Type Systems

Lecture 6: Existentials, Data Abstraction, and Termination for System F

Neel Krishnaswami
University of Cambridge
• So far, we have used polymorphism to model datatypes and genericity
• Reynolds’s original motivation was to model *data abstraction*
An ML Module Signature

module type BOOL = sig
 type t
 val yes : t
 val no : t
 val choose : t -> 'a -> 'a -> 'a
end

• We introduce an abstract type \(t \)
• There are two values, \(\texttt{yes} \) and \(\texttt{no} \) of type \(t \)
• There is an operation \(\texttt{choose} \), which takes a \(t \) and two values, and switches between them.
An Implementation

module M1 : BOOL = struct
 type t = unit option
 let yes = Some ()
 let no = None
 let choose v ifyes ifno =
 match v with
 | Some () -> ifyes
 | None -> ifno
 end

• Implementation uses option type over unit
• There are two values, one for true and one for false
• choose implemented via pattern matching
Another Implementation

```ocaml
module M2 : BOOL = struct
  type t = int
  let yes = 1
  let no = 0
  let choose b ifyes ifno =
    if b = 1 then
      ifyes
    else
      ifno
  end
```

• Implement booleans with integers
• Use 1 for true, 0 for false
• Why is this okay? (Many more integers than booleans, after all)
Yet Another Implementation

module M3 : BOOL = struct
 type t =
 {f : 'a. 'a -> 'a -> 'a}. Implement booleans with Church encoding (plus some Ocaml hacks)
 let yes =
 {f = fun a b -> a}
 let no =
 {f = fun a b -> b}
 let choose b ifyes ifno =
 b.f ifyes ifno
end

• Is this really the same type as in the previous lecture?
A Common Pattern

- We have a signature — `BOOL` — with an abstract type in it
- We choose a concrete implementation of that abstract type
- We implement the other operations (`yes`, `no`, `choose`) of the interface in terms of that concrete representation
- Client code cannot identify the representation type because it sees an abstract type variable `t` rather than the representation
Abstract Data Types in System F

Types \(A ::= \ldots \mid \exists \alpha. A \)

Terms \(e ::= \ldots \mid \text{pack}_{\alpha.B}(A, e) \mid \text{let pack}(\alpha, x) = e \text{ in } e' \)

Values \(v ::= \text{pack}_{\alpha.B}(A, v) \)

\[
\begin{align*}
\Theta, \alpha \vdash B \text{ type} & \quad \Theta \vdash A \text{ type} & \quad \Theta; \Gamma \vdash e : [A/\alpha]B & \quad \exists I \\
\Theta; \Gamma \vdash \text{pack}_{\alpha.B}(A, e) : \exists \alpha. B & \quad \exists E \\
\Theta; \Gamma \vdash e : \exists \alpha. A & \quad \Theta, \alpha; \Gamma, x : A \vdash e' : C & \quad \Theta \vdash C \text{ type} \\
\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C
\end{align*}
\]
Operational Semantics for Abstract Types

\[
\begin{align*}
 e & \leadsto e' \\
 \text{pack}_{\alpha.\mathcal{B}}(A, e) & \leadsto \text{pack}_{\alpha.\mathcal{B}}(A, e') \\
 e & \leadsto e' \\
 \text{let pack}(\alpha, x) = e \text{ in } t & \leadsto \text{let pack}(\alpha, x) = e' \text{ in } t \\
 \text{let pack}(\alpha, x) = \text{pack}_{\alpha.\mathcal{B}}(A, v) \text{ in } e & \leadsto [A/\alpha, v/x]e
\end{align*}
\]
Data Abstraction in System F

- We have a signature with an abstract type in it
- We choose a concrete implementation of that abstract type
- We implement the operations of the interface in terms of the concrete representation
- Client code sees an abstract type variable α rather than the representation

\[\Theta, \alpha \vdash B \text{ type} \]
\[\Theta \vdash A \text{ type} \]
\[\Theta; \Gamma \vdash e : [A/\alpha]B \]
\[\Theta; \Gamma \vdash \text{pack}_{\alpha.B}(A, e) : \exists \alpha. B \]
\[\Theta; \Gamma \vdash e : \exists \alpha. A \]
\[\Theta, \alpha; \Gamma, x : A \vdash e' : C \]
\[\Theta \vdash C \text{ type} \]
\[\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C \]
No accident we write $\exists \alpha. B$ for abstract types!
This is exactly the same thing as existential quantification in second-order logic
Discovered by Mitchell and Plotkin in 1988 – Abstract Types Have Existential Type
But Reynolds was thinking about data abstraction in 1976...?
A Church Encoding for Existential Types

\[\Theta, \alpha \vdash B \text{ type} \quad \Theta \vdash A \text{ type} \quad \Theta; \Gamma \vdash e : [A/\alpha]B \]
\[\Theta; \Gamma \vdash \text{pack}_{\alpha. B}(A, e) : \exists \alpha. B \]
\[\Theta; \Gamma \vdash e : \exists \alpha. B \quad \Theta, \alpha; \Gamma, x : B \vdash e' : C \quad \Theta \vdash C \text{ type} \]
\[\Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C \]

<table>
<thead>
<tr>
<th>Original</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists \alpha. B)</td>
<td>(\forall \beta. (\forall \alpha. B \rightarrow \beta) \rightarrow \beta)</td>
</tr>
<tr>
<td>(\text{pack}_{\alpha. B}(A, e))</td>
<td>(\Lambda \beta. \lambda k : \forall \alpha. B \rightarrow \beta. k A e)</td>
</tr>
<tr>
<td>let pack((\alpha, x) = e \text{ in } e' : C)</td>
<td>e C ((\Lambda \alpha. \lambda x : B. e'))</td>
</tr>
</tbody>
</table>
Reduction of the Encoding

\[
\text{let } \text{pack}(\alpha, x) = \text{pack}_{\alpha.B}(A, e) \text{ in } e' : C \\
= \text{pack}_{\alpha.B}(A, e) \ C \ (\Lambda \alpha. \lambda x : B. \ e') \\
= (\Lambda \beta. \lambda k : \forall \alpha. B \rightarrow \beta. k A e) \ C \ (\Lambda \alpha. \lambda x : B. \ e') \\
= (\lambda k : \forall \alpha. B \rightarrow C. k A e) \ (\Lambda \alpha. \lambda x : B. \ e') \\
= (\Lambda \alpha. \lambda x : B. \ e') \ A \ e \\
= (\lambda x : [A/\alpha]B. [A/\alpha]e') \ e \\
= [e/x][A/\alpha]e'
\]
System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types

\[A ::= \alpha \mid A \rightarrow B \mid \forall \alpha. A \]

Terms

\[e ::= x \mid \lambda x : A. e \mid ee \mid \Lambda \alpha. e \mid eA \]

Values

\[v ::= \lambda x : A. e \mid \Lambda \alpha. e \]

\[
\begin{align*}
& e_0 \sim e'_0 \\
& \frac{}{e_0 e_1 \sim e'_0 e_1} \quad \text{CONGFUN} \\
& \frac{e_0 \sim e'_0}{e_0 e_1 \sim e'_0 e_1} \quad \text{CONGFUN} \\
& e_1 \sim e'_1 \\
& \frac{}{v_0 e_1 \sim v_0 e'_1} \quad \text{CONGFUNARG} \\
& \frac{e_1 \sim e'_1}{v_0 e_1 \sim v_0 e'_1} \quad \text{CONGFUNARG} \\
& (\lambda x : A. e) v \sim [v/x] e \\
& \frac{e \sim e'}{e A \sim e' A} \quad \text{CONGFORALL} \\
& \frac{e \sim e'}{A e \sim A e'} \quad \text{CONGFORALL} \\
& (\Lambda \alpha. e) A \sim [A/\alpha] e \\
& \frac{e \sim e'}{(\Lambda \alpha. e) A \sim [A/\alpha] e} \quad \text{FORALLEVAL} \\
\end{align*}
\]
So far:

1. We have seen System F and its basic properties
2. Sketched a proof of type safety
3. Saw that a variety of datatypes were encodable in it
4. We saw that even data abstraction was representable in it
5. We asserted, but did not prove, termination
• We proved termination for the STLC by defining a *logical relation*
 • This was a family of relations
 • Relations defined by recursion on the structure of the type
 • Enforced a “hereditary termination” property
• Can we define a logical relation for System F?
 • How do we handle free type variables? (i.e., what’s the interpretation of α?)
 • How do we handle quantifiers? (i.e., what’s the interpretation of $\forall \alpha A$?)
A *semantic type* is a set of closed terms X such that:

- (Halting) If $e \in X$, then e halts (i.e. $e \leadsto^* v$ for some v).
- (Closure) If $e \leadsto e'$, then $e' \in X$ iff $e \in X$.

Idea:

- Build generic properties of the logical relation into the definition of a type.
- Use this to interpret variables!
We can interpret type well-formedness derivations.

Given a type variable context Θ, we define an interpretation θ as a map from $\text{dom}(\Theta)$ to semantic types.
Interpretation of Types

\[\Theta \vdash \alpha \text{ type} \] \[\equiv \theta(\alpha) \]

\[\Theta \vdash A \rightarrow B \text{ type} \] \[\equiv \begin{cases} e \mid e \text{ halts } \land & \forall e' \in \theta(\Theta \vdash A \text{ type}) \theta. \\ (e, e') \in \theta(\Theta \vdash B \text{ type}) \theta & \end{cases} \]

\[\Theta \vdash \forall \alpha. B \text{ type} \] \[\equiv \begin{cases} e \mid e \text{ halts } \land & \forall A, X \in \text{SemType}. \\ (e, \alpha) \in \theta(\Theta, \alpha \vdash B \text{ type}) (\theta, X/\alpha) & \end{cases} \]

Note the lack of a link between \(A \) and \(X \) in the \(\forall \alpha. B \) case.
Properties of the Interpretation

- **Closure:** If θ is an interpretation for Θ, then $\llbracket \Theta \vdash A \text{ type} \rrbracket \theta$ is a semantic type.

- **Exchange:** $\llbracket \Theta, \alpha, \beta, \Theta' \vdash A \text{ type} \rrbracket = \llbracket \Theta, \beta, \alpha, \Theta' \vdash A \text{ type} \rrbracket$

- **Weakening:** If $\Theta \vdash A \text{ type}$, then $\llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, X/\alpha) = \llbracket \Theta \vdash A \text{ type} \rrbracket \theta$.

- **Substitution:** If $\Theta \vdash A \text{ type}$ and $\Theta, \alpha \vdash B \text{ type}$ then $\llbracket \Theta \vdash [A/\alpha]B \text{ type} \rrbracket \theta = \llbracket \Theta, \alpha \vdash B \text{ type} \rrbracket (\theta, \llbracket \Theta \vdash A \text{ type} \rrbracket \theta)$

Each property is proved by induction on a type well-formedness derivation.
Closure: If θ interprets Θ, then $\llbracket \Theta \vdash \forall \alpha. A \text{ type} \rrbracket \theta$ is a type.

Suffices to show: if $e \leadsto e'$, then $e \in \llbracket \Theta \vdash \forall \alpha. A \text{ type} \rrbracket \theta$ iff $e' \in \llbracket \Theta \vdash \forall \alpha. A \text{ type} \rrbracket \theta$.

0. $e \leadsto e'$
 Assumption
1. $e' \in \llbracket \Theta \vdash \forall \alpha. A \text{ type} \rrbracket \theta$
 Assumption
2. $\forall(C, X). e' C \in \llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, X/\alpha)$
 Def.
3. Assume (C, X)
4. $e' C \in \llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, X/\alpha)$
 By 2
5. $e C \leadsto e' C$
 CONGFORALL on 0
6. $e C \in \llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, X/\alpha)$
 Induction on 4,5
7. $\forall(C, X). e C \in \llbracket \Theta, \alpha \vdash A \text{ type} \rrbracket (\theta, X/\alpha)$
8. $e \in \llbracket \Theta \vdash \forall \alpha. A \text{ type} \rrbracket \theta$
 From 7
Substitution: (one half of) the \forall case

$$[\Theta, \alpha \vdash \forall \beta. B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta) = [\Theta \vdash [A/\alpha](\forall \beta. B) \text{ type}] \theta$$

1. We assume $e \in [\Theta, \alpha \vdash \forall \beta. B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta)$
2. We want to show: $e \in [\Theta \vdash [A/\alpha](\forall \beta. B) \text{ type}] \theta$.
3. So from 1:
 $$\forall (C, X). eC \in [\Theta, \alpha, \beta \vdash B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta, X/\beta).$$
4. For 2, it suffices to show:
 $$\forall (C, X). eC \in [\Theta, \beta \vdash [A/\alpha](B) \text{ type}] (\theta, X/\beta).$$
 - Assume (C, X)
 - So $eC \in [\Theta, \alpha, \beta \vdash B \text{ type}] (\theta, [\Theta \vdash A \text{ type}] \theta, X/\beta)$
 - Exchange: $eC \in [\Theta, \beta, \alpha \vdash B \text{ type}] (\theta, X/\beta, [\Theta \vdash A \text{ type}] \theta)$
 - Weaken:
 $$eC \in [\Theta, \beta, \alpha \vdash B \text{ type}] (\theta, X/\beta, [\Theta, \beta \vdash A \text{ type}] (\theta, X/\beta))$$
 - Induction: $eC \in [\Theta, \beta \vdash [A/\alpha]B \text{ type}] (\theta, X/\beta)$
If we have that

\[\Theta \vdash \alpha_1, \ldots, \alpha_k; x_1 : A_1, \ldots, x_n : A_n \vdash e : B \]

\[\Theta \vdash \Gamma \text{ ctx} \]

\[\theta \text{ interprets } \Theta \]

\[\text{For each } x_i : A_i \in \Gamma, \text{ we have } e_i \in [\Theta \vdash A_i \text{ type}] \theta \]

Then it follows that:

\[[C_1/\alpha_1, \ldots, C_k/\alpha_k][e_1/x_1, \ldots, e_n/x_n]e \in [\Theta \vdash B \text{ type}] \theta \]
1. Prove the other direction of the closure property for the $\Theta \vdash \forall \alpha. A$ type case.

2. Prove the other direction of the substitution property for the $\Theta \vdash \forall \alpha. A$ type case.

3. Prove the fundamental lemma for the forall-introduction case $\Theta; \Gamma \vdash \forall \alpha. e : \forall \alpha. A$.