
Type Systems

Lecture 1

Neel Krishnaswami

University of Cambridge

Type Systems for Programming Languages

• Type systems lead a double life

• They are an essential part of modern programming languages

• They are a fundamental concept from logic and proof theory

• As a result, they form the most important channel for

connecting theoretical computer science to practical

programming language design.

1

What are type systems used for?

• Error detection via type checking

• Support for structuring large (or even medium) sized programs

• Documentation

• Efficiency

• Safety

2

A Language of Booleans and Integers

Terms e ::= true | false | n | e ≤ e | e + e | e ∧ e | ¬e

Some terms make sense:

• 3 + 4

• 3 + 4 ≤ 5

• (3 + 4 ≤ 7) ∧ (7 ≤ 3 + 4)

Some terms don’t:

• 4 ∧ true

• 3 ≤ true

• true + 7

3

Types for Booleans and Integers

Types τ ::= bool | N
Terms e ::= true | false | n | e ≤ e | e + e | e ∧ e

• How to connect term (like 3 + 4) with a type (like N)?

• Via a typing judgement e : τ

• A two-place relation saying that “the term e has the type τ”

• So : is an infix relation symbol

• How do we define this?

4

Typing Rules

n : N
Num

true : bool
True

false : bool
False

e : N e ′ : N

e + e ′ : N
Plus

e : bool e ′ : bool

e ∧ e ′ : bool
And

e : N e ′ : N

e ≤ e ′ : bool
Leq

• Above the line: premises

• Below the line: conclusion

5

An Example Derivation Tree

3 : N
Num

4 : N
Num

3 + 4 : N
Plus

5 : N
Num

3 + 4 ≤ 5 : bool
Leq

6

Adding Variables

Types τ ::= bool | N
Terms e ::= . . . | x | letv x = e in e ′

• Example: letv x = 5 in (x + x) ≤ 10

• But what type should x have: x : ?

• To handle this, the typing judgement must know what the

variables are.

• So we change the typing judgement to be Γ ` e : τ , where Γ

associates a list of variables to their types.

7

Contexts

Contexts Γ ::= · | Γ, x : τ

Γ ` n : N
Num

Γ ` true : bool
True

Γ ` false : bool
False

Γ ` e : N Γ ` e ′ : N

Γ ` e + e ′ : N
Plus

Γ ` e : bool Γ ` e ′ : bool

Γ ` e ∧ e ′ : bool
And

Γ ` e : N Γ ` e ′ : N

Γ ` e ≤ e ′ : bool
Leq

x : τ ∈ Γ

Γ ` x : τ
Var

Γ ` e : τ Γ, x : τ ` e ′ : τ ′

Γ ` letv x = e in e ′ : τ ′
Let

8

Does this make sense?

• We have: a type system, associating elements from one

grammar (the terms) with elements from another grammar

(the types)

• We claim that this rules out “bad” terms

• But does it really?

• To prove, we must show type safety

9

Prelude: Substitution

We have introduced variables into our language, so we should

introduce a notion of substitution as well

[e/x]true = true

[e/x]false = false

[e/x]n = n

[e/x](e1 + e2) = [e/x]e1 + [e/x]e2

[e/x](e1 ≤ e2) = [e/x]e1 ≤ [e/x]e2

[e/x](e1 ∧ e2) = [e/x]e1 ∧ [e/x]e2

[e/x]z =

{
e when z = x

z when z 6= x

[e/x](letv z = e1 in e2) = letv z = [e/x]e1 in [e/x]e2 (∗)

(∗) α-rename to ensure z does not occur in e!

10

Structural Properties and Substitution

1. (Weakening) If Γ, Γ′ ` e : τ then Γ, x : τ ′′, Γ′ ` e : τ .

If a term typechecks in a context, then it will still typecheck

in a bigger context.

2. (Exchange) If Γ, x1 : τ1, x2 : τ2, Γ
′ ` e : τ then

Γ, x2 : τ2, x1 : τ1, Γ
′ ` e : τ .

If a term typechecks in a context, then it will still typecheck

after reordering the variables in the context.

3. (Substitution) If Γ ` e : τ and Γ, x : τ ` e ′ : τ ′ then

Γ ` [e/x]e ′ : τ ′.

Subsituting a type-correct term for a variable will preserve

type correctness.

11

A Proof of Weakening

• Proof goes by structural induction

• Suppose we have a derivation tree of Γ, Γ′ ` e : τ

• By case-analysing the root of the derivation tree, we construct

a derivation tree of Γ, x : τ ′′, Γ′ ` e : τ , assuming inductively

that the theorem works on subtrees.

12

Proving Weakening, 1/4

Γ, Γ′ ` n : N
Num

By assumption

Γ, x : τ ′′, Γ′ ` n : N
Num

By rule Num

• Similarly for True and False rules

13

Proving Weakening, 2/4

Γ, Γ′ ` e1 : N Γ, Γ′ ` e2 : N

Γ, Γ′ ` e1 + e2 : N
Plus

By assumption

Γ, Γ′ ` e1 : N Subderivation 1

Γ, Γ′ ` e2 : N Subderivation 2

Γ, x : τ ′′, Γ′ ` e1 : N Induction on subderivation 1

Γ, x : τ ′′, Γ′ ` e2 : N Induction on subderivation 2

Γ, x : τ ′′, Γ′ ` e1 + e2 : N By rule Plus

• Similarly for Leq and And rules

14

Proving Weakening, 3/4

Γ, Γ′ ` e1 : τ1 Γ, Γ′, z : τ1 ` e2 : τ2

Γ, Γ′ ` letv z = e1 in e2 : τ2
Let

By assumption

Γ, Γ′ ` e1 : τ1 Subderivation 1

Γ, Γ′, z : τ1 ` e2 : τ2 Subderivation 2

Γ, x : τ ′′, Γ′ ` e1 : τ1 Induction on subderivation 1

Γ, x : τ ′′,

Extended context︷ ︸︸ ︷
Γ′, z : τ1 ` e2 : N Induction on subderivation 2

Γ, x : τ ′′, Γ′ ` letv z = e1 in e2 : τ2 By rule Let

15

Proving Weakening, 4/4

z : τ ∈ Γ, Γ′

Γ, Γ′ ` letv z = e1 in e2 : τ2
Var

By assumption

z : τ ∈ Γ, Γ′ By assumption

z : τ ∈ Γ, x : τ ′′, Γ′ An element of a list is also in a bigger list

Γ, x : τ ′′, Γ′ ` z : τ By rule Var

16

Proving Exchange, 1/4

Γ, x1 : τ1, x2 : τ2, Γ
′ ` n : N

Num
By assumption

Γ, x2 : τ2, x1 : τ1, Γ
′ ` n : N

Num
By rule Num

• Similarly for True and False rules

17

Proving Exchange, 2/4

Γ, x1 : τ1, x2 : τ2, Γ
′ ` e1 : N Γ, x1 : τ1, x2 : τ2, Γ

′ ` e2 : N

Γ, Γ′ ` e1 + e2 : N
Plus

By assumption

Γ, x1 : τ1, x2 : τ2, Γ
′ ` e1 : N Subderivation 1

Γ, x1 : τ1, x2 : τ2, Γ
′ ` e2 : N Subderivation 2

Γ, x2 : τ2, x1 : τ1, , Γ
′ ` e1 : N Induction on subderivation 1

Γ, x2 : τ2, x1 : τ1, , Γ
′ ` e2 : N Induction on subderivation 2

Γ, x2 : τ2, x1 : τ1, , Γ
′ ` e1 + e2 : N By rule Plus

• Similarly for Leq and And rules

18

Proving Exchange, 3/4

Γ, x1 : τ1, x2 : τ2, Γ
′ ` e1 : τ ′

Γ, x1 : τ1, x2 : τ2, Γ
′, z : τ ′ ` e2 : τ2

Γ, Γ′ ` letv z = e1 in e2 : τ2
Let

By assumption

Γ, x1 : τ1, x2 : τ2, Γ
′ ` e1 : τ ′ Subderivation 1

Γ, x1 : τ1, x2 : τ2, Γ
′, z : τ ′ ` e2 : τ2 Subderivation 2

Γ, x2 : τ2, x1 : τ1, Γ
′ ` e1 : τ1 Induction on s.d. 1

Γ, x2 : τ2, x1 : τ1,

Extended context︷ ︸︸ ︷
Γ′, z : τ1 ` e2 : N Induction on s.d. 2

Γ, x2 : τ2, x1 : τ1, Γ
′ ` letv z = e1 in e2 : τ2 By rule Let

19

Proving Exchange, 4/4

z : τ ∈ Γ, x1 : τ1, x2 : τ2, Γ
′

Γ, Γ′ ` z : τ
Var

By assumption

z : τ ∈ Γ, x1 : τ1, x2 : τ2, Γ
′ By assumption

z : τ ∈ Γ, x2 : τ2, x1 : τ1, Γ
′ An element of a list is

also in a permutation of the list

Γ, x2 : τ2, x1 : τ1, Γ
′ ` z : τ By rule Var

20

A Proof of Substitution

• Proof also goes by structural induction

• Suppose we have derivation trees Γ ` e : τ and

Γ, x : τ ` e ′ : τ ′.

• By case-analysing the root of the derivation tree of

Γ, x : τ ` e ′ : τ ′, we construct a derivation tree of

Γ ` [e/x]e ′ : τ ′, assuming inductively that substitution works

on subtrees.

21

Substitution 1/4

Γ, x : τ ` n : N
Num

By assumption

Γ ` e : τ By assumption

Γ ` n : N By rule Num

Γ ` [e/x]n : N Def. of substitution

• Similarly for True and False rules

22

Proving Substitution, 2/4

Γ, x : τ ` e1 : N Γ, x : τ ` e2 : N

Γ, x : τ ` e1 + e2 : N By assumption: (1)

Γ ` e : τ By assumption: (2)

Γ, x : τ ` e1 : N Subderivation of (1): (3)

Γ, x : τ ` e2 : N Subderivation of (1): (4)

Γ ` [e/x]e1 : N Induction on (2), (3): (5)

Γ ` [e/x]e2 : N Induction on (2), (4): (6)

Γ ` [e/x]e1 + [e/x]e2 : N By rule Plus on (5), (6)

Γ ` [e/x](e1 + e2) : N Def. of substitution

• Similarly for Leq and And rules

23

Proving Substitution, 3/4

Γ, x : τ ` e1 : τ ′ Γ, x : τ, z : τ ′ ` e2 : τ2

Γ, x : τ ` letv z = e1 in e2 : τ2
Let

By assumption: (1)

Γ ` e : τ By assumption: (2)

Γ, x : τ ` e1 : τ ′ Subderivation of (1): (3)

Γ, x : τ, z : τ ′ ` e2 : τ2 Subderivation of (1): (4)

Γ ` [e/x]e1 : τ ′ Induction on (2) and (3): (4)

Γ, z : τ ′ ` e : τ Weakening on (2): (5)

Γ, z : τ ′, x : τ ` e2 : τ2 Exchange on (4): (6)

Γ, z : τ ′ ` [e/x]e2 : τ2 Induction on (5) and (6): (7)

Γ ` letv z = [e/x]e1 in [e/x]e2 : τ2 By rule Let on (6), (7)

Γ ` [e/x](letv z = e1 in e2) : τ2 By def. of substitution 24

Proving Substitution, 4a/4

z : τ ′ ∈ Γ, x : τ

Γ, x : τ ` z : τ ′
Var

By assumption

Γ ` e : τ By assumption

Case x = z :

Γ ` [e/x]x : τ By def. of substitution

25

Proving Substitution, 4b/4

z : τ ′ ∈ Γ, x : τ

Γ, x : τ ` z : τ ′
Var

By assumption

Γ ` e : τ By assumption

Case x 6= z :

z : τ ′ ∈ Γ since x 6= z and z : τ ′ ∈ Γ, x : τ

Γ, z : τ ′ ` z : τ ′ By rule Var

Γ, z : τ ′ ` [e/x]z : τ ′ By def. of substitution

26

Operational Semantics

• We have a language and type system

• We have a proof of substitution

• How do we say what value a program computes?

• With an operational semantics

• Define a grammar of values

• Define a two-place relation on terms e e ′

• Pronounced as “e steps to e ′”

27

An operational semantics

Values v ::= n | true | false

e1 e ′1

e1 ∧ e2 e ′1 ∧ e2
AndCong

true ∧ e e
AndTrue

false ∧ e false
AndFalse

(similar rules for ≤ and +)

e1 e ′1

letv z = e1 in e2 letv z = e ′1 in e2
LetCong

letv z = v in e2 [v/z]e2
LetStep

28

Reduction Sequences

• A reduction sequence is a sequence of transitions e0 e1,

e1 e2, . . . , en−1 en.

• A term e is stuck if it is not a value, and there is no e ′ such

that e e ′

Successful sequence Stuck sequence

(3 + 4) ≤ (2 + 3)

 7 ≤ (2 + 3)

 7 ≤ 5

 false

(3 + 4) ∧ (2 + 3)

 7 ∧ (2 + 3)

 ???

Stuck terms are erroneous programs with no defined behaviour.

29

Type Safety

A program is safe if it never gets stuck.

1. (Progress) If · ` e : τ then either e is a value, or there exists

e ′ such that e e ′.

2. (Preservation) If · ` e : τ and e e ′ then · ` e ′ : τ .

• Progress means that well-typed programs are not stuck: they

can always take a step of progress (or are done).

• Preservation means that if a well-typed program takes a step,

it will stay well-typed.

• So a well-typed term won’t reduce to a stuck term: the final

term will be well-typed (due to preservation), and well-typed

terms are never stuck (due to progress).

30

Proving Progress

(Progress) If · ` e : τ then either e is a value, or there exists e ′

such that e e ′.

• To show this, we do structural induction on the derivation of

· ` e : τ .

• For each typing rule, we show that either e is a value, or can

step.

31

Progress: Values

· ` n : N
Num

By assumption

n is a value Def. of value gramma

Similarly for boolean literals. . .

32

Progress: Let-bindings

· ` e1 : τ x : τ ` e2 : τ ′

· ` letv x = e1 in e2 : τ ′
Let

By assumption: (1)

· ` e1 : τ Subderivation of (1): (2)

x : τ ` e2 : τ ′ Subderivation of (1): (3)

e1 e ′1 or e1 value Induction on (2)

Case e1 e ′1 :

letv x = e1 in e2 letv x = e ′1 in e2 By rule LetCong

Case e1 value :

letv x = e1 in e2 [e1/x]e2 By rule LetStep

33

Type Preservation

(Preservation) If · ` e : τ and e e ′ then · ` e ′ : τ .

1. We will use structural induction again, but on which

derivation?

2. Two choices: (1) · ` e : τ and (2) e e ′

3. The right choice is induction on e e ′

4. We will still need to deconstruct · ` e : τ alongside it!

34

Type Preservation: Let Bindings 1

e1 e ′1

letv x = e1 in e2 letv x = e ′1 in e2 By assumption: (1)

· ` e1 : τ x : τ ` e2 : τ ′

· ` letv x = e1 in e2 : τ ′ By assumption: (2)

e1 e ′1 Subderivation of (1): (3)

· ` e1 : τ Subderivation of (2): (4)

x : τ ` e2 : τ ′ Subderivation of (2): (5)

· ` e ′1 : τ Induction on (3), (4): (6)

· ` letv x = e ′1 in e2 : τ ′ Rule Let on (6), (4)

35

Type Preservation: Let Bindings 2

letv x = v1 in e2 [v1/x]e2 By assumption: (1)

· ` v1 : τ x : τ ` e2 : τ ′

· ` letv x = v1 in e2 : τ ′ By assumption: (2)

· ` v1 : τ Subderivation of (2): (3)

x : τ ` e2 : τ ′ Subderivation of (2): (4)

· ` [v1/x]e2 : τ ′ Substitution on (3), (4)

36

Conclusion

Given a language of program terms and a language of types:

• A type system ascribes types to terms

• An operational semantics describes how terms evaluate

• A type safety proof connects the type system and the

operational semantics

• Proofs are intricate, but not difficult

37

Exercises

1. Give cases of the operational semantics for ≤ and +.

2. Extend the progress proof to cover e ∧ e ′.

3. Extend the preservation proof to cover e ∧ e ′.

(This should mostly be review of IB Semantics of Programming

Languages.)

38

