Type Systems

Lecture 1

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

e Type systems lead a double life
e They are an essential part of modern programming languages
e They are a fundamental concept from logic and proof theory

e As a result, they form the most important channel for
connecting theoretical computer science to practical
programming language design.

What are type systems used for?

Error detection via type checking

Support for structuring large (or even medium) sized programs

e Documentation

Efficiency

Safety

A Language of Booleans and Integers

Terms e = true | false | n | e<e | e+e | eNe | —e

Some terms make sense:

e 3+4
e 3+4<5
e B+4<T)AN(T<3+4)

Some terms don't:

e 4 A true
e 3 < true
e true+ 7

Types for Booleans and Integers

Types 7 == bool | N
Terms e == true | false | n | e<e | e+e | ele
e How to connect term (like 3 + 4) with a type (like N)?

Via a typing judgement e : T

1

A two-place relation saying that “the term e has the type 7'

e So _: _is an infix relation symbol

How do we define this?

Typing Rules

Num —— TRUE —— FALSE
n:N true : bool false : bool
e: N e N e : bool e’ : bool
——— PLus AND
e+é: e A e :bool
e: N e:N
—— LEQ
e < €' : bool

e Above the line: premises

e Below the line: conclusion

An Example Derivation Tree

——— NumMm —— NumMm

3:N :

Prus —— NuwMm
34+4:N 5:N

3+4<5:bool

LEQ

Adding Variables

Types 7 == bool | N
Terms e = ... | x | letvx=einé€

Example: letv x =5 in (x + x) < 10

But what type should x have: x: 7

To handle this, the typing judgement must know what the

variables are.

So we change the typing judgement to be I' e : 7, where I’

associates a list of variables to their types.

Contexts I == - | x:7T

— NuMm ——— TRUE —— FALSE
=n:N [- true : bool [+ false : bool

le: N r-e:N

Prus
lFe+ée:N
[+ e: bool I+ ¢ : bool l—e: N e :N
AND LEQ
FeAe :bool e <eée :bool
x:Terl MN=e:r Fx:thke 7
——— VAR LET

Mex:7 M-letvx=eine : 7 8

Does this make sense?

We have: a type system, associating elements from one
grammar (the terms) with elements from another grammar
(the types)

We claim that this rules out “bad” terms

But does it really?

e To prove, we must show type safety

Prelude: Substitution

We have introduced variables into our language, so we should
introduce a notion of substitution as well

[e/x]true = true

[e/x]false = false

[e/x]n = n

[e/x](e1 + e2) = [e/xer +[e/x]e
[e/xl(er < &) — Je/xer < [e/x]e:
[e/x](e1 A e2) = [e/x]er Ae/x]e

e when z =x

[e/x]z =

[e/x](letvz =e1 in &) = letvz=[e/x]e;in [e/x]ex (%)

z when z # x

(*) a-rename to ensure z does not occur in e!

10

Structural Properties and Substitution

1. (Weakening) If [, T"Fe:7 then T, x: 7" "Fe:T.
If a term typechecks in a context, then it will still typecheck
in a bigger context.

2. (Exchange) If [,xq : 71, x0 : 72, " e : 7 then
Mxp:mo,x1:71,1He:T.
If a term typechecks in a context, then it will still typecheck
after reordering the variables in the context.

3. (Substitution) If = e: 7 and I, x:7F € : 7' then
Mt le/x]e : 7.
Subsituting a type-correct term for a variable will preserve

type correctness.

11

A Proof of Weakening

e Proof goes by structural induction
e Suppose we have a derivation tree of I,[" e : 7

e By case-analysing the root of the derivation tree, we construct
a derivation tree of ', x : 7/, " I e : 7, assuming inductively
that the theorem works on subtrees.

12

Proving Weakening, 1/4

——— Num
rr’Fn:N By assumption

o ' NuMm
Mx:7,"Fn:N By rule Num

e Similarly for TRUE and FALSE rules

13

Proving Weakening, 2/4

MMe:N MFe: N
NMFe+e:N

PLus

MMee :N
NrM"-e:N

Mx:7 TMke :N
MNx:7".M"kFe:N
Mx:7"."Fe +e: N

e Similarly for LEQ and AND rules

By assumption

Subderivation 1
Subderivation 2

Induction on subderivation 1
Induction on subderivation 2
By rule PLus

14

Proving Weakening, 3/4

e m rrz:mke:m
LET
MMEletvz=eine : ™ By assumption
NMEe:m Subderivation 1
Nlz:mbke:n Subderivation 2
Mx:7" Mke :m Induction on subderivation 1

Extended context
——

Mx:7", Mz:n F e : N Induction on subderivation 2
Mx:7" T"kFletvz=e ine:7 Byrule LET

ii5)

Proving Weakening, 4/4

z:rel,l
- VAR)
MMEletvz=eine:m By assumption
z:tell By assumption

z:7el,x:7",T" An element of a list is also in a bigger list
Mx:7",1"+z:7 By rule VAR

16

Proving Exchange, 1/4

Num
Mxi:7,x 7, "Fn:N By assumption

Num
M xo:7o,x1 7, " Fn: N By rule Num

e Similarly for TRUE and FALSE rules

17

Proving Exchange, 2/4

r,xlle,XZ:TQ,rll—el:N F,Xlle,XQ:Tg,F’I—eQ:N

- PLus
NM-e +e: N

By assumption

Mx:7m,x:m,"Fe : N Subderivation 1

Mx:7m,%x:m,"Fe: N Subderivation 2

M x:m,x1:71,,"Fe N Induction on subderivation 1

Mxo: 7o, x1:71,,["Fe: N Induction on subderivation 2

M xy:7o,x1:71,," e+ e :N Byrule PLus

e Similarly for LEQ and AND rules

18

Proving Exchange, 3/4

I

T1, X2 © T2, M-e : 7

[x: 7’1,X2:7'2,r’,z:7"|— & T

r7 X1
r> X1

|_7X2

r7 X2
r> X2

LET

MMEletvz=-eine:m

L T1, X2

L T1, X2

-T2, X1

T2, X1

T2, X1

ZTg,rll—eliT/
M z:TFe:m

:Tl,rll—eliTl

Extended context
——

DT, Mz:n Fe:N
1, Fletvz=¢eine :m

By assumption

Subderivation 1
Subderivation 2

Induction on s.d. 1

Induction on s.d. 2
By rule LET

19

Proving Exchange, 4/4

z:TEl X :11,% T,

rr'ez:r

VAR
By assumption

z:T7el,xg:7,x :m,[" By assumption

z:7€l,x:7m,x1:7,[" An element of a list is

also in a permutation of the list
M x:7p,x1:71,"z:7 By rule VAR

20

A Proof of Substitution

e Proof also goes by structural induction

e Suppose we have derivation trees [e : 7 and
Mx:7keée:7.

e By case-analysing the root of the derivation tree of
I x:7F e :7', we construct a derivation tree of
'+ [e/x]e’ : 7/, assuming inductively that substitution works
on subtrees.

21

Substitution 1/4

—— NuM

MNx:7Fn:N By assumption
MN-e:r By assumption
N=n:N By rule Num

I le/x]n: N Def. of substitution

e Similarly for TRUE and FALSE rules

22

Proving Substitution, 2/4

x:7FHe N x:7TFe:N
MNx:7THei+e N

lFe:T

Nx:7FHe N
Nx:7TFHe N

It [e/x]er : N

It [e/x]ex : N

It [e/x]er + [e/x]e2 : N
I le/x](e1 + &) : N

e Similarly for LEQ and AND rules

By assumption: (1)
By assumption: (2)

Subderivation of (1): (3)
Subderivation of (1): (4)
Induction on (2), (3): (5)
Induction on (2), (4): (6)
By rule PLus on (5), (6)
Def. of substitution

23

Proving Substitution, 3/4

Mx:7he :7 Mx:1,z: 7T Fe:m
LET

MNx:7hletvz=eine: 7 By assumption: (1)
lFe:r By assumption: (2
Mx:The:7 Subderivation of (1): (3)
Mx:mz:7'Fe:m Subderivation of (1): (4)
M [e/x]er: 7 Induction on (2) and (3): (4)
Mz:7ke:r Weakening on (2): (5)
Mz:7',x:7The:m Exchange on (4): (6)
Mz:7F[e/x]ex:m Induction on (5) and (6): (7)

[letv z = [e/x]er in [e/x]ex : 72 By rule LET on (6), (7)
It [e/x](letv z=e; in &) : By def. of substitution 24

Proving Substitution, 4a/4

/
z:Tel,x:T

VAR
Mx:7kz:7 By assumption
N-e:7 By assumption
Case x = z:
Mele/x]x: 7 By def. of substitution

25

Proving Substitution, 4b/4

/
z:Tel,x:T

VAR
Mx:1thFz:7 By assumption
MN-e:7 By assumption
Case x # z:
z:7erl sincex#zandz: 7 el x:7
rz:7kz:7 By rule VAR

Mz:7 F[e/x]z: 7" By def. of substitution

26

Operational Semantics

e We have a language and type system

e We have a proof of substitution

e How do we say what value a program computes?
e With an operational semantics

e Define a grammar of values

e Define a two-place relation on terms e ~ €’

e Pronounced as “e steps to e’

27

An operational semantics

Values v == n | true | false
/
€1 v €
p ANDCONG ——— ANDTRUE
etNe ~ e Ne true N e ~ e
ANDFALSE

false A e ~~ false
(similar rules for < and +)

€1 ~ e’
1
LETCONG

letv z = €1 in e ~ letv z = €] in &
1

LETSTEP
letv z =vin ey ~ [v/z]e
28

Reduction Sequences

e A reduction sequence is a sequence of transitions ey ~~ ey,
€L~ €, ..., En—_1 ™ €.

e A term e is stuck if it is not a value, and there is no e’ such

that e ~ ¢’
Successful sequence Stuck sequence

3+4)<(2+3
()= () 3+4)A(2+3)

~ 1< (2+3)
- ~ TA(243)

e T

~ false

Stuck terms are erroneous programs with no defined behaviour.

29

Type Safety

A program is safe if it never gets stuck.

1. (Progress) If - e : T then either e is a value, or there exists

e’ such that e ~~ ¢’.

2. (Preservation) If - e : 7 and e ~» € then - ¢’ : 7.

e Progress means that well-typed programs are not stuck: they
can always take a step of progress (or are done).

e Preservation means that if a well-typed program takes a step,
it will stay well-typed.

e So a well-typed term won't reduce to a stuck term: the final
term will be well-typed (due to preservation), and well-typed

terms are never stuck (due to progress).

30

Proving Progress

(Progress) If - - e : 7 then either e is a value, or there exists €
such that e ~ €.

e To show this, we do structural induction on the derivation of
-Fe:T.

e For each typing rule, we show that either e is a value, or can
step.

31

Progress: Values

NumMm
-Fn:N By assumption

n is a value Def. of value gramma

Similarly for boolean literals. ..

32

Progress: Let-bindings

Fe T x:The: 7
LET
‘Fletvx =e ine: 7 By assumption: (1)
‘Fe T Subderivation of (1): (2)
x:The:T Subderivation of (1): (3)
e1 ~ €] or e value Induction on (2)

Case e1 ~> €] :

letv x = e in e ~ letv x = €] in &2 By rule LETCONG
Case e value :

letv x = €1 in e ~ [e1/x]e By rule LETSTEP

33

Type Preservation

(Preservation) If - -e: 7 and e ~» € then - F €' : 7.

1. We will use structural induction again, but on which
derivation?

2. Two choices: (1) -Fe: 7 and (2) e ~ €
3. The right choice is induction on e ~ €’

4. We will still need to deconstruct - - e : 7 alongside it!

34

e1 ~ e

letv x = €7 in egwletVX:e:’l in e

‘Fe T x:The: 7

‘Fletvx=-¢eine: 7

er ~ e

‘Fe T

x:The 7
!/ .

‘Fletvx =€} ine: 7

Type Preservation: Let Bindings 1

By assumption: (1)

By assumption: (2)

Subderivation of (1): (3)
Subderivation of (2): (4)
Subderivation of (2): (5)
Induction on (3), (4): (6)
Rule LET on (6), (4)

85

Type Preservation: Let Bindings 2

letv x = vy in e; ~ [vi/x]e; By assumption: (1)

FwviT x:The: 7

‘Fletvx=viine: 7 By assumption: (2)
FwviT Subderivation of (2): (3)
x:The 7 Subderivation of (2): (4)
-k vi/x]ex: 7’ Substitution on (3), (4)

36

Conclusion

Given a language of program terms and a language of types:

A type system ascribes types to terms

e An operational semantics describes how terms evaluate

A type safety proof connects the type system and the

operational semantics

Proofs are intricate, but not difficult

37

Exercises

1. Give cases of the operational semantics for < and +.
2. Extend the progress proof to cover e A €.

3. Extend the preservation proof to cover e A €.

(This should mostly be review of 1B Semantics of Programming
Languages.)

38

