Type Systems

Lecture 4: Datatypes and Polymorphism

Neel Krishnaswami
University of Cambridge

Data Types in the Simply Typed Lambda Calculus

- One of the essential features of programming languages is
data

- So far, we have sums and product types

- This is enough to represent basic datatypes

Booleans

Builtin Encoding
bool T4+1
true L ()
false R()
if ethen ¢’ else e’ | case(e,L_—€',R_—¢€")

I true : bool I - false : bool

I+ e: bool e :x ree’:x

I+ ifethené elsee”: X

Builtin Encoding

char bool’ (for ASCII)

A (true,false, false, false, false, false, true)
'B' (true,false, false, false, false, true, false)

- This is not a wieldy encoding!
- But it works, more or less

- Example: define equality on characters

The STLC gives us:
- Representations of data
- The ability to do conditional branches on data
- The ability to do functional abstraction on operations

- MISSING: the ability to loop

Unbounded Recursion = Inconsistency

MLf:X—=Yx:Xkte:Y
= funy,yfx.e: X—=Y

FIX

e/ s e//

(funx_yfx.e)e ~ (funx_yfx.e)e”

(funxyfx.e)v~ [funxsyfx.e/f,v/x]e

- Modulo type inference, this is basically the typing rule
Ocaml uses
- It permits defining recursive functions very naturally

The Typing of a Perfectly Fine Factorial Function

Ak fact:int — int AFn-1:int
A+ fact(n — 1) : int
At nxfact(n —1): int

A

I fact:int — int,n:int Fifn=0then 1else n x fact(n — 1) : int

I funipe_int factn.if n = 0 then 1else n x fact(n — 1) : int

A Bad Use of Recursion

f:1—=0x:1-f:1—>0 f:1—=0,x:1Fx:1
f:1=0,x:1Hf():0
cEfunisofx.f(:1—=0

(unsofx X)) ~ [funsofxf 0/F
(funiso fx.f () (
[funisofx.f () /f,

()

(funmiso fX.f () (

) /X1(fx)
) /X1(fx)

m 3 m $

S~~~

Numbers, More Safely

Fe:N
——— NI, — Nl
N-z:N N-s(e): N
Neg: N Ne: X MLx:XkFe: X

I+ iter(eg,z — e1,5(x) = €3) : X

ey ~ €4

iter(ep,z — e1,5(x) — ey) ~ iter(ef,z — eq,5(x) — ;)

iter(z,z — e1,5(x) = €2) ~ e

iter(s(v),z — er,s(x) — ey) ~ [iter(v,z — e1,5(x) — e2)/X]ez

Expressiveness of Godel's T

- Iteration looks like a bounded for-loop

- It is surprisingly expressive:

n+m 2 iter(n,z — m,s(x) — s(x))
nxm £ iter(n,z — z,5(x) = m+x)
pow(n,m) £ iter(m,z — s(z),s(x) = n x x)

- These definitions are primitive recursive

- Our language is more expressive!

The Ackermann-Péter Function

A(0,n) = n+1
A(m +1,0) = A(m,1)
Am+1n+1) = A(m,A(m+1,n))

- One of the simplest fast-growing functions
- It's not “primitive recursive” (we won't prove this)
- However, it does terminate

- Either m decreases (and n can change arbitrarily), or
- m stays the same and n decreases
- Lexicographic argument

10

The Ackermann-Péter Function in Godel's T

repeat : (N—- N)—->N-—>N
repeat £ M. An.iter(n,z — f,s(x) — fox)

ack : N->N—=N
ack Am.An.iter(m,z — (Ax.s(x)),s(r) — repeatr)n

[I>

- Proposition: A(n,m) = acknm
- Note the critical use of iteration at “higher type”
- Despite totality, the calculus is extremely powerful

- Functional programmers call things like iter recursion
schemes

n

Data Structures: Lists

MN-e: X e :listX
——— LISTNIL - LISTCONS
MEJ): listx M-e:e :listx

= eq:listX ke : Z Fx:Xr:Zke:Z7

I+ fold(eo,[] — e, x:r—ey):2Z

LISTFOLD

12

Data Structures: Lists

eo ~ €j e~ €]

8012€1W€6:2€1 Voiieq\’%Vo:Ze%

/

fold(eo,[] — er,x :: r — e3) ~ fold(ep, [] = e, x :: r — €3)

fold([],[] — e1,x == r =€) ~ e

R £ fold(V,[] = e, x 1 — e))

fold(v :: V/,[] = er,x :: r — €3) ~ [v/x,R/r]e;

13

Some Functions on Lists

length
length

append
append

map
map

||[> oo |||> oo

HD oo

listX = N
Axs. fold(xs, [] = z,x :: r—s(r))

list X — listX — listX
M. Ays. fold(xs,[] = ys,x = r— x::r)

(X —=Y) = listX — listY
M. xs. fold(xs, [= [, x = r— (fx) 1)

14

A Logical Perversity

- The Curry-Howard Correspondence tells us to think of
types as propositions
- But what logical propositions do N or listX, correspond to?
- The following biconditionals hold:
+ 1T« N

-1 < listX
N < listX

- So N is “equivalent to” truth?

15

A Practical Perversity

map : (X—Y)— listX — listY

A

map = M. Axs.fold(xs,[] = [[,x=r— (fx)::r)

- This definition is schematic - it tells us how to define map
for each pair of types X and Y

- However, when writing programs in the STLC+lists, we must
re-define map for each function type we want to apply it at

- This is annoying, since the definition will be identical save
for the types

The Polymorphic Lambda Calculus

Types A = a | A—B | Va.A
Terms e == X | M:Ae | ee | Aa.e | eA

- We want to support type polymorphism
- append : Va. lista — lista — lista
- map : Va.Vh. (o — B) — lista — list g
- To do this, we introduce type variables and type
polymorphism
- Invented (twice!) in the early 1970s

- By the French logician Jean-Yves Girard (1972)
- By the American computer scientist John C. Reynolds (1974)

Well-formedness of Types

Type Contexts © = - | ©,«
a€c® © F Atype © k- B type
Ok atype O A — Btype
©,aF Atype
©F A — Btype

- Judgement © F A type checks if a type is well-formed
- Because types can have free variables, we need to check if
a type is well-scoped

Well-formedness of Term Contexts

Term Variable Contexts ' == - | ILx:A

© T ctx © Atype
©F - ctx ©FT,x:Atype

- Judgement © T type checks if a term context is
well-formed

- We need this because contexts associate variables with
types, and types now have a well-formedness condition

19

Typing for System F

X:Ael
O:;TFx:A

© F Atype ©;Ix:Ake:B
©,TFX:Ae:A—B

O:TFe:A—B O;T+e:A

O;l+ee :B
©,a;T+e:B ©;TFe:Va.B © F Atype
©;TFAa.e:Va.B ©;TFeA:|[A/a]B

- Note the presence of substitution in the typing rules!
20

The Bookkeeping

- Ultimately, we want to prove type safety for System F

- However, the introduction of type variables means that a
fair amount of additional administrative overhead is
introduced

- This may look intimidating on first glance, BUT really it's
all just about keeping track of the free variables in types

- As a result, none of these lemmas are hard - just a little
tedious

21

Structural Properties and Substitution for Types

1. (Type Weakening) If ©,©0 - A type then ©, 5,0" I- A type.

2. (Type Exchange) If ©, 8, v,©’ - A type then
©,7,8,0 FAtype

3. (Type Substitution) If © - A type and ©, a I B type then
© - [A/a]B type

- These follow the pattern in lecture 1, except with fewer

cases

- Needed to handle the type application rule

22

Structural Properties and Substitutions for Contexts

1. (Context Weakening) If ©,0" F T ctx then ©, , © T ctx

2. (Context Exchange) If ©, 8,~,©’ F T ctx then
©,7,5,0 - T ctx

3. (Context Substitution) If © - A type and ©,a I I type then
© [A/a]l type

- This just lifts the type-level structural properties to
contexts

23

Regularity of Typing

Regularity: If© T ctxand ©;T e : Athen © A type
Proof: By induction on the derivation of ©;T e : A

- This just says if typechecking succeeds, then it found a
well-formed type

24

Structural Properties and Substitution of Types into Terms

- (Type Weakening of Terms) If ©,©’ T ctx and
0,0 ;TFe:Athen©,a,0 ;T Fe:A.

- (Type Contraction of Terms) If ©,a, 3,0’ F T ctx and
0,a,8,0 T+e:Athen©,8,0,0" ;T -e:A.

- (Type Substitution of Terms) If ©,a - T ctx and © I~ A type
and ©,a;T +e:Bthen ©;[A/a]l F[A/ale : [A/a]B.

25

Structural Properties and Substitution for Term Variables

- (Weakening of Terms) If © - I, [’ ctx and © F B type and
;I IM"~e:Athen®;ly:BI"Fe:A

- (Contraction of Terms) If © - T,y : B,z : C, I ctx and
O;ly:B,z:CI"+e:A then©;l,z:Cy:BT"Fe:A

- (Substitution of Terms) f @ - T,x:Actxand ©;T - e: A
and ©;I,x: Al e :Bthen ©;T +[e/x]e' : B.

- There are two sets of substitution theorems, since there
are two contexts

- We also need to assume well-formedness conditions

- But the proofs are all otherwise similar

26

Conclusion

- We have seen how data works in the pure lambda calculus

- We have started to make it more useful with
polymorphism

- But where did the data go in System F? (Next lecture!)

27

