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Petri nets

Introduced in 1962 (though claimed to have been invented be 1939)

Starting point: think of a transition system where a number of
processes can be in a given state and then allow coordination

Conditions: local components of state

Events: transitions and coordination

Allows study of concurrency of events, reasoning about causal
dependency and how the action of one process might conflict with
that of another

The first of a range of models: event structures, Mazurkiewicz trace
languages, asynchronous transition systems, . . .

Many variants with di↵erent algorithmic properties and expressivity



1-multisets

Multisets generalise sets by allow elements to occur some number of
times. 1-multisets generalise further by allowing infinitely many
occurrences.

!1 = ! [ {1}

Extend addition:
n +1 = 1 for n 2 !1

Extend subtraction

1� n = 1 for n 2 !

Extend order:
n  1 for n 2 !1

An 1-multiset over a set X is a function

f : X ! !1

It is a multiset if f : X ! !.



Operations on 1-multisets

f  g i↵ 8x 2 X .f (x)  g(x)

f + g is the 1-multiset such that

8x 2 X . (f + g)(x) = f (x) + g(x)

For g a multiset such that f  g ,

8x 2 X . (f � g)(x) = f (x)� g(x)



General Petri nets

A general Petri net consists of

a set of conditions P

a set of events T

a pre-condition map assigning to each event t a multiset of
conditions •t

3

5

a post-condition map assigning to each event t an 1-multiset of
conditions t•

2

1

a capacity map Cap an 1-multiset of conditions, assigning a
capacity in !1 to each condition



Dynamics

A marking is an 1-multiset M such that

M  Cap

giving how many tokens are in each condition. 1

The token game:

For M,M0 markings, t an event:

M t�! M0 i↵ •t  M & M0 = M� •t + t•

An event t has concession (is enabled) at M i↵

•t  M & M� •t + t•  Cap
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Further examples

Cap: 5
1
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2 1

2 2
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2 2



Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

a set of conditions B

a set of events E

a pre-condition map assigning a subset of conditions •e to any event
e

a post-condition map assigning a subset of conditions e• to any
event e such that

•e [ e• 6= ;

The capacity of any condition is implicitly taken to be 1:

8b 2 B : Cap(b) = 1

A marking M is now a subset of conditions.

M e�! M0 i↵
•q ✓ M & (M\ •e) \ e• = ;

& M0 = (M\ •e) [ e•



Concepts

Concurrency

Forwards conflict Backwards conflict

Contact



Persistent conditions

Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages
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SPL

Modelling cryptographic protocols

and event-based reasoning



Cryptographic protocols

Protocols that use crytosystems to achieve some security goal across
a distributed network

Di�cult and important to get right

Security properties are subtle and hard to express

Must reason about processes in an adverse environment:
Asynchronous communication

Dolev-Yao attacker (idealised cryptographic primitives)

 a language to represent protocols

with a Petri net semantics

Analysis based on causal dependency: event-based reasoning



Public-key cryptography

Public key cryptography:

for each entity/participant/agent A, there is a key Pub(A) and a key
Priv(A).

Pub(A) is intended to be known by everybody: it is public

Priv(A) is intended to be known only by A: it is private

Any agent can encrypt using a key that it knows

To decrypt a message encrypted under Pub(A) it is necessary to
know Priv(A)

To decrypt a message encrypted under Priv(A) it is necessary to
know Pub(A)

Will also allow symmetric keys e.g. Key(A,B).



The Needham-Schröder-Lowe Protocol

The goal of the NSL protocol: two agents use public-key cryptography to
ensure

authentication: For A as the initiator: upon completion of the
protocol, A can demonstrate that B generated the messages that A
received following the protocol in response to A’s request

shared secret: if two entities complete the protocol with each
other, at the end they both know a value not known to any potential
attacker (e.g. to be used in more e�cient symmetric-key
cryptographic operations)

Formally, the correctness properties are subtle (e.g. what if B chose to
release its private key?)



The protocol

(1) A �! B: {m,A}Pub(B)

(2) B �! A: {m, n,B}Pub(A)
(3) A �! B: {n}Pub(B)

m and n are nonces: randomly-generated (very) long integers

Only B can decrypt the message sent in (1)

A knows that only B can have sent the message in (2)

B knows that only A can have sent the message in (1)

the nonces m and n are shared secrets

But these properties are informal and approximate, and we’ve only
described what’s supposed to happen . . .



The original protocol

Original protocol introduced by Needham and Schröder in 1978
contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A �! B : {m,A}Pub(B)

B �! A : {m, n}Pub(A)

A �! B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)
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SPL

We take an infinite set of names

Names = {m, n, . . . ,A,B, . . .}

with name variables
x , y , . . . ,X ,Y

Messages shall be ranged over by message variables

 , 0, 1, . . .

Indices shall be used to identify components of parallel compositions

i 2 Indices

Messages can contain free variables  messages as patterns on input



SPL syntax

Name expressions v :: = n | A | . . . | x | X

Key expressions K :: = Pub(v) | Priv(v) | Key(v , v 0)

Messages M :: =  | v | k | M1,M2 | {M}k

Processes
p :: = out new ~x M.p

| in pat~x ~ M.p
| ki2I pi



Conventions

outM.p where the list of new variables is empty

in M.p where the lists of name and message variables are precisely
the free name and message variables in M

nil is the empty parallel composition, which may be freely omitted

use infix notation for finite parallel composition: p1 k p2 is ki2{1,2} pi

replication of a process !p is ki2! p


