Recognition and Machine Learning. Springer.
MacKay, D.J. (2003). Information Theory, Inference and Learning Algorithms. Cambridge
University Press.
Python Basic Tutorial. Available online:
https://www.tutorialspoint.com/python/index.htm

Numpy: Quickstart Tutorial. Available online:
https://docs.scipy.org/doc/numpy/user/quickstart.html

Get Started with TensorFlow. Available online:
https://www.tensorflow.org/tutorials/

Denotational Semantics

Lecturer: Professor A.M. Pitts

No. of lectures: 10

Suggested hours of supervisions: 3

Aims

The aims of this course are to introduce domain theory and denotational semantics, and to
show how they provide a mathematical basis for reasoning about the behaviour of
programming languages.

Lectures

• Introduction. The denotational approach to the semantics of programming
languages. Recursively defined objects as limits of successive approximations.

• Least fixed points. Complete partial orders (cpos) and least elements. Continuous
functions and least fixed points.

• Constructions on domains. Flat domains. Product domains. Function domains.

• Scott induction. Chain-closed and admissible subsets of cpos and domains. Scott’s
fixed-point induction principle.

• PCF. The Scott-Plotkin language PCF. Evaluation. Contextual equivalence.

• Denotational semantics of PCF. Denotation of types and terms. Compositionality.
Soundness with respect to evaluation. [2 lectures].

• Relating denotational and operational semantics. Formal approximation relation
and its fundamental property. Computational adequacy of the PCF denotational
semantics with respect to evaluation. Extensionality properties of contextual
equivalence. [2 lectures].

https://www.tutorialspoint.com/python/index.htm
https://docs.scipy.org/doc/numpy/user/quickstart.html
https://www.tensorflow.org/tutorials/

Computer Science Tripos Part II 75

• Full abstraction. Failure of full abstraction for the domain model. PCF with
parallel or.

Objectives

At the end of the course students should

• be familiar with basic domain theory: cpos, continuous functions, admissible
subsets, least fixed points, basic constructions on domains;

• be able to give denotational semantics to simple programming languages with
simple types;

• be able to apply denotational semantics; in particular, to understand the use of least
fixed points to model recursive programs and be able to reason about least fixed
points and simple recursive programs using fixed point induction;

• understand the issues concerning the relation between denotational and operational
semantics, adequacy and full abstraction, especially with respect to the
language PCF.

Recommended reading

Winskel, G. (1993). The formal semantics of programming languages: an introduction.
MIT Press.
Gunter, C. (1992). Semantics of programming languages: structures and techniques. MIT
Press.
Tennent, R. (1991). Semantics of programming languages. Prentice Hall.

Information Theory

Lecturer: Professor J.G. Daugman

No. of lectures: 16

In lieu of supervisions, exercises will be set and reviewed in two Examples Classes.

Aims

This course introduces the principles and applications of information theory: how
information is measured in terms of probability and various entropies, how these are used
to calculate the capacity of communication channels, with or without noise, and to
measure how much random variables reveal about each other. Coding schemes including
error correcting codes are studied along with data compression, spectral analysis,
transforms, and wavelet coding. Applications of information theory are reviewed, from
astrophysics to pattern recognition.

76 University of Cambridge

Lectures

• Foundations: probability, uncertainty, information. How concepts of
randomness, redundancy, compressibility, noise, bandwidth, and uncertainty are
related to information. Ensembles, random variables, marginal and conditional
probabilities. How the metrics of information are grounded in the rules of probability.

• Entropies defined, and why they are measures of information. Marginal entropy,
joint entropy, conditional entropy, and the Chain Rule for entropy. Mutual information
between random variables. Why entropy is the fundamental measure of information
content.

• Source coding theorem; prefix, variable-, and fixed-length codes. Markov
sources. Entropy of a multi-state Markov process. Symbol codes; Huffman codes
and the prefix property. Binary symmetric channels. Capacity of a noiseless discrete
channel.

• Noisy discrete channel properties, and channel capacity. Perfect communication
through a noisy channel: error-correcting codes. Capacity of a discrete channel as
the maximum of its mutual information.

• Information represented by projections and in transforms. Expressing data in
vector spaces or as a linear combination of basis functions. Inner product spaces
and orthonormal systems. Norms, spans, and linear subspaces; dimensionality
reduction.

• Fourier analysis: series and transforms, discrete or continuous. How periodic
and aperiodic data are analysed and represented by Fourier methods. Rates of
convergence. Information revealed in the Fourier domain. Discrete, inverse, and Fast
Fourier Transforms; butterfly algorithm. Duality properties. Wavelet transforms.

• Spectral properties of continuous-time signals and channels. Signals
represented as combinations of complex exponential eigenfunctions; channels
represented as spectral filters that add noise. Convolution. Applying Fourier analysis
to communication schemes.

• Continuous information; density; noisy channel coding theorem. Extensions of
discrete entropies and measures to the continuous case. Signal-to-noise ratio;
power spectral density. Gaussian channels. Relative significance of bandwidth and
noise limitations. The Shannon rate limit for noisy continuous channels.

• Signal coding and transmission schemes using Fourier theorems. Nyquist
Sampling Theorem. Aliasing and its prevention. Modulation and shift theorems;
multiple carriers; frequency and phase modulation codes; ensembles. Filters,
coherence, demodulation; noise removal by correlation.

• The quantized degrees-of-freedom in a continuous signal. Why a continuous
signal of finite bandwidth and duration has a fixed number of degrees-of-freedom.
Diverse illustrations of the principle that information, even in such a signal, comes in
quantized, countable, packets.

Computer Science Tripos Part II 77

• Gabor-Heisenberg-Weyl uncertainty relation. Optimal “Logons”. Unification of
the time-domain and the frequency-domain as endpoints of a continuous
deformation. The Uncertainty Principle and its optimal solution by Gabor’s expansion
basis of “logons”. Multi-resolution wavelet codes. Extension to images, for analysis
and compression.

• Data compression codes and protocols. Run-length coding; dictionary methods
on strings; vector quantisation; JPEG and JP2K image compression; orthogonal
subspace projections; predictive coding; the Laplacian pyramid; and wavelet scalar
quantisation.

• Kolmogorov complexity. Minimal description length. Definition of the algorithmic
complexity of a data sequence, and its relation to the entropy of the distribution from
which the data was drawn. Fractals. Minimal description length, and why this
measure of complexity is not computable.

• Applications of information theory in other sciences. Use of information metrics
and analysis in: genomics; neuroscience; astrophysics; noisy signal classification;
and pattern recognition including biometrics.

Objectives

At the end of the course students should be able to

• calculate the information content of a random variable from its probability distribution;

• relate the joint, conditional, and marginal entropies of variables in terms of their
coupled probabilities;

• define channel capacities and properties using Shannon’s Theorems;

• construct efficient codes for data on imperfect communication channels;

• generalize the discrete concepts to continuous signals on continuous channels;

• understand encoding and communication schemes in terms of the spectral
properties of signals and channels;

• describe compression schemes, and efficient coding using wavelets and other
representations for data.

Recommended reading

* Cover, T.M. & Thomas, J.A. (2006). Elements of information theory. New York: Wiley.

78 University of Cambridge

LaTeX and MATLAB

Lecturer: Dr M.G. Kuhn

No. of lectures: 2

Suggested hours of supervisions: 0–1 (non-examinable course with exercises)

LATEX skills are useful for preparing the Part II dissertation. MATLAB skills are useful for
programming exercises in some Part II courses (e.g. Digital Signal Processing).

Aims

Introduction to two widely-used languages for typesetting dissertations and scientific
publications, for prototyping numerical algorithms and to visualize results.

Lectures

• LATEX. Workflow example, syntax, typesetting conventions, non-ASCII characters,
document structure, packages, mathematical typesetting, graphics and figures,
cross references, build tools.

• MATLAB. Tools for technical computing and visualization. The matrix type and its
operators, 2D/3D plotting, common functions, function definitions, toolboxes,
vectorized audio demonstration.

Objectives

Students should be able to avoid the most common LATEX mistakes, to prototype simple
image and signal processing algorithms in MATLAB, and to visualize the results.

Recommended reading

* Lamport, L. (1994). LATEX – a documentation preparation system user’s guide and
reference manual. Addison-Wesley (2nd ed.).

Mittelbach, F., et al. (2004). The LATEX companion. Addison-Wesley (2nd ed.).

Unit: Metaprogramming

This course is only taken by Part II 75% students.

Lecturers: Dr N. Amin and Dr J. Yallop

No. of lectures and practical classes: 12+4

Prerequisite courses: Foundations of Computer Science, Prolog, Semantics of
Programming Languages, Concepts in Programming Languages, Compiler Construction.

Computer Science Tripos Part II 79

Capacity: 50

Aims

This course surveys principled approaches to metaprogramming; writing programs that
manipulate programs. Topics include evaluators, reflection, writing programs that write
programs, designing domain specific languages and meta-linguistic abstractions,
synthesis.

Lectures

• Week 1. Programs as data, data as programs. Interpreters. Meta-interpreters in Lisp
and Prolog.

• Week 2. Reification / reflection, reflective towers of interpreters, meta-object
protocols.

• Week 3. Partial evaluation including Futamura projections, multi-stage programming.
Turning interpreters into compilers, collapsing towers of interpreters.

• Week 4. Domain-specific languages, finally-tagless. Non-determinism, relational
and probabilistic languages.

• Week 5. Synthesis.

• Week 6. Unconventional models of computation. Relaxing from symbolic to neural.
Reversible computing.

Objectives

By the end of the course students should be able to:

• Mechanically turn an interpreter into a compiler;

• design meta-linguistic abstractions to deal with a complex problem;

• think beyond traditional paradigms for programming.

Recommended reading

Detailed suggestions for reading will be given in the lecture notes. The Scala programming
language will be used for assignments, and the following books are useful reference for
that, although neither is required:

Odersky, M. (2014) Scala by example. EPFL Programming Methods Laboratory. Available
online: https://www.scala-lang.org/docu/files/ScalaByExample.pdf
Odersky, M., Spoon, L. & Venners, B. (2016) Programming in Scala. Artima (3rd ed.).

Additional background reading includes:

https://www.scala-lang.org/docu/files/ScalaByExample.pdf

80 University of Cambridge

Pierce, B.C. (2002) Types and programming languages. MIT Press.
Abelson, H. & Sussman, G.J. Structure and interpretation of computer programs. MIT
Press (2nd ed.).
Norvig, P. (1992) Paradigms of artificial intelligence programming. Morgan Kaufmann.

Unit: Multicore Semantics and Programming

This course is only taken by Part II 75% students.

Lecturers: Professor P. Sewell and Dr T. Harris

No. of lectures and practical classes: 8

Prerequisite courses: Discrete mathematics, Object-Oriented programing, Semantics of
Programming Languages.

Capacity: 20

Aims

In recent years multiprocessors have become ubiquitous, but building reliable concurrent
systems with good performance remains very challenging. The aim of this module is to
introduce some of the theory and the practice of concurrent programming, from hardware
memory models and the design of high-level programming languages to the correctness
and performance properties of concurrent algorithms.

Lectures

Part 1: Introduction and relaxed-memory concurrency [Peter Sewell]

• Introduction. Sequential consistency, atomicity, basic concurrent problems. [1
block]

• Concurrency on real multiprocessors: the relaxed memory model(s) for x86,
ARM, and IBM Power, and theoretical tools for reasoning about x86-TSO programs.
[2 blocks]

• High-level languages. An introduction to C/C++11 and Java shared-memory
concurrency. [1 block]

Part 2: Concurrent algorithms [Tim Harris]

• Concurrent programming. Simple algorithms (readers/writers, stacks, queues) and
correctness criteria (linearisability and progress properties). Advanced
synchronisation patterns (e.g. some of the following: optimistic and lazy list
algorithms, hash tables, double-checked locking, RCU, hazard pointers), with
discussion of performance and on the interaction between algorithm design and the
underlying relaxed memory models. [3 blocks]

Computer Science Tripos Part II 81

• Research topics, likely to include one hour on transactional memory and one guest
lecture. [1 block]

Objectives

By the end of the course students should:

• have a good understanding of the semantics of concurrent programs, both at the
multprocessor level and the C/Java programming language level;

• have a good understanding of some key concurrent algorithms, with practical
experience.

Recommended reading

Herlihy, M. & Shavit, N. (2008). The art of multiprocessor programming. Morgan
Kaufmann.

Unit: Natural Language Processing

This course is only taken by Part II 75% students.

Lecturers: Professor S. Teufel and Dr P. Buttery

No. of lectures and practical classes: 12+3

Prerequisite courses: Machine Learning and Real-World Data, Formal Models of
Language, Foundations of Data Science, Artificial Intelligence.

Capacity: 30

Aims

This course introduces the fundamental techniques of natural language processing. It
aims to explain the potential and the main limitations of these techniques. Some current
research issues are introduced and some current and potential applications discussed and
evaluated. Students will also be introduced to practical experimentation in natural
language processing.

Lectures

• Introduction. Brief history of NLP research, some current applications, components
of NLP systems.

• Finite-state techniques. Inflectional and derivational morphology, finite-state
automata in NLP, finite-state transducers.

82 University of Cambridge

• Prediction and part-of-speech tagging. Corpora, simple N-grams, word prediction,
stochastic tagging, evaluating system performance.

• Context-free grammars and parsing. Generative grammar, context-free grammars,
parsing with context-free grammars, weights and probabilities. Some limitations of
context-free grammars.

• Dependency structures. English as an outlier. Universal dependencies.
Introduction to dependency parsing.

• Compositional semantics. Logical representations. Compositional semantics and
lambda calculus. Inference and robust entailment. Negation.

• Lexical semantics. Semantic relations, WordNet, word senses.

• Distributional semantics. Representing lexical meaning with distributions.
Similarity metrics.

• Distributional semantics and deep learning. Embeddings. Grounding. Multimodal
systems and visual question answering.

• Discourse processing. Anaphora resolution, summarization.

• Language generation and regeneration. Generation and regeneration.
Components of a generation system. Generation of referring expressions.

• Recent NLP research. Some recent NLP research.

• Practical on sentiment analysis. Students will build a sentiment analysis system
which will be trained and evaluated on supplied data. The system will be built from
existing components, but students will be expected to compare approaches and
some programming will be required for this.

Objectives

By the end of the course students should:

• be able to discuss the current and likely future performance of several NLP
applications;

• be able to describe briefly a fundamental technique for processing language for
several subtasks, such as morphological processing, parsing, word sense
disambiguation etc.;

• understand how these techniques draw on and relate to other areas of computer
science.

Recommended reading

* Jurafsky, D. & Martin, J. (2008) Speech and language processing. Prentice Hall.

Computer Science Tripos Part II 83

Principles of Communications

Lecturer: Professor J.A. Crowcroft

No. of lectures: 16

Suggested hours of supervisions: 4

Prerequisite course: Computer Networking

This course may be useful for the Part III course on Network Architectures.

Useful related courses: Computer Systems Modelling, Information Theory, Digital Signal
Processing

Aims

This course aims to provide a detailed understanding of the underlying principles for how
communications systems operate. Practical examples (from wired and wireless
communications, the Internet, and other communications systems) are used to illustrate
the principles.

Lectures

• Introduction. Course overview. Abstraction, layering. Review of structure of real
networks, links, end systems and switching systems. [1 lecture]

• Routing. Central versus Distributed Routing Policy Routing. Multicast Routing
Circuit Routing [6 lectures]

• Flow control and resource optimisation. Control theory is a branch of engineering
familiar to people building dynamic machines. It can be applied to network traffic.
Stemming the flood, at source, sink, or in between? Optimisation as a model of
network& user. TCP in the wild. [3 lectures]

• Packet Scheduling. Design choices for scheduling and queue management
algorithms for packet forwarding, and fairness. [2 lectures]

• The big picture for managing traffic. Economics and policy are relevant to
networks in many ways. Optimisation and game theory are both relevant topics
discussed here. [2 lectures]

• System Structures and Summary. Abstraction, layering. The structure of real
networks, links, end systems and switching. [2 lectures]

Objectives

At the end of the course students should be able to explain the underlying design and
behaviour of protocols and networks, including capacity, topology, control and use. Several
specific mathematical approaches are covered (control theory, optimisation).

84 University of Cambridge

Recommended reading

* Keshav, S. (2012). Mathematical Foundations of Computer Networking. Addison Wesley.
ISBN 9780321792105
Background reading:
Keshav, S. (1997). An engineering approach to computer networking. Addison-Wesley
(1st ed.). ISBN 0201634422
Stevens, W.R. (1994). TCP/IP illustrated, vol. 1: the protocols. Addison-Wesley (1st ed.).
ISBN 0201633469

Quantum Computing

Lecturer: Professor A. Dawar

No. of lectures: 8

Suggested hours of supervisions: 2

Prerequisite courses: Foundations of Data Science, Computation Theory

Aims

The aims of the course are to introduce students to the basics of the quantum model of
computation. The model will be used to study algorithms for searching and factorisation.
Issues in the complexity of computation will also be explored.

Lectures

• Bits and qubits. Introduction to quantum states and measurements with motivating
examples. Comparison with discrete classical states.

• Linear algebra. Review of linear algebra: vector spaces, linear operators, Dirac
notation, tensor product.

• Quantum mechanics. Postulates of quantum mechanics. Evolution and
measurement. Entanglement.

• Quantum computation. The model of quantum computation. Quantum gates and
circuits. Deutsch–Jozsa algorithm.

• Some applications. Applications of quantum information: quantum key distribution,
superdense coding and quantum teleportation.

• Quantum search. Grover’s search algorithm: analysis and lower bounds.

• Factoring. Shor’s algorithm for factoring, its analysis. Quantum Fourier transform.

• Quantum complexity. Quantum complexity classes and their relationship to
classical complexity. Comparison with probabilistic computation.

Computer Science Tripos Part II 85

Objectives

At the end of the course students should:

• understand the quantum model of computation and the basic principles of quantum
mechanics;

• be familiar with basic quantum algorithms and their analysis;

• be familiar with basic quantum protocols such as teleportation and superdense
coding;

• see how the quantum model relates to classical models of deterministic and
probabilistic computation.

Recommended reading

Books:

Kaye P., Laflamme R., Mosca M. (2007). An Introduction to Quantum Computing. Oxford
University Press.
Nielsen M.A., Chuang I.L. (2010). Quantum Computation and Quantum Information.
Cambridge University Press.
Mermin N.D. (2007). Quantum Computer Science: An Introduction. Cambridge University
Press.
Hirvensalo M. (2001). Quantum Computing. Springer.

Papers:

Braunstein S.L. (2003). Quantum computation tutorial. Available at:
https://www-users.cs.york.ac.uk/~schmuel/comp/comp_best.pdf

Aharonov D., Quantum computation [arXiv:quant-ph/9812037]
Steane A., Quantum computing [arXiv:quant-ph/9708022]

Other lecture notes:

Umesh Vazirani (UC Berkeley): http://www-inst.eecs.berkeley.edu/~cs191/sp12/
John Preskill (Caltech): http://www.theory.caltech.edu/people/preskill/ph229/
Andrew Childs (University of Maryland): http://cs.umd.edu/~amchilds/qa/
John Watrous (University of Waterloo): https://cs.uwaterloo.ca/~watrous/TQI/

Types

Lecturer: Dr N. Krishnaswami

No. of lectures: 12

suggested hours of supervisions: 3

Prerequisite courses: Computation Theory, Semantics of Programming Languages

https://www-users.cs.york.ac.uk/~schmuel/comp/comp_best.pdf
http://www-inst.eecs.berkeley.edu/~cs191/sp12/
http://www.theory.caltech.edu/people/preskill/ph229/
http://cs.umd.edu/~amchilds/qa/
https://cs.uwaterloo.ca/~watrous/TQI/

86 University of Cambridge

Aims

The aim of this course is to show by example how type systems for programming
languages can be defined and their properties developed, using techniques that were
introduced in the Part IB course on Semantics of Programming Languages. The emphasis
is on type systems for functional languages and their connection to constructive logic.

Lectures

• Introduction. The role of type systems in programming languages. Review of
rule-based formalisation of type systems. [1 lecture]

• Propositions as types. The Curry-Howard correspondence between intuitionistic
propositional calculus and simply-typed lambda calculus. Inductive types and
iteration. Consistency and termination. [2 lectures]

• Polymorphic lambda calculus (PLC). PLC syntax and reduction semantics.
Examples of datatypes definable in the polymorphic lambda calculus. Type
inference. [3 lectures]

• Monads and effects. Explicit versus implicit effects. Using monadic types to control
effects. References and polymorphism. Recursion and looping. [2 lectures]

• Continuations and classical logic. First-class continuations and control operators.
Continuations as Curry-Howard for classical logic. Continuation-passing style.
[2 lectures]

• Dependent types. Dependent function types. Indexed datatypes. Equality types
and combining proofs with programming. [2 lectures]

Objectives

At the end of the course students should

• be able to use a rule-based specification of a type system to carry out type checking
and type inference;

• understand by example the Curry-Howard correspondence between type systems
and logics;

• understand how types can be used to control side-effects in programming;

• appreciate the expressive power of parametric polymorphism and dependent types.

Computer Science Tripos Part II 87

Recommended reading

* Pierce, B.C. (2002). Types and programming languages. MIT Press.
Pierce, B. C. (Ed.) (2005). Advanced Topics in Types and Programming Languages. MIT
Press.
Girard, J-Y. (tr. Taylor, P. & Lafont, Y.) (1989). Proofs and types. Cambridge University
Press.

88 University of Cambridge

Lent Term 2019: Part II lectures

Unit: Advanced Graphics and Image Processing

This course is only taken by Part II 75% students.

Lecturers: Dr R. Mantiuk

No. of lectures and practical classes: 14

Prerequisite courses: Programming in C.

Capacity: 30-50

Aims

Advanced Graphics covers topics related to processing, perception and display of images.
The focus of the course is on the algorithms behind new emerging display technologies,
such as virtual reality, augmented reality, and high dynamic range displays. It
complements two computer graphics courses, Introduction to Graphics and Further
Graphics, by introducing problems that became the part of graphics pipeline:
tone-mapping, post-processing, displays and models of visual perception.

Lectures

• GP-GPU: scheduling and thread mapping, reductions.

• Advanced image processing: edge-stopping filters, pyramids, optimization-based
image processing.

• Beyond 2D: stereo rendering and light fields.

• Models of visual perception: visual system, brightness perception, detection and
discrimination, contrast sensitivity function, contrast constancy, perceptually uniform
spaces, depth perception.

• High Dynamic Range and tone mapping: dynamic range, display model, methods
of tone-mapping.

• Display technologies: 2D displays, 3D displays, temporal display characteristic,
HDR displays.

• Virtual and Augmented Reality: display technologies, VR rendering, orientation
tracking, pose tracking, perceptual considerations, panoramic imaging.

Objectives

By the end of the course students should be able to:

• implement real-time image processing methods on a GPU (OpenCL);

Computer Science Tripos Part II 89

• design and implement a tone-mapping algorithm;

• describe the limitations of display technologies (dynamic range, brightness, visual
comfort, VR simulation sickness) and how they can be addressed using
computational methods (tone-mapping, HDR displays);

• describe the limitations of the visual system and how those limitation can be
exploited in computer graphics and image processing.

Recommended reading

Hainich, R. & Bimber, O. (2016) Displays: Fundamentals and Applications. CRC Press
(2nd ed.).
Boreskov, A. & Shikin, E. (2013) Computer Graphics: From Pixels to Programmable
Graphics Hardware. CRC Press.
Reinhard, E., et. al. (2010) High Dynamic Range Imaging: Acquisition, Display, and
Image-Based Lighting. Morgan Kaufmann (2nd ed.).

Comparative Architectures

Lecturer: Dr R.D. Mullins

No. of lectures: 16

Suggested hours of supervisions: 4

Prerequisite course: Computer Design

Aims

This course examines the techniques and underlying principles that are used to design
high-performance computers and processors. Particular emphasis is placed on
understanding the trade-offs involved when making design decisions at the architectural
level. A range of processor architectures are explored and contrasted. In each case we
examine their merits and limitations and how ultimately the ability to scale performance is
restricted.

Lectures

• Introduction. The impact of technology scaling and market trends.

• Fundamentals of Computer Design. Amdahl’s law, energy/performance trade-offs,
ISA design.

• Advanced pipelining. Pipeline hazards; exceptions; optimal pipeline depth; branch
prediction; the branch target buffer [2 lectures]

90 University of Cambridge

• Superscalar techniques. Instruction-Level Parallelism (ILP); superscalar processor
architecture [2 lectures]

• Software approaches to exploiting ILP. VLIW architectures; local and global
instruction scheduling techniques; predicated instructions and support for
speculative compiler optimisations.

• Multithreaded processors. Coarse-grained, fine-grained, simultaneous
multithreading

• The memory hierarchy. Caches; programming for caches; prefetching [2 lectures]

• Vector processors. Vector machines; short vector/SIMD instruction set extensions;
stream processing

• Chip multiprocessors. The communication model; memory consistency models;
false sharing; multiprocessor memory hierarchies; cache coherence protocols;
synchronization [2 lectures]

• On-chip interconnection networks. Bus-based interconnects; on-chip packet
switched networks

• Special-purpose architectures. Converging approaches to computer design

Objectives

At the end of the course students should

• understand what determines processor design goals;

• appreciate what constrains the design process and how architectural trade-offs are
made within these constraints;

• be able to describe the architecture and operation of pipelined and superscalar
processors, including techniques such as branch prediction, register renaming and
out-of-order execution;

• have an understanding of vector, multithreaded and multi-core processor
architectures;

• for the architectures discussed, understand what ultimately limits their performance
and application domain.

Recommended reading

* Hennessy, J. & Patterson, D. (2012). Computer architecture: a quantitative approach.
Elsevier (5th ed.) ISBN 9780123838728. (the 3rd and 4th editions are also good)

Computer Science Tripos Part II 91

Computer Vision

Lecturer: Professor J.G. Daugman

No. of lectures: 16

In lieu of supervisions, exercises will be set and reviewed in two Examples Classes.

Aims

The aims of this course are to introduce the principles, models and applications of
computer vision, as well as some mechanisms used in biological visual systems that may
inspire design of artificial ones. The course will cover: image formation, structure, and
coding; edge and feature detection; neural operators for image analysis; texture, colour,
stereo, and motion; wavelet methods for visual coding and analysis; interpretation of
surfaces, solids, and shapes; probabilistic classifiers; visual inference, recognition, and
learning.

Lectures

• Goals of computer vision; why they are so difficult. Image formation, and the
ill-posed problem of making 3D inferences about objects and their properties from
images.

• Image sensing, pixel arrays, CCD and CMOS cameras. Image coding and
information measures. Elementary operations on image arrays.

• Biological visual mechanisms, from retina to cortex. Photoreceptor sampling;
receptive field profiles; stochastic impulse codes; channels and pathways. Neural
image encoding operators.

• Mathematical operations for extracting image structure. Finite differences and
directional derivatives. Filters; convolution; correlation. 2D Fourier domain theorems.

• Edge detection operators; the information revealed by edges. Gradient vector
field; Laplacian operator and its zero-crossings.

• Multi-scale contours, feature detection and matching. SIFT (scale-invariant
feature transform); pyramids. 2D wavelets as visual primitives. Active contours.
Energy-minimising snakes.

• Higher visual operations in brain cortical areas. Multiple parallel mappings;
streaming and divisions of labour; reciprocal feedback through the visual system.

• Texture, colour, stereo, and motion descriptors. Disambiguation and the
achievement of invariances. Colour computation, motion and image segmentation.

• Lambertian and specular surfaces; reflectance maps. Geometric analysis of
image formation from surfaces. Discounting the illuminant when inferring 3D
structure and surface properties.

92 University of Cambridge

• Shape representation. Inferring 3D shape from shading; surface geometry.
Boundary descriptors; codons. Object-centred volumetric coordinates.

• Perceptual organisation and cognition. Vision as model-building and graphics in
the brain. Learning to see.

• Lessons from neurological trauma and visual deficits. Visual agnosias and
illusions, and what they may imply about how vision works.

• Bayesian inference in vision; knowledge-driven interpretations. Classifiers,
decision-making, and pattern recognition.

• Model estimation. Machine learning and statistical methods in vision.

• Applications of machine learning in computer vision. Discriminative and
generative methods. Content based image retrieval.

• Approaches to face detection, face recognition, and facial interpretation.
Cascaded detectors. Appearance versus model-based methods.

Objectives

At the end of the course students should

• understand visual processing from both “bottom-up” (data oriented) and “top-down”
(goals oriented) perspectives;

• be able to decompose visual tasks into sequences of image analysis operations,
representations, specific algorithms, and inference principles;

• understand the roles of image transformations and their invariances in pattern
recognition and classification;

• be able to describe and contrast techniques for extracting and representing features,
edges, shapes, and textures;

• be able to describe key aspects of how biological visual systems work; and be able
to think of ways in which biological visual strategies might be implemented in
machine vision, despite the enormous differences in hardware;

• be able to analyse the robustness, brittleness, generalizability, and performance of
different approaches in computer vision;

• understand the roles of machine learning in computer vision today, including
probabilistic inference, discriminative and generative methods;

• understand in depth at least one major practical application problem, such as face
recognition, detection, or interpretation.

Computer Science Tripos Part II 93

Recommended reading

* Forsyth, D. A. & Ponce, J. (2003). Computer Vision: A Modern Approach. Prentice Hall.

Shapiro, L. & Stockman, G. (2001). Computer vision. Prentice Hall.

Cryptography

Lecturer: Dr M.G. Kuhn

No. of lectures: 16

Suggested hours of supervisions: 3–4

Prerequisite courses: Mathematical Methods I from the NST Mathematics course, Discrete
Mathematics, Complexity Theory

Aims

This course provides an overview of basic modern cryptographic techniques and covers
essential concepts that users of cryptographic standards need to understand to achieve
their intended security goals.

Lectures

• Cryptography. Overview, private vs. public-key ciphers, MACs vs. signatures,
certificates, capabilities of adversary, Kerckhoffs’ principle.

• Classic ciphers. Attacks on substitution and transposition ciphers, Vigenére.
Perfect secrecy: one-time pads.

• Private-key encryption. Stream ciphers, pseudo-random generators, attacking
linear-congruential RNGs and LFSRs. Semantic security definitions, oracle queries,
advantage, computational security, concrete-security proofs.

• Block ciphers. Pseudo-random functions and permutations. Birthday problem,
random mappings. Feistel/Luby–Rackoff structure, DES, TDES, AES.

• Chosen-plaintext attack security. Security with multiple encryptions, randomized
encryption. Modes of operation: ECB, CBC, OFB, CNT.

• Message authenticity. Malleability, MACs, existential unforgeability, CBC-MAC,
ECBC-MAC, CMAC, birthday attacks, Carter-Wegman one-time MAC.

• Authenticated encryption. Chosen-ciphertext attack security, ciphertext integrity,
encrypt-and-authenticate, authenticate-then-encrypt, encrypt-then-authenticate,
padding oracle example, GCM.

• Secure hash functions. One-way functions, collision resistance, padding,
Merkle–Damgård construction, sponge function, duplex construct, entropy pool,
SHA standards.

94 University of Cambridge

• Applications of secure hash functions. HMAC, stream authentication, Merkle
tree, commitment protocols, block chains, Bitcoin.

• Key distribution problem. Needham–Schroeder protocol, Kerberos,
hardware-security modules, public-key encryption schemes, CPA and CCA security
for asymmetric encryption.

• Number theory, finite groups and fields. Modular arithmetic, Euclid’s algorithm,
inversion, groups, rings, fields, GF(2n), subgroup order, cyclic groups, Euler’s
theorem, Chinese remainder theorem, modular roots, quadratic residues, modular
exponentiation, easy and difficult problems. [2 lectures]

• Discrete logarithm problem. Baby-step-giant-step algorithm, computational and
decision Diffie–Hellman problem, DH key exchange, ElGamal encryption, hybrid
cryptography, Schnorr groups, elliptic-curve systems, key sizes. [2 lectures]

• Trapdoor permutations. Security definition, turning one into a public-key encryption
scheme, RSA, attacks on “textbook” RSA, RSA as a trapdoor permutation, optimal
asymmetric encryption padding, common factor attacks.

• Digital signatures. one-time signatures, ElGamal signatures, DSA, RSA signatures,
Certificates, PKI.

Objectives

By the end of the course students should

• be familiar with commonly used standardized cryptographic building blocks;

• be able to match application requirements with concrete security definitions and
identify their absence in naive schemes;

• understand various adversarial capabilities and basic attack algorithms and how they
affect key sizes;

• understand and compare the finite groups most commonly used with
discrete-logarithm schemes;

• understand the basic number theory underlying the most common public-key
schemes, and some efficient implementation techniques.

Recommended reading

Katz, J., Lindell, Y. (2015). Introduction to modern cryptography. Chapman & Hall/CRC
(2nd ed.).

Computer Science Tripos Part II 95

Unit: Digital Signal Processing

This course is only taken by Part II 75% students. Please note that lectures 1-8 are also
available to Part II 50% students and will be assessed on Paper 7.

Lecturer: Dr M.G. Kuhn

No. of lectures: 16

Prerequisite courses: Mathematical Methods I and III from the NST Mathematics course
(or equivalent), LaTeX and MATLAB (recommended).

Aims

This course teaches the basic signal-processing principles necessary to understand many
modern high-tech systems, with application examples focussing on audio processing,
audio and image coding, communication systems, and linear feed-back control. Students
will gain practical experience from numerical experiments in programming assignments (in
MATLAB, NumPy or Julia).

Lectures

Part 1 (about 8–10 lectures) focusses on basic theory and audio applications, and is a
prerequisite for the Computer Music unit.

• Signals and systems. Discrete sequences and systems: types and properties.
Amplitude, phase, frequency, modulation, decibels, root-mean square. Linear
time-invariant systems, convolution. Some examples from electronics, optics and
acoustics.

• Phasors and Fourier transform. Eigen functions of linear time-invariant systems.
Review of complex arithmetic. Phasors as orthogonal base functions. Forms and
properties of the Fourier transform. Convolution theorem. Rect and sinc.

• Dirac’s delta function. Fourier representation of sine waves, impulse combs in the
time and frequency domain. Amplitude-modulation in the frequency domain.

• Discrete sequences and spectra. Sampling of continuous signals, periodic signals,
aliasing, interpolation, sampling and reconstruction, sample-rate conversion,
oversampling, spectral inversion.

• Discrete Fourier transform. Continuous versus discrete Fourier transform,
symmetry, linearity, FFT, real-valued FFT, FFT-based convolution, zero padding,
FFT-based resampling, deconvolution exercise.

• Spectral estimation. Short-time Fourier transform, leakage and scalloping
phenomena, windowing, zero padding. Audio and voice examples. DTFM exercise.

• Finite impulse-response filters. Properties of filters, implementation forms,
window-based FIR design, use of frequency-inversion to obtain high-pass filters, use
of modulation to obtain band-pass filters.

96 University of Cambridge

• Infinite impulse-response filters. Sequences as polynomials, z-transform, zeros
and poles, some analog IIR design techniques (Butterworth, Chebyshev I/II, elliptic
filters, second-order cascade form). Subtractive synthesis exercise.

Part 2 (about 6–8 lectures) adds material on software-defined radio techniques, statistical
signals, audio-visual signal compression and linear feedback control systems.

• Band-pass signals. Band-pass sampling and reconstruction, IQ up and down
conversion, superheterodyne receivers, software-defined radio front-ends, IQ
representation of AM and FM signals and their demodulation.

• Digital communication. Pulse-amplitude modulation. Matched-filter detector. Pulse
shapes, inter-symbol interference, equalization. IQ representation of ASK, BSK,
PSK, QAM and FSK signals. Clock recovery. Spectral characteristics of binary
sequences. OFDM. [2 hours]

• Random sequences and noise. Random variables, stationary processes,
autocorrelation, crosscorrelation, deterministic cross-correlation sequences, filtered
random sequences, white noise, exponential averaging.

• Correlation coding. Random vectors, dependence versus correlation, covariance,
decorrelation, matrix diagonalization, eigen decomposition, Karhunen–Loève
transform, principal component analysis. Relation to orthogonal transform coding
using fixed basis vectors, such as DCT.

• Lossy versus lossless compression. What information is discarded by human
senses and can be eliminated by encoders? Perceptual scales, audio masking,
spatial resolution, colour coordinates, some demonstration experiments.

• Quantization, image coding standards. Uniform and logarithmic quantization,
A/mu-law coding, dithering, delta coding, JPEG.

• Computer Music demonstrations.

Objectives

By the end of part 1 of the course students should be able to

• apply basic properties of time-invariant linear systems;

• understand sampling, aliasing, convolution, filtering, the pitfalls of spectral
estimation;

• explain the above in time and frequency domain representations;

• use filter-design software;

• visualize and discuss digital filters in the z-domain;

• use the FFT for convolution, deconvolution, filtering;

Computer Science Tripos Part II 97

• implement, apply and evaluate simple DSP applications;

By the end of part 2, students should be able to discuss and explain many fundamental
concepts of techniques commonly used in digital communication and control systems in
terms of the concepts introduced in part 1.

Recommended reading

* Lyons, R.G. (2010). Understanding digital signal processing. Prentice Hall (3rd ed.).
Oppenheim, A.V. & Schafer, R.W. (2007). Discrete-time digital signal processing.
Prentice Hall (3rd ed.).
Stein, J. (2000). Digital signal processing – a computer science perspective. Wiley.

Unit: Digital Signal Processing with Computer Music

This course is only taken by Part II 75% students.

Lecturers: Professor A. Blackwell and Dr M. Kuhn

No. of lectures and practical classes: 8 (plus 8 from DSP)

Prerequisite courses: Part 1 of Digital Signal Processing.

Capacity: no restrictions

Aims

This aim of this course is an introduction to computer music, including applications in
generative composition, audio interaction, sonification, game sound and other non-speech
audio. The basic principles of music information retrieval and musicological corpus
analysis will be covered. Finally, the course will conclude with an overview of current
research topics as addressed at venues such as NIME, ICLC, ICCM.

Lectures

Part 1: Digital signal processing (Lecturer: Dr M. Kuhn)

Lectures 1-8 of the DSP course. This course teaches the basic signal-processing
principles necessary to understand many modern high-tech systems, with audio, voice and
communication examples. Students will gain practical experience from numerical
experiments in MATLAB-based programming assignments.

Part 2: Computer music (Lecturer: Professor A. Blackwell)

• Perception: pitch (chroma, temperament), timbre, rhythmic entrainment,
spatialisation

• Synthesis methods: sampling, wavetable, FM, granular synthesis, physical
modelling

98 University of Cambridge

• Machine listening: contemporary approaches to source separation, beat tracking,
pitch estimation, transcription

• Engineering: Audio processing tools and architectures, incl DAWs, UGens,
SuperCollider

• Musicological analysis: sound objects, pitch and harmony, structure, orchestration,
genre and ethnomusicology

• Audio interfaces: Sonification, audio display and non-speech audio interaction, new
interfaces for music interaction

• Composition: Algorithmic composition, generative music, game soundtracks, and
live programming

• Student-led session: research reviews, performance outlines

Objectives

By the end of the course students should:

• Understand the application of digital signal processing methods to the production of
structured sounds;

• Be able to apply principles of human perception and interaction to simple musical
and non-speech audio applications.

E-Commerce

Lecturers: Jack Lang, Stewart McTavish and others

No. of lectures: 8

Suggested hours of supervision: 2 (example classes if requested)

Prerequisite courses: Business Studies, Security, Economics, Law & Ethics

Aims

This course aims to give students an outline of the issues involved in setting up an
e-commerce site.

Lectures

• The history of electronic commerce. Mail order; EDI; web-based businesses,
credit card processing, PKI, identity and other hot topics.

Computer Science Tripos Part II 99

• Network economics. Real and virtual networks, supply-side versus demand-side
scale economies, Metcalfe’s law, the dominant firm model, the differentiated pricing
model Data Protection Act, Distance Selling regulations, business models.

• Web site design. Stock and price control; domain names, common mistakes,
dynamic pages, transition diagrams, content management systems, multiple targets.

• Web site implementation. Merchant systems, system design and sizing, enterprise
integration, payment mechanisms, CRM and help desks. Personalisation and
internationalisation.

• The law and electronic commerce. Contract and tort; copyright; binding actions;
liabilities and remedies. Legislation: RIP; Data Protection; EU Directives on Distance
Selling and Electronic Signatures.

• Putting it into practice. Search engine interaction, driving and analysing traffic;
dynamic pricing models. Integration with traditional media. Logs and audit, data
mining modelling the user. collaborative filtering and affinity marketing brand value,
building communities, typical behaviour.

• Finance. How business plans are put together. Funding Internet ventures; the
recent hysteria; maximising shareholder value. Future trends.

• UK and International Internet Regulation. Data Protection Act and US Privacy
laws; HIPAA, Sarbanes-Oxley, Security Breach Disclosure, RIP Act 2000, Electronic
Communications Act 2000, Patriot Act, Privacy Directives, data retention; specific
issues: deep linking, Inlining, brand misuse, phishing.

Objectives

At the end of the course students should know how to apply their computer science skills
to the conduct of e-commerce with some understanding of the legal, security, commercial,
economic, marketing and infrastructure issues involved.

Recommended reading

Shapiro, C. & Varian, H. (1998). Information rules. Harvard Business School Press.

Additional reading:

Standage, T. (1999). The Victorian Internet. Phoenix Press. Klemperer, P. (2004).
Auctions: theory and practice. Princeton Paperback ISBN 0-691-11925-2.

Unit: Mobile Robot Systems

This course is only taken by Part II 75% students.

Lecturers: Dr A. Prorok

No. of lectures and practical classes: 16

100 University of Cambridge

Prerequisite courses: NST Mathematics, Artificial Intelligence, Algorithms.

Capacity: 40

Aims

This course teaches the foundations of autonomous mobile robots, covering topics such
as perception, motion control, and planning. It also teaches algorithmic strategies that
enable the coordination of multi-robot systems and robot swarms. The course will feature
several practical sessions with hands-on robot programming. The students will undertake
mini-projects, which will be formally evaluated through a report and presentation.

Lectures

• Robot motion and control. Kinematics, control models, trajectory tracking.

• Control architectures. Sensor-actuator loops, reactive path planning.

• Sensing. Sensors, perception.

• Localization. Markov localization, environment modeling, SLAM.

• Navigation. Planning, receding horizon control.

• Multi-robot systems I. Centralization vs. decentralization, robot swarms.

• Multi-robot systems II. Consensus algorithms, graph-theoretic methods.

• Multi-robot systems III. Task assignment.

• Multi-robot systems IV. Multi-robot path planning.

Objectives

By the end of the course students should:

• understand how to control a mobile robot;

• understand how a robot perceives its environment;

• understand how a robot plans actions (navigation paths);

• know paradigms of coordination in systems of multiple robots;

• know classical multi-robot problems and their solution methods;

• Know how to use ROS (Robot Operating System, http://www.ros.org).

http://www.ros.org

Computer Science Tripos Part II 101

Recommended reading

Siegwart, R., Nourbakhsh, I.R. & Scaramuzza, D. (2004). Autonomous mobile robots. MIT
Press.
Thrun, S., Wolfram B. & Dieter F. (2005). Probabilistic robotics. MIT Press.
Mondada, F. & Mordechai B. (2018) Elements of Robotics. Springer
Siciliano, B. & Khatib, O. (2016) Springer handbook of robotics. Springer.
Mesbahi, M. & Egerstedt, M. (2010) Graph theoretic methods in multiagent networks.
Princeton University Press.

Mobile and Sensor Systems

Lecturer: Prof C. Mascolo

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Operating Systems, Concurrent and Distributed Systems

Aims

This course will cover topics in the areas of mobile systems and communications, and
sensor systems and sensor networking. It aims to help students develop and understand
the additional complexity introduced by mobility and sensing, including energy constraints,
communication in dynamic networks and handling measurement errors. The course will be
using various applications to exemplify concepts.

Lectures

• Introduction to Mobile Systems. MAC Layer concepts. Examples of mobile
systems, differences with non mobile systems. Introduction to MAC layer protocols
of wireless and mobile systems.

• Mobile Infrastructure Communication and Opportunistic Networking.
Description of common communication architectures and protocols for mobile and
introduction to models of opportunistic networking.

• Introduction to Sensor Systems and MAC Layer concepts. Sensor systems
challenges and applications. Concepts related to duty cycling and energy
preservation protocols.

• Sensor Systems Routing Protocols. Communication protocols, data aggregation
and dissemination in sensor networks. Sensor Reprogramming and Management.

• Mobile Sensing: Modelling and Inference Mobile and wearable sensing. Inference
of activity. Modelling and machine learning for mobile devices.

102 University of Cambridge

• Mobile Sensing: Systems Considerations Considerations of energy preservation.
Local computation vs cloud computation.

• Privacy in Mobile and Sensor Systems. Concepts of location privacy. Privacy and
sensor based activity inference.

• Localization Overview of techniques for localizing mobile entities indoors and
outdoors. E.g. GNSS, proximity, lateration, angulation, radio fingerpriting, inertial
and pedestrian dead reckoning systems.

• Dealing with sensor errors Sources of errors. Bayesian estimation frameworks to
mitigate errors and incorporate constraints (Kalman filter, particle filter). Examples
using inertial and GNSS systems.

• Details of Radio Protocols Bluetooth and Bluetooth Low Energy operation.

• Internet of Things Emerging concepts and communications protocols for the
Internet of Things.

• Robots and Drones Concepts related to control, communication and coordination
of robotic systems.

Objectives

On completing the course, students should be able to

• describe similarities and differences between standard distributed systems and
mobile and sensor systems;

• explain the fundamental tradeoffs related to energy limitations and communication
needs in these systems;

• argue for and against different mobile and sensor systems architectures and
protocols.

• Understand typical error sources for sensing and be aware of techniques to minimise
them.

• put concepts into context of current applications of mobile and sensor systems as
described in the course.

Recommended reading

* Schiller, J. (2003). Mobile communications. Pearson (2nd ed.).
* Karl, H. & Willig, A. (2005). Protocols and architectures for wireless sensor networks.
Wiley.
Agrawal, D. & Zheng, Q. (2006). Introduction to wireless and mobile systems. Thomson.

Computer Science Tripos Part II 103

Optimising Compilers

Lecturer: Dr T.M. Jones

No. of lectures: 16

Suggested hours of supervisions: 4

Prerequisite course: Compiler Construction

Aims

The aims of this course are to introduce the principles of program optimisation and related
issues in decompilation. The course will cover optimisations of programs at the abstract
syntax, flowgraph and target-code level. It will also examine how related techniques can
be used in the process of decompilation.

Lectures

• Introduction and motivation. Outline of an optimising compiler. Optimisation
partitioned: analysis shows a property holds which enables a transformation. The
flow graph; representation of programming concepts including argument and result
passing. The phase-order problem.

• Kinds of optimisation. Local optimisation: peephole optimisation, instruction
scheduling. Global optimisation: common sub-expressions, code motion.
Interprocedural optimisation. The call graph.

• Classical dataflow analysis. Graph algorithms, live and avail sets. Register
allocation by register colouring. Common sub-expression elimination. Spilling to
memory; treatment of CSE-introduced temporaries. Data flow anomalies. Static
Single Assignment (SSA) form.

• Higher-level optimisations. Abstract interpretation, Strictness analysis.
Constraint-based analysis, Control flow analysis for lambda-calculus. Rule-based
inference of program properties, Types and effect systems. Points-to and alias
analysis.

• Target-dependent optimisations. Instruction selection. Instruction scheduling and
its phase-order problem.

• Decompilation. Legal/ethical issues. Some basic ideas, control flow and type
reconstruction.

Objectives

At the end of the course students should

• be able to explain program analyses as dataflow equations on a flowgraph;

• know various techniques for high-level optimisation of programs at the abstract
syntax level;

104 University of Cambridge

• understand how code may be re-scheduled to improve execution speed;

• know the basic ideas of decompilation.

Recommended reading

* Nielson, F., Nielson, H.R. & Hankin, C.L. (1999). Principles of program analysis.
Springer. Good on part A and part B.
Appel, A. (1997). Modern compiler implementation in Java/C/ML (3 editions).
Muchnick, S. (1997). Advanced compiler design and implementation. Morgan Kaufmann.
Wilhelm, R. (1995). Compiler design. Addison-Wesley.
Aho, A.V., Sethi, R. & Ullman, J.D. (2007). Compilers: principles, techniques and tools.
Addison-Wesley (2nd ed.).

Unit: Probability and Computation

This course is only taken by Part II 75% students.

Lecturers: Dr. T.M. Sauerwald, Dr. N. Rivera, Dr. J. Sylvester, Dr. L. Zanetti

No. of lectures and practical classes: 16

Prerequisite courses: Algorithms, Foundations of Data Science.

Capacity: 30

Aims

The aim of this course is to introduce the design and analysis of randomised algorithms. It
starts by introducing some essential tools and ideas from probability and graph theory, and
develops this knowledge through analysing a variety of examples of randomised
algorithms and processes. Ultimately the course demonstrates that randomness can be an
elegant programming technique, and particularly helpful when time or space are restricted.

Lectures

• Introduction and review of probability theory: Review of probability theory:
Random variables, Markov chains, Markov’s inequality [1 lecture and Homework test]

• Random walks and Markov chains: Mixing time and total variation distance, hitting
and cover times. Applications of Markov chains including Connectivity testing,
Solving 2-SAT, Sampling from unknown distributions, Coupling, Generating Random
Permutations/Card shuffling [approx. 3 lectures]

• Concentration Inequalities: How to derive Chernoff bounds, applications including
load balancing and quick-sort, Martingales: optional stopping theorem, gambler’s
ruin, random walks with drift, advanced tools: Azuma’s inequality, method of

Computer Science Tripos Part II 105

bounded differences, application to graph colouring, Dimensionality Reduction (if
time permits) [approx. 4 lectures]

• Spectral Analysis of Random Walks: Convergence Rate, Applications. [approx. 2
lecture].

• Advanced Randomised Algorithms: Algorithms for Machine Learning, MAX-CUT,
Streaming Algorithms, Distributed Algorithms [approx. 6 lectures]

Objectives

By the end of the course students should be able to:

• learn how to use randomness in the design of algorithms;

• apply randomisation to various problems coming from optimisation, machine
learning and distributed computing;

• use results from probability theory to analyse the performance of randomised
algorithms.

Recommended reading

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis., Cambridge University Press, 2nd edition.

Unit: Topics in Concurrency

This course is only taken by Part II 75% students.

Lecturers: Professor G. Winskel

No. of lectures and practical classes: 16

Prerequisite courses: Semantics of programming langauges (specifically, an idea of
operational semantics and how to reason from it); some knowledge of Denotational
Semantics will be helpful though not essential for the latter part on Games.

Capacity: no restrictions

Aims

The aim of this course is to introduce fundamental concepts and techniques in the theory
of concurrent processes. It will provide languages, models, logics and methods to
formalise and reason about concurrent systems.

106 University of Cambridge

Lectures

• Simple parallelism and nondeterminism. Dijkstra’s guarded commands.
Communication by shared variables: A language of parallel commands. [1 lecture]

• Communicating processes. Milner’s Calculus of Communicating Processes
(CCS). Pure CCS. Labelled-transition-system semantics. Bisimulation equivalence.
Equational consequences and examples. [3 lectures]

• Specification and model-checking. The modal mu-calculus. Its relation with
Temporal Logic, CTL. Model checking the modal mu-calculus. Bisimulation checking.
Examples. [3 lectures]

• Introduction to Petri nets. Petri nets, basic definitions and concepts. Petri-net
semantics of CCS. [1 lecture]

• Cryptographic protocols. Cryptographic protocols informally. A language for
cryptographic protocols. Its Petri-net semantics. Properties of cryptographic
protocols: secrecy, authentication. Examples with proofs of correctness. [2 lectures]

• Event structures. Their relation with Petri nets and representation via rigid families.
The CCS operations on event stuctures. Maps of event structures. [2 lectures]

• Games and strategies as event structures, an introduction to Concurrent Games.
Composing strategies – interaction and hiding. A special case: nondeterministic
dataflow. [2 lectures]

• Strategies as concurrent processes. A higher-order language for strategies. May
and must equivalence. Probabilistic and quantum strategies briefly. The future? [2
lectures]

Objectives

By the end of the course students should:

• know the basic theory of concurrent processes: non-deterministic and parallel
commands, the process language CCS, its transition-system semantics,
bisimulation, the modal mu-calculus, Petri nets, event structures, a language and
reasoning techniques for cryptographic protocols, and the basics of concurrent
games;

• be able to formalise and to some extent analyse concurrent processes: establish
bisimulation or its absence in simple cases, express and establish simple properties
of transition systems in the modal mu-calculus, argue with respect to a process
language semantics for secrecy or authentication properties of a small cryptographic
protocol, apply the basics of concurrent games.

Computer Science Tripos Part II 107

Recommended reading

Comprehensive notes will be provided.

Further reading:

Aceto, L., et. al. (2007). Reactive systems: modelling, specification and verification.
Cambridge University Press.
Milner, R. (1989). Communication and concurrency. Prentice Hall.
Milner, R. (1999). Communicating and mobile systems: the Pi-calculus. Cambridge
University Press.
Winskel, G. (1993). The formal semantics of programming languages, an introduction. MIT
Press.
Winskel, G. (2011-) “The ECSYM notes: Event structures, stable families and games”.
Notes for the ERC Research project Events, Causality and Symmetry (ECSYM). Available
at: https://www.cl.cam.ac.uk/ gw104/ecsym-notes.pdf

https://www.cl.cam.ac.uk/~gw104/ecsym-notes.pdf

108 University of Cambridge

Easter Term 2019: Part II lectures

Advanced Algorithms

Lecturer: Dr T.M. Sauerwald

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Algorithms

Aims

The aim of this course is to introduce advanced techniques for the design and analysis of
algorithms that arise in a variety of applications. A particular focus will be on parallel
algorithms, linear programming and approximation algorithms.

Lectures

• Sorting Networks. Zero-one principle. Merging Network, Bitonic Sorter. Counting
Networks. [CLRS2, Chapter 27]

• Linear Programming. Definitions and Applications. Formulating Linear Programs.
The Simplex Algorithm. Finding Initial Solutions. [CLRS3, Chapter 29]

• Approximation Algorithms. (Fully) Polynomial-Time Approximation Schemes.
Design Techniques. Applications: Vertex Cover, Subset-Sum, Parallel Machine
Scheduling, Travelling Salesman Problem (including a practical demonstration how
to solve a TSP instance exactly using linear programming), Hardness of
Approximation. [CLRS3, Chapter 35]

• Randomised Approximation Algorithms. Randomised Approximation Schemes.
Linearity of Expectations and Randomised Rounding of Linear Programs.
Applications: MAX3-SAT problem, Weighted Vertex Cover, Weighted Set Cover.
Summary: MAX-SAT problem and discussion of various approximation algorithms.
[CLRS3, Chapter 35].

Objectives

At the end of the course students should

• have an understanding of algorithm design for parallel computers;

• be able to formulate, analyse and solve linear programs;

• have learned a variety of tools to design efficient (approximation) algorithms.

Computer Science Tripos Part II 109

Recommended reading

* Cormen, T.H., Leiserson, C.D., Rivest, R.L. & Stein, C. (2009). Introduction to
Algorithms. MIT Press (3rd ed.). ISBN 978-0-262-53305-8

Business Studies Seminars

Lecturer: Jack Lang, Stewart McTavish and others

No. of seminars: 8

Aims

This course is a series of seminars by former members and friends of the Laboratory
about their real-world experiences of starting and running high technology companies. It is
a follow on to the Business Studies course in the Michaelmas Term. It provides practical
examples and case studies, and the opportunity to network with and learn from actual
entrepreneurs.

Lectures

Eight lectures by eight different entrepreneurs.

Objectives

At the end of the course students should have a better knowledge of the pleasures and
pitfalls of starting a high tech company.

Recommended reading

Lang, J. (2001). The high-tech entrepreneur’s handbook: how to start and run a high-tech
company. FT.COM/Prentice Hall.
Maurya, A. (2012). Running Lean: Iterate from Plan A to a Plan That Works. O’Reilly.
Osterwalder, A. & Pigneur, Y. (2010). Business Model Generation: A Handbook for
Visionaires, Game Changers, and Challengers. Wiley.
Kim, W. & Mauborgne, R. (2005). Blue Ocean Strategy. Harvard Business School Press.

See also the additional reading list on the Business Studies web page.

Hoare Logic and Model Checking

Lecturer: Dr J. Pichon and Dr C. Watt

No. of lectures: 12

110 University of Cambridge

Suggested hours of supervisions: 3

Prerequisite courses: Logic and Proof and Semantics of Programming Languages

Aims

The course introduces two program logics, Hoare Logic and Temporal Logic, and uses
them to formally specify and verify imperative programs and systems.

One main aim is to introduce Hoare logic for a simple imperative language and then to
show how it can be used to formally specify programs (along with discussion of soundness
and completeness), and also how to use it in a mechanised program verifier.

The second thrust is to introduce temporal properties, show how these can describe the
behaviour of systems, and finally to introduce model-checking algorithms which determine
whether properties hold or find counter-examples.

Current research trends also will be outlined.

Lectures

• Part 1: Formal specification of imperative programs. Formal versus informal
methods. Specification using preconditions and postconditions.

• Axioms and rules of inference. Hoare logic for a simple language with
assignments, sequences, conditionals and while-loops. Syntax-directedness.

• Loops and invariants. Various examples illustrating loop invariants and how they
can be found. FOR-loops and derived rules. Arrays and aliasing.

• Partial and total correctness. Hoare logic for proving termination. Variants.

• Semantics, metatheory, mechanisation Mathematical interpretation of Hoare
logic. Soundness, completeness and decidability. Assertions, annotation and
verification conditions. Weakest preconditions and strongest postconditions; their
relationship to Hoare logic and its mechanisation.

• Additional topics. Discussion of correct-by-construction methods versus post-hoc
verification. Proof of correctness versus property checking. Recent developments in
Hoare logic such as separation logic.

• Part 2: Specifying state transition systems. Representation of state spaces.
Reachable states.

• Checking reachability properties. Fixed-point calculations. Symbolic methods
using binary decision diagrams. Finding counter-examples.

• Examples. Various uses of reachability calculations.

• Temporal properties and logic. Linear and branching time. Intervals. Path
quantifiers. Brief history. CTL and LTL. PSL for clocked hardware.

Computer Science Tripos Part II 111

• Model checking. Simple algorithms for verifying that temporal properties hold.
Reachability analysis as a special case.

• Applications and more recent developments Simple software and hardware
examples. CEGAR (counter-example guided abstraction refinement).

Objectives

At the end of the course students should

• be able to prove simple programs correct by hand and implement a simple program
verifier;

• be familiar with the theory and use of Hoare logic and its mechanisation;

• be able to write properties in a variety of temporal logics;

• be familiar with the core ideas of model checking.

Recommended reading

Huth, M. & Ryan M. (2004). Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press (2nd ed.).

Machine Learning and Bayesian Inference

Lecturer: Dr S.B. Holden

No. of lectures: 12

Suggested hours of supervisions: 3

Prerequisite courses: Artificial Intelligence, Foundations of Data Science, Discrete
Mathematics and Probability, Linear Algebra and Calculus from the NST Mathematics
course.

Aims

The Part 1B course Artificial Intelligence introduced simple neural networks for supervised
learning, and logic-based methods for knowledge representation and reasoning. This
course has two aims. First, to provide a rigorous introduction to machine learning, moving
beyond the supervised case and ultimately presenting state-of-the-art methods. Second,
to provide an introduction to the wider area of probabilistic methods for representing and
reasoning with knowledge.

112 University of Cambridge

Lectures

• Introduction to learning and inference. Supervised, unsupervised,
semi-supervised and reinforcement learning. Bayesian inference in general. What
the naive Bayes method actually does. Review of backpropagation. Other kinds of
learning and inference. [1 lecture]

• How to classify optimally. Treating learning probabilistically. Bayesian decision
theory and Bayes optimal classification. Likelihood functions and priors. Bayes
theorem as applied to supervised learning. The maximum likelihood and maximum a
posteriori hypotheses. What does this teach us about the backpropagation
algorithm? [2 lectures]

• Linear classifiers I. Supervised learning via error minimization. Iterative reweighted
least squares. The maximum margin classifier. [1 lecture]

• Support vector machines (SVMs). The kernel trick. Problem formulation.
Constrained optimization and the dual problem. SVM algorithm. [2 lectures]

• Practical issues. Hyperparameters. Measuring performance. Cross-validation.
Experimental methods. [1 lecture]

• Linear classifiers II. The Bayesian approach to neural networks. [1 lecture]

• Unsupervised learning I. The k-means algorithm. Clustering as a maximum
likelihood problem. [1 lecture]

• Unsupervised learning II. The EM algorithm and its application to clustering. [1
lecture]

• Bayesian networks I. Representing uncertain knowledge using Bayesian networks.
Conditional independence. Exact inference in Bayesian networks. [1 lecture]

• Bayesian networks II. Markov random fields. Approximate inference. Markov chain
Monte Carlo methods. [1 lecture]

Objectives

At the end of this course students should:

• Understand how learning and inference can be captured within a probabilistic
framework, and know how probability theory can be applied in practice as a means
of handling uncertainty in AI systems.

• Understand several algorithms for machine learning and apply those methods in
practice with proper regard for good experimental practice.

Computer Science Tripos Part II 113

Recommended reading

If you are going to buy a single book for this course we recommend:

* Bishop, C.M. (2006). Pattern recognition and machine learning. Springer.
The course text for Artificial Intelligence I:

Russell, S. & Norvig, P. (2010). Artificial intelligence: a modern approach. Prentice Hall
(3rd ed.).
covers some relevant material but often in insufficient detail. Similarly:

Mitchell, T.M. (1997). Machine Learning. McGraw-Hill.
gives a gentle introduction to some of the course material, but only an introduction.
Recently a few new books have appeared that cover a lot of relevant ground well. For
example:

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University
Press.
Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press.
Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

	Introduction to Part IA
	Entry to the Computer Science Tripos
	Computer Science Tripos Part IA
	Natural Sciences Part IA students
	The curriculum

	Michaelmas Term 2018: Part IA lectures
	Paper 1: Foundations of Computer Science
	Paper 1: Object-Oriented Programming
	Paper 2: Digital Electronics
	Paper 2: Discrete Mathematics
	Paper 3: Databases
	Paper 3: Introduction to Graphics
	Scientific Computing Practical Course

	Lent Term 2019: Part IA lectures
	Paper 1: Algorithms
	Paper 2: Operating Systems
	Paper 3: Machine Learning and Real-world Data

	Easter Term 2019: Part IA lectures
	Paper 1: Numerical Analysis
	Paper 2: Software and Security Engineering
	Paper 3: Interaction Design

	Preparing to Study Computer Science
	Introduction to Part IB
	Michaelmas Term 2018: Part IB lectures
	Computer Design
	Concurrent and Distributed Systems
	ECAD and Architecture Practical Classes
	Paper 7: Economics, Law and Ethics
	Foundations of Data Science
	Paper 7: Further Graphics
	Further Java
	Group Project
	Programming in C and C++
	Semantics of Programming Languages
	Unix Tools

	Lent Term 2019: Part IB lectures
	Compiler Construction
	Computation Theory
	Computer Networking
	Paper 7: Further Human–Computer Interaction
	Logic and Proof
	Paper 7: Prolog

	Easter Term 2019: Part IB lectures
	Artificial Intelligence
	Complexity Theory
	Paper 7: Concepts in Programming Languages
	Paper 7: Formal Models of Language
	Security

	Introduction to Part II
	Michaelmas Term 2018: Part II lectures
	Bioinformatics
	Business Studies
	Unit: Cloud Computing
	Unit: Data Science: principles and practice
	Denotational Semantics
	Information Theory
	LaTeX and MATLAB
	Unit: Metaprogramming
	Unit: Multicore Semantics and Programming
	Unit: Natural Language Processing
	Principles of Communications
	Quantum Computing
	Types

	Lent Term 2019: Part II lectures
	Unit: Advanced Graphics and Image Processing
	Comparative Architectures
	Computer Vision
	Cryptography
	Unit: Digital Signal Processing
	Unit: Digital Signal Processing with Computer Music
	E-Commerce
	Unit: Mobile Robot Systems
	Mobile and Sensor Systems
	Optimising Compilers
	Unit: Probability and Computation
	Unit: Topics in Concurrency

	Easter Term 2019: Part II lectures
	Advanced Algorithms
	Business Studies Seminars
	Hoare Logic and Model Checking
	Machine Learning and Bayesian Inference

