Type Systems

Lecture 11: Applications of Continuations, and Dependent Types

Neel Krishnaswami
University of Cambridge
Applications of Continuations
Applications of Continuations

We have seen that:

- Classical logic has a beautiful inference system
- Embeds into constructive logic via double-negation translations
- This yields an operational interpretation
- What can we program with continuations?
Types \(X ::= 1 | X \times Y | 0 | X + Y | X \rightarrow Y | \neg X \)

Terms \(e ::= x | \langle \rangle | \langle e, e \rangle | \text{fst}\ e | \text{snd}\ e \\
| \text{abort} | \text{L} e | \text{R} e | \text{case}(e, L x \rightarrow e', R y \rightarrow e'') \\
| \lambda x : X. e | ee' \\
| \text{throw}(e, e') | \text{letcont}\ x. e \)

Contexts \(\Gamma ::= \cdot | \Gamma, x : X \)
Continuation Typing

\[
\Gamma, u : \neg X \vdash e : X \\
\Gamma \vdash \text{letcont } u : \neg X. e : X
\]

\[
\Gamma \vdash e : \neg X \\
\Gamma \vdash e' : X \\
\Gamma \vdash \text{throw}_Y(e, e') : Y
\]
signature CONT = sig
 type 'a cont
 val callcc : ('a cont -> 'a) -> 'a
 val throw : 'a cont -> 'a -> 'b
end
An Inefficient Program

```plaintext
val mul : int list -> int

fun mul [] = 1
  | mul (n :: ns) = n * mul ns

• This function multiplies a list of integers
• If 0 occurs in the list, the whole result is 0
```
A Less Inefficient Program

val mul' : int list -> int

fun mul' [] = 1
| mul' (0 :: ns) = 0
| mul' (n :: ns) = n * mul ns

- This function multiplies a list of integers
- If 0 occurs in the list, it immediately returns 0
 - mul' [0,1,2,3,4,5,6,7,8,9] will immediately return
 - mul' [1,2,3,4,5,6,7,8,9,0] will multiply by 0, 9 times
val loop = fn : int cont -> int list -> int
fun loop return [] = 1
 | loop return (0 :: ns) = throw return 0
 | loop return (n :: ns) = n * loop return ns

val mul_fast : int list -> int
fun mul_fast ns = callcc (fn ret => loop ret ns)

- loop multiplies its arguments, unless it hits 0
- In that case, it throws 0 to its continuation
- mul_fast captures its continuation, and passes it to loop
- So if loop finds 0, it does no multiplications!
McCarthy’s amb Primitive

- In 1961, John McCarthy (inventor of Lisp) proposed a language construct amb
- This was an operator for angelic nondeterminism

```ml
let val x = amb [1,2,3]
val y = amb [4,5,6]

in

assert (x * y = 10);
(x, y)

end

(* Returns (2,5) *)
```

- Does search to find a successful assignment of values
- Can be implemented via backtracking – using continuations
signature AMB = sig

(* Internal implementation *)
val stack : int option cont list ref
val fail : unit -> 'a

(* External API *)
exception AmbFail
val assert : bool -> unit
val amb : int list -> int

end
exception AmbFail
val stack : int option option cont list ref = ref []

fun fail () =
 case !stack of
 [] => raise AmbFail
 | (k :: ks) => (stack := ks;
 throw k NONE)

fun assert b =
 if b then () else fail()
Implementation, Part 2

1 fun amb [] = fail ()
 | amb (x :: xs) =
 let fun next y k =
 (stack := k :: !stack;
 SOME y)
 in
 case callcc (next x) of
 SOME v => v,
 NONE => amb xs.
 end

• amb [] backtracks immediately!
• next y k pushes k onto the backtrack stack, and returns SOME y
• Save the backtrack point, then see if we immediately return, or if we are resuming from a backtrack point and must try the other values
fun test2() =

 let val x = amb [1,2,3,4,5,6]
 val y = amb [1,2,3,4,5,6]
 val z = amb [1,2,3,4,5,6]

 in

 assert(x + y + z >= 13);
 assert(x > 1);
 assert(y > 1);
 assert(z > 1);
 (x, y, z)

 end

(* Returns (2, 5, 6) *)
Conclusions

- amb required the combination of state and continuations
- Theorem of Andrzej Filinski that this is universal
- Any “definable monadic effect” can be expressed as a combination of state and first-class control:
 - Exceptions
 - Green threads
 - Coroutines/generators
 - Random number generation
 - Nondeterminism
Dependent Types
<table>
<thead>
<tr>
<th>Logic</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitionistic Propositional Logic</td>
<td>STLC</td>
</tr>
<tr>
<td>Classical Propositional Logic</td>
<td>STLC + 1st class continuations</td>
</tr>
<tr>
<td>Pure Second-Order Logic</td>
<td>System F</td>
</tr>
</tbody>
</table>

- Each logical system has a corresponding computational system
- One thing is missing, however
- Mathematics uses quantification over *individual elements*
- Eg, $\forall x, y, z, n \in \mathbb{N}$. if $n > 2$ then $x^n + y^n \neq z^n$
A Logical Curiosity

\[\Gamma \vdash z : \mathbb{N} \]
\[\Gamma \vdash e : \mathbb{N} \]
\[\Gamma \vdash s(e) : \mathbb{N} \]
\[\Gamma \vdash e_0 : \mathbb{N} \]
\[\Gamma \vdash e_1 : X \]
\[\Gamma, x : X \vdash e_2 : X \]
\[\Gamma \vdash \text{iter}(e_0, z \rightarrow e_1, s(x) \rightarrow e_2) : X \]

- \(\mathbb{N} \) is the type of natural numbers
- Logically, it is equivalent to the unit type:
 - \((\lambda x : 1. z) : 1 \rightarrow \mathbb{N}\)
 - \((\lambda x : \mathbb{N}. \langle \rangle) : \mathbb{N} \rightarrow 1\)
- Language of types has no way of distinguishing \(z \) from \(s(z) \).
Dependent Types

• Language of types has no way of distinguishing z from $s(z)$.
• So let’s fix that: let types refer to values
• Type grammar and term grammar mutually recursive
• Huge gain in expressive power
An Introduction to Agda

- Much of earlier course leaned on prior knowledge of ML for motivation
- Before we get to the theory of dependent types, let’s look at an implementation
- Agda: a dependently-typed functional programming language
Agda: Basic Datatypes

```agda
data Bool : Set where
  true : Bool
  false : Bool

not : Bool → Bool
not true = false
not false = true
```

- Datatype declarations give constructors and their types
- Functions given type signature, and clausal definition
data Nat : Set where
 z : Nat
 s : Nat → Nat

+ : Nat → Nat → Nat
z + m = m
s n + m = s (n + m)

× : Nat → Nat → Nat
z × m = z
s n × m = m + (n × m)

• Datatype constructors can be recursive
• Functions can be recursive, but checked for termination
Agda: Polymorphic Datatypes

```agda
data List (A : Set) : Set where
  [] : List A
  _ _,_ : A → List A → List A

app : (A : Set) → List A → List A → List A
app A [] ys = ys
app A (x , xs) ys = x , app A xs ys

app' : {A : Set} → List A → List A → List A
app' [] ys = ys
app' (x , xs) ys = (x , app' xs ys)
```

- Datatypes can be polymorphic
- `app` has F-style explicit polymorphism
- `app'` has implicit, inferred polymorphism
data Vec (A : Set) : Nat → Set where

[] : Vec A z

_ , _ : {n : Nat} → A → Vec A n → Vec A (s n)

• This is a length-indexed list
• Cons takes a head and a list of length n, and produces a list of length n + 1
• The empty list has a length of 0
Agda: Indexed Datatypes

```
data Vec (A : Set) : Nat → Set where
  [] : Vec A z
  _::_ : {n : Nat} → A → Vec A n → Vec A (s n)

head : {A : Set} → {n : Nat} → Vec A (s n) → A
head (x , xs) = x
```

- `head` takes a list of length > 0, and returns an element
- No `[]` pattern present
- Not needed for coverage checking!
- Note that `{n:Nat}` is also an implicit (inferred) argument
data Vec (A : Set) : Nat → Set where
 [] : Vec A z
 _ , _ : {n : Nat} → A → Vec A n → Vec A (s n)

app : {A : Set} → {n m : Nat} →
 Vec A n → Vec A m → Vec A (n + m)
app [] ys = ys
app (x , xs) ys = (x , app xs ys)

• Note the appearance of n + m in the type
• This type guarantees that appending two vectors yields a vector whose length is the sum of the two
data Vec (A : Set) : Nat → Set where
 [] : Vec A z
 , : {n : Nat} → A → Vec A n → Vec A (s n)

-- Won't typecheck!
app : {A : Set} → {n m : Nat} → Vec A n → Vec A m → Vec A (n + m)
app [] ys = ys
app (x , xs) ys = app xs ys

• We forgot to cons x here
• This program won’t type check!
• Static typechecking ensures a runtime guarantee
The Identity Type

data _≡_ {A : Set} (a : A) : A → Set where
 refl : a ≡ a

• a ≡ b is the type of proofs that a and b are equal
• The constructor refl says that a term a is equal to itself
• Equalities arising from evaluation are automatic
• Other equalities have to be proved
An Automatic Theorem

\[
\text{data } _\equiv_ \{A : \text{Set}\} (a : A) : A \to \text{Set} \text{ where}
\]
\[\text{refl} : a \equiv a
\]

\[_+_ : \text{Nat} \to \text{Nat} \to \text{Nat}
\]
\[z + m = m
\]
\[s \ n + m = s (n + m)
\]

\[\text{z-+-left-unit} : (n : \text{Nat}) \to (z + n) \equiv n
\]
\[\text{z-+-left-unit } n = \text{refl}
\]

\[
\begin{align*}
\cdot & \quad \text{z + n evaluates to n} \\
\cdot & \quad \text{So Agda considers these two terms to be identical}
\end{align*}
\]
A Manual Theorem

```haskell
data _≡_ {A : Set} (a : A) : A → Set where
  refl : a ≡ a

cong : {A B : Set} → {a a' : A} →
    (f : A → B) → (a ≡ a') → (f a ≡ f a')
cong f refl = refl

z-+-right-unit : (n : Nat) → (n + z) ≡ n
z-+-right-unit z = refl
z-+-right-unit (s n) = cong s (z-+-right-unit n)
```

- We prove the right unit law inductively
- Note that *inductive proofs are recursive functions*
- To do this, we need to show that equality is a congruence
An equivalence relation is a reflexive, symmetric transitive relation.

Equality is congruent with everything.
Commutativity of Addition

\[
\begin{align*}
\text{z-+-right} : (n : \text{Nat}) & \rightarrow (n + z) \equiv n \\
\text{z-+-right} z &= \text{refl} \\
\text{z-+-right} (s \ n) &= \text{cong} s \ (\text{z-+-right} \ n) \\
\text{s-+-right} : (n \ m : \text{Nat}) & \rightarrow \\
& \quad (s \ (n + m)) \equiv (n + (s \ m)) \\
\text{s-+-right} z \ m &= \text{refl} \\
\text{s-+-right} (s \ n) \ m &= \text{cong} s \ (\text{s-+-right} \ n \ m) \\
\text{+-comm} : (i \ j : \text{Nat}) & \rightarrow \\
& \quad (i + j) \equiv (j + i) \\
\text{+-comm} z \ j &= \text{z-+-right} \ j \\
\text{+-comm} (s \ i) \ j &= \text{trans} \ p2 \ p3 \\
\text{where} \ p1 : (i + j) \equiv (j + i) \\
& \quad p1 = \text{+-comm} i \ j \\
& \quad p2 : (s \ (i + j)) \equiv (s \ (j + i)) \\
& \quad p2 = \text{cong} s \ p1 \\
& \quad p3 : (s \ (j + i)) \equiv (j + (s \ i)) \\
& \quad p3 = \text{s-+-right} \ j \ i
\end{align*}
\]

- First we prove that adding zero on the right does nothing
- Then we prove that successor commutes with addition
- Then we use these two facts to inductively prove commutativity of addition
Conclusion

• Dependent types permit referring to program terms in types
• This enables writing types which state very precise properties of programs
 • Eg, equality is expressible as a type
• Writing a program becomes the same as proving it correct
• This is hard, like learning to program again!
• But also extremely fun...