Wrapping up Polymorphism
We saw that in System F has explicit type abstraction and application:

\[\Theta, \alpha; \Gamma \vdash e : B \]

\[\Theta; \Gamma \vdash \lambda \alpha. e : \forall \alpha. B \]

\[\Theta; \Gamma \vdash e : \forall \alpha. B \]

\[\Theta \vdash A \text{ type} \]

\[\Theta; \Gamma \vdash e A : [A/\alpha]B \]

This is fine in theory, but what do programs look like in practice?
Suppose we have a map functional and an isEven function:

\[
\begin{align*}
map &: \forall \alpha. \forall \beta. (\alpha \to \beta) \to \text{list } \alpha \to \text{list } \beta \\
isEven &: \mathbb{N} \to \text{bool}
\end{align*}
\]

A function taking a list of numbers and applying isEven to it:

\[
\begin{align*}
\text{map } \mathbb{N} \text{ bool } \text{isEven} &: \text{list } \mathbb{N} \to \text{list bool}
\end{align*}
\]

If you have a list of lists of natural numbers:

\[
\begin{align*}
\text{map } (\text{list } \mathbb{N}) (\text{list bool}) (\text{map } \mathbb{N} \text{ bool } \text{isEven}) &: \text{list } (\text{list } \mathbb{N}) \to \text{list } (\text{list bool})
\end{align*}
\]

The type arguments overwhelm everything else!
• Luckily, ML and Haskell have type inference
• Explicit type applications are omitted – we write
 `map isEven` instead of `map \mathbb{N} \text{bool} isEven`
• Constraint propagation via the *unification algorithm*
 figures out what the applications should have been

Example:

\[
\begin{align*}
\text{map } ?a \ ?b \ & \text{ isEven} \\
\text{map } ?a \ ?b & : (\mathbb{N} \rightarrow ?b) \rightarrow \text{list } ?a \rightarrow \text{list } ?b \\
\text{isEven} : \mathbb{N} \rightarrow \text{bool} & \quad \text{So } ?a \rightarrow ?b \text{ must equal } \mathbb{N} \rightarrow \text{bool} \\
?a = \mathbb{N}, \ ?b = \text{bool} & \quad \text{Only choice that makes } ?a \rightarrow ?b = \mathbb{N} \rightarrow \text{bool}
\end{align*}
\]
Effects
The Story so Far...

- We introduced the simply-typed lambda calculus
- ...and its double life as constructive propositional logic
- We extended it to the polymorphic lambda calculus
- ...and its double life as second-order logic

This is a story of pure, total functional programming
Effects

• Sometimes, we write programs that takes an input and computes an answer:
 • Physics simulations
 • Compiling programs
 • Ray-tracing software

• Other times, we write programs to do things:
 • communicate with the world via I/O and networking
 • update and modify physical state (eg, file systems)
 • build interactive systems like GUIs
 • control physical systems (eg, robots)
 • generate random numbers

• PL jargon: pure vs effectful code
Two Paradigms of Effects

- From the POV of type theory, two main classes of effects:
 1. State:
 - Mutable data structures (hash tables, arrays)
 - References/pointers
 2. Control:
 - Exceptions
 - Coroutines/generators
 - Nondeterminism

- Other effects (eg, I/O and concurrency/multithreading) can be modelled in terms of state and control effects

- In this lecture, we will focus on state and how to model it
State

```ocaml
# let r = ref 5;;
val r : int ref = {contents = 5}
# !r;;
- : int = 0
# r := !r + 15;;
- : unit = ()
# !r;;
- : int = 20

- We can create fresh reference with ref e
- We can read a reference with !e
- We can update a reference with e := e'
```
A Type System for State

<table>
<thead>
<tr>
<th>Category</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
<td>(X ::= 1 \mid \mathbb{N} \mid X \rightarrow Y \mid \text{ref} X)</td>
</tr>
<tr>
<td>Terms</td>
<td>(e ::= \langle \rangle \mid n \mid \lambda x : X. e \mid ee')</td>
</tr>
<tr>
<td></td>
<td>(\mid \text{new} e \mid !e \mid e ::= e' \mid l)</td>
</tr>
<tr>
<td>Values</td>
<td>(v ::= \langle \rangle \mid n \mid \lambda x : X. e \mid l)</td>
</tr>
<tr>
<td>Stores</td>
<td>(\sigma ::= \cdot \mid \sigma, l : v)</td>
</tr>
<tr>
<td>Contexts</td>
<td>(\Gamma ::= \cdot \mid \Gamma, x : X)</td>
</tr>
<tr>
<td>Store Typings</td>
<td>(\Sigma ::= \cdot \mid \Sigma, l : X)</td>
</tr>
</tbody>
</table>
Operational Semantics

\[
\begin{align*}
\langle \sigma; e_0 \rangle & \leadsto \langle \sigma'; e_0' \rangle \\
\langle \sigma; e_0 e_1 \rangle & \leadsto \langle \sigma'; e_0' e_1 \rangle \\
\langle \sigma; e_1 \rangle & \leadsto \langle \sigma'; e_1' \rangle \\
\langle \sigma; v_0 e_1 \rangle & \leadsto \langle \sigma'; v_0 e_1' \rangle
\end{align*}
\]

\[
\langle \sigma; (\lambda x : X. e) \rangle \leadsto \langle \sigma; [v/x] e \rangle
\]

- Similar to the basic STLC operational rules
- Threads a store \(\sigma \) through each transition
Operational Semantics

\[
\begin{align*}
\langle \sigma; e \rangle & \leadsto \langle \sigma'; e' \rangle \\
\langle \sigma; \text{new } e \rangle & \leadsto \langle \sigma'; \text{new } e' \rangle \\
\langle \sigma; e \rangle & \leadsto \langle \sigma'; e' \rangle \\
\langle \sigma; \text{!}e \rangle & \leadsto \langle \sigma'; \text{!}e' \rangle \\
\langle \sigma; e_0 \rangle & \leadsto \langle \sigma'; e'_0 \rangle \\
\langle \sigma; e_0 := e_1 \rangle & \leadsto \langle \sigma'; e'_0 := e_1 \rangle \\
\langle \sigma; l \notin \text{dom}(\sigma) \rangle & \leadsto \langle (\sigma, l : v); l \rangle \\
\langle \sigma; \text{new } v \rangle & \leadsto \langle (\sigma, l : v); l \rangle \\
\langle \sigma; l : v \in \sigma \rangle & \leadsto \langle \sigma; l \rangle \\
\langle \sigma; \text{!}l \rangle & \leadsto \langle \sigma; v \rangle \\
\langle \sigma; e_1 \rangle & \leadsto \langle \sigma'; e'_1 \rangle \\
\langle \sigma; v_0 := e_1 \rangle & \leadsto \langle \sigma'; v_0 := e'_1 \rangle \\
\langle (\sigma, l : v, \sigma'); l := v' \rangle & \leadsto \langle (\sigma, l : v', \sigma'); \langle \rangle \rangle
\end{align*}
\]
Typing for Terms

\[\Sigma; \Gamma \vdash e : X \]

\[\begin{array}{c}
\frac{x : X \in \Gamma}{\Sigma; \Gamma \vdash x : X} & \text{HYP} & \frac{1 : 1}{\Sigma; \Gamma \vdash \langle \rangle : 1} & \frac{n : \mathbb{N}}{\Sigma; \Gamma \vdash n : \mathbb{N}}
\end{array} \]

\[\Sigma; \Gamma, x : X \vdash e : Y \]

\[\frac{\Sigma; \Gamma \vdash \lambda x : X. e : X \rightarrow Y}{\Sigma; \Gamma \vdash \lambda x : X. e : X \rightarrow Y} \rightarrow \text{l} \]

\[\begin{array}{c}
\frac{\Sigma; \Gamma \vdash e : X \rightarrow Y}{\Sigma; \Gamma \vdash e : X \rightarrow Y} & \frac{\Sigma; \Gamma \vdash e' : X}{\Sigma; \Gamma \vdash e' : X} & \frac{\Sigma; \Gamma \vdash ee' : Y}{\Sigma; \Gamma \vdash ee' : Y} \rightarrow \text{E}
\end{array} \]

- Similar to STLC rules + thread \(\Sigma \) through all judgements
Typing for Imperative Terms

\[\Sigma; \Gamma \vdash e : X \]

\[
\begin{align*}
\Sigma; \Gamma \vdash e : X & \quad \text{REFL} \quad \Sigma; \Gamma \vdash \text{new } e : \text{ref } X \\
\Sigma; \Gamma \vdash e : \text{ref } X & \quad \Sigma; \Gamma \vdash e' : X \quad \text{REFSET} \\
\Sigma; \Gamma \vdash e := e' : 1
\end{align*}
\]

\[
\begin{align*}
l : X \in \Sigma \quad \text{REFBAR} \\
\Sigma; \Gamma \vdash l : \text{ref } X
\end{align*}
\]

- Usual rules for references
- But why do we have the bare reference rule?
• Original progress and preservations talked about well-typed terms e and evaluation steps $e \leadsto e'$

• New operational semantics $\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle$ mentions stores, too.

• To prove type safety, we will need a notion of store typing
Store and Configuration Typing

\[
\Sigma \vdash \sigma' : \Sigma' \quad \langle \sigma; e \rangle : \langle \Sigma; X \rangle
\]

\[
\frac{\Sigma \vdash \sigma' : \Sigma' \quad \Sigma; \cdot \vdash v : X}{\Sigma \vdash (\sigma', l : v) : (\Sigma', l : X)} \quad \text{STORECONS}
\]

\[
\frac{\Sigma \vdash \sigma : \Sigma \quad \Sigma; \cdot \vdash e : X}{\langle \sigma; e \rangle : \langle \Sigma; X \rangle} \quad \text{CONFIGOK}
\]

- Check that all the closed values in the store \(\sigma' \) are well-typed
- Types come from \(\Sigma' \), checked in store \(\Sigma \)
- Configurations are well-typed if the store and term are well-typed
A Broken Theorem

Progress:
If \(\langle \sigma; e \rangle: \langle \Sigma; X \rangle\) then \(e\) is a value or \(\langle \sigma; e \rangle \sim \langle \sigma'; e' \rangle\).

Preservation:
If \(\langle \sigma; e \rangle: \langle \Sigma; X \rangle\) and \(\langle \sigma; e \rangle \sim \langle \sigma'; e' \rangle\) then \(\langle \sigma'; e' \rangle: \langle \Sigma; X \rangle\).

• One of these theorems is false!
Note that

1. $\langle \cdot; \text{new} \langle \rangle \rangle : \langle \cdot; \text{ref} \ 1 \rangle$
2. $\langle \cdot; \text{new} \langle \rangle \rangle \sim \langle (l : \langle \rangle); l \rangle$ for some l

However, it is not the case that

$\langle l : \langle \rangle; l \rangle : \langle \cdot; \text{ref} \ 1 \rangle$

The heap has grown!
Definition (Store extension):

Define $\Sigma \leq \Sigma'$ to mean there is a Σ'' such that $\Sigma' = \Sigma, \Sigma''$.

Lemma (Store Monotonicity):

If $\Sigma \leq \Sigma'$ then:

1. If $\Sigma; \Gamma \vdash e : X$ then $\Sigma'; \Gamma \vdash e : X$.
2. If $\Sigma \vdash \sigma_0 : \Sigma_0$ then $\Sigma' \vdash \sigma_0 : \Sigma_0$.

The proof is by structural induction on the appropriate definition.

This property means allocating new references never breaks the typability of a term.
• (Weakening)
 If $\Sigma; \Gamma, \Gamma' \vdash e : X$ then $\Sigma; \Gamma, z : Z, \Gamma' \vdash e : X$.

• (Exchange)
 If $\Sigma; \Gamma, y : Y, z : Z, \Gamma' \vdash e : X$ then $\Sigma; \Gamma, z : Z, y : Y, \Gamma' \vdash e : X$.

• (Substitution)
 If $\Sigma; \Gamma \vdash e : X$ and $\Sigma; \Gamma, x : X \vdash e' : Z$ then $\Sigma; \Gamma \vdash [e/x]e' : Z$.
Type Safety, Repaired

Theorem (Progress):
If \(\langle \sigma; e \rangle : \langle \Sigma; X \rangle \) then \(e \) is a value or \(\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle \).

Theorem (Preservation):
If \(\langle \sigma; e \rangle : \langle \Sigma; X \rangle \) and \(\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle \) then there exists \(\Sigma' \geq \Sigma \) such that \(\langle \sigma'; e' \rangle : \langle \Sigma'; X \rangle \).

Proof:

- For progress, induction on derivation of \(\Sigma; \cdot \vdash e : X \)
- For preservation, induction on derivation of \(\langle \sigma; e \rangle \leadsto \langle \sigma'; e' \rangle \)
• Suppose we have an unknown function in the STLC:

\[f : ((1 \to 1) \to 1) \to \mathbb{N} \]

• Q: What can this function do?
• A: It is a constant function, returning some \(n \)

• Q: Why?
• A: No matter what \(f(g) \) does with its argument \(g \), it can only get \(\langle \rangle \) out of it. So the argument can never influence the value of type \(\mathbb{N} \) that \(f \) produces.
The Power of the State

\[
\text{count} : ((1 \to 1) \to 1) \to \mathbb{N}
\]

\[
\text{count } f = \text{let } r : \text{ref} \mathbb{N} = \text{new} 0 \text{ in}
\]

\[
\text{let } inc : 1 \to 1 = \lambda z : 1. r := !r + 1 \text{ in}
\]

\[
f(inc)
\]

- This function initializes a counter \(r \)
- It creates a function \(inc \) which silently increments \(r \)
- It passes \(inc \) to its argument \(f \)
- Then it returns the value of the counter \(r \)
- That is, it returns the number of times \(inc \) was called!
Backpatching with Landin’s Knot

let knot : ((int -> int) -> int -> int) -> int -> int =
 fun f ->
 let r = ref (fun n -> 0) in
 let recur = fun n -> !r n in
 let () = r := fun n -> f recur n in
 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref
3. Set the reference to a function that calls f on the forwarder and the argument n
4. Now f will call itself recursively!
Not a Theorem: (Termination) Every well-typed program
\(\vdash e : X \) terminates.

- Landin’s knot lets us define recursive functions by backpatching
- As a result, we can write nonterminating programs
- So every type is inhabited, and consistency fails
Consistency vs Computation

- Do we have to choose between state/effects and logical consistency?
- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for effects?
- Next lecture:
 - A modal logic suggested by Curry in 1952
 - Now known to functional programmers as *monads*
 - Also known as *effect systems*
Questions

1. Using Landin’s knot, implement the fibonacci function.
2. The type safety proof for state would fail if we added a C-like `free()` operation to the reference API.
 2.1 Give a plausible-looking typing rule and operational semantics for `free`.
 2.2 Find an example of a program that would break.