Topics in Concurrency
 Lectures 4

Glynn Winskel

15 February 2019

Two vending machine implementations

Specification and correctness:

- Assertions and logic (e.g. (User \|V Ven)
{coin, change, coffee, tea\} } always outputs work)
- Equivalence

Language equivalences

- A trace of a process p is a (possibly infinite) sequence of actions

$$
\left(a_{1}, a_{2}, \ldots, a_{i}, a_{i+1}, \ldots\right)
$$

such that

$$
p \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots p_{i-1} \xrightarrow{a_{i}} p_{i} \xrightarrow{a_{i+1}} \ldots
$$

- Two processes are trace equivalent iff they have the same sets of traces
- Are Ven and Ven' trace equivalent?
- Are (User || Ven)
{coin, change, coffee, tea\} and } (User \| Ven')
{coin, change, coffee, tea\} trace equivalent? }

Completed trace equivalence

- A trace is maximal if it cannot be extended (it is either infinite or ends in a state from which there is no transition)
- Processes are completed trace equivalent iff they have the same sets of maximal traces.
- Are Ven and Ven' completed trace equivalent?
- Are (User || Ven)
{coin, change, coffee, tea\} and } (User \| Ven')
{coin, change, coffee, tea\} completed trace } equivalent?

A more subtle form of equivalence is needed to reason compositionally about processes

Bisimulation - a process equivalence

To

- support equational reasoning
- simplify verification

Strong bisimulation

A (strong) bisimulation is a relation R between states for which If $p R q$ then:
(1) $\forall \alpha, p^{\prime} . \quad p \xrightarrow{\alpha} p^{\prime} \quad \Longrightarrow$ $\exists q^{\prime} . \quad q \xrightarrow{\alpha} q^{\prime} \quad \& \quad p^{\prime} R q^{\prime}$
(2) $\forall \alpha, q^{\prime} \cdot \quad q \xrightarrow{\alpha} q^{\prime} \Longrightarrow$ $\exists p^{\prime} . \quad p \xrightarrow{\alpha} p^{\prime} \quad \& \quad p^{\prime} R q^{\prime}$
(Strong) bisimilarity is an equivalence on states

$$
p \sim q \quad \text { iff } \quad p R q \text { for some (strong) bisimulation } R
$$

Exhibiting bisimilarity

To show $p_{1} \sim p_{2}$, we give a relation R such that R is a bisimulation and $p_{1} R p_{2}$.

Examples: Give bisimulations to show

- $a \| b \sim a . b+b . a$
- On transition systems, $s \sim v$ where

Examples: Looping

Examples: Inessential branching

Examples: Internal choice

Bisimulations

If R, S, R_{i} for $i \in I$ are strong bisimulations then so are:
(1) Id, the identity relation the set of states of any transition system
(2) $R^{o p}$, the converse/opposite relation
($R \circ S$, the composition (when the transition systems involved match up so that the composition makes sense)
(1) $\bigcup_{i \in I} R_{i}$, the union (when the relations are over the same transition systems)
(1)-(3) imply that \sim is an equivalence relation, and (4) that \sim is a bisimulation.

Equational properties of bisimulation

+ and $\|$ are commutative and associative w.r.t. \sim, with unit nil

If $p \sim q$ then:

- $\alpha . p \sim \alpha . q$
- $p+r \sim q+r$
- $p\|r \sim q\| r$
- $p \backslash L \sim q \backslash L$
- $p[f] \sim q[f]$
... bisimilarity is a congruence

Expansion laws for CCS

In general,

$$
p \sim \sum\left\{\alpha \cdot p^{\prime} \mid p \xrightarrow{\alpha} p^{\prime}\right\}
$$

We can use this to remove everything but prefixing and sums:
Suppose $p \sim \sum_{i \in I} \alpha_{i} . p_{i}$ and $q \sim \sum_{j \in J} \beta_{j} . q_{j}$.

$$
\begin{aligned}
p \backslash L & \sim \sum\left\{\alpha_{i} \cdot\left(p_{i} \backslash L\right) \mid \alpha_{i} \notin L\right\} \\
p[f] & \sim \sum\left\{f\left(\alpha_{i}\right) \cdot\left(p_{i}[f]\right) \mid i \in I\right\} \\
p \| q & \sim \sum_{i \in I} \alpha_{i} \cdot\left(p_{i} \| q\right)+\sum_{j \in J} \beta_{j} \cdot\left(p \| q_{j}\right) \\
& +\sum\left\{\tau \cdot\left(p_{i} \| q_{j}\right) \mid \alpha_{i}=\overline{\beta_{j}}\right\}
\end{aligned}
$$

Strong bisimilarity and specifications

An example:

$$
\begin{aligned}
\text { Sem } & \stackrel{\text { def }}{=} \text { get.put.Sem } \\
P_{1} & \stackrel{\text { def }}{=} \overline{\text { get. }} \cdot a_{1} \cdot b_{1} \cdot \overline{p u t} \cdot P_{1} \\
P_{2} & \stackrel{\text { def }}{=} \overline{\text { get. }} \cdot a_{2} \cdot b_{2} \cdot \overline{p u t} \cdot P_{2} \\
\text { Sys } & \stackrel{\text { def }}{=}\left(\text { Sem }\left\|P_{1}\right\| P_{2}\right) \backslash\{\text { get, put }\} \\
\text { Spec } & \stackrel{\text { def }}{=} \tau \cdot a_{1} \cdot b_{1} \cdot \text { Spec }+\tau \cdot a_{2} \cdot b_{2} \cdot \text { Spec } \\
\text { Spec }^{\prime} & \stackrel{\text { def }}{=} \tau \cdot a_{1} \cdot b_{1} \cdot \tau \cdot \text { Spec }^{\prime}+\tau \cdot a_{2} \cdot b_{2} \cdot \tau \cdot \text { Spec }^{\prime}
\end{aligned}
$$

Do we have

$$
\text { ? Sys } \sim \text { Spec } \quad ? \quad \text { or } \quad \text { ? } \quad \text { Sys } \sim S_{p e c}{ }^{\prime} \quad \text { ? }
$$

Weak bisimulation

Hiding τ actions

$$
\begin{gathered}
\stackrel{\tau}{\Rightarrow} \stackrel{\text { def }}{=}(\stackrel{\tau}{\rightarrow}) \\
\stackrel{a}{\Rightarrow} \stackrel{\text { def }}{=}(\stackrel{\tau}{\Rightarrow} \xrightarrow{a} \stackrel{\tau}{\Rightarrow})
\end{gathered}
$$

We get a transition system

Weak bisimulation is bisimulation w.r.t. \Rightarrow

Weak bisimulation

A weak bisimulation is a relation R between states for which If $p R q$ then:
(1) $\forall \alpha, p^{\prime} . \quad p \stackrel{\alpha}{\Rightarrow} p^{\prime} \Longrightarrow$

$$
\exists q^{\prime} . \quad q \stackrel{\alpha}{\Rightarrow} q^{\prime} \quad \& \quad p^{\prime} R q^{\prime}
$$

(2) $\forall \alpha, q^{\prime} \cdot \quad q \stackrel{\alpha}{\Rightarrow} q^{\prime} \Longrightarrow$

$$
\exists p^{\prime} . \quad p \stackrel{\alpha}{\Rightarrow} p^{\prime} \quad \& \quad p^{\prime} R q^{\prime}
$$

Weak bisimulation is not a congruence \rightsquigarrow observational congruence.

