Two vending machine implementations

User \overset{\text{def}}{=} \text{coin.coffee.change.work}

Specification and correctness:

- Assertions and logic (e.g. (User \parallel Ven) \setminus \{coin, change, coffee, tea\} always outputs work)
- Equivalence
Language equivalences

- A trace of a process p is a (possibly infinite) sequence of actions
 \[(a_1, a_2, \ldots, a_i, a_{i+1}, \ldots)\]
 such that
 \[p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \ldots p_{i-1} \xrightarrow{a_i} p_i \xrightarrow{a_{i+1}} \ldots\]

- Two processes are trace equivalent iff they have the same sets of traces

- Are Ven and Ven' trace equivalent?
- Are $(User \parallel Ven) \setminus \{coin, change, coffee, tea\}$ and
 $(User \parallel Ven') \setminus \{coin, change, coffee, tea\}$ trace equivalent?
A trace is **maximal** if it cannot be extended (it is either infinite or ends in a state from which there is no transition)

Processes are **completed trace equivalent** iff they have the same sets of *maximal* traces.

- Are Ven and Ven' completed trace equivalent?
- Are $(User \parallel Ven) \setminus \{coin, change, coffee, tea\}$ and $(User \parallel Ven') \setminus \{coin, change, coffee, tea\}$ completed trace equivalent?

* A more subtle form of equivalence is needed to reason compositionally about processes
Bisimulation — a process equivalence

To

- support equational reasoning
- simplify verification
A (strong) bisimulation is a relation R between states for which
If $p R q$ then:

1. $\forall \alpha, p'. ~ p \xrightarrow{\alpha} p' \implies \exists q'. ~ q \xrightarrow{\alpha} q' \land p' R q'$

2. $\forall \alpha, q'. ~ q \xrightarrow{\alpha} q' \implies \exists p'. ~ p \xrightarrow{\alpha} p' \land p' R q'$

(Strong) bisimilarity is an equivalence on states

$p \sim q$ iff $p R q$ for some (strong) bisimulation R
Exhibiting bisimilarity

To show $p_1 \sim p_2$, we give a relation R such that R is a bisimulation and $p_1 R p_2$.

Examples: Give bisimulations to show

- $a \parallel b \sim a.b + b.a$
- On transition systems, $s \sim v$ where
Examples: Looping
Examples: Inessential branching

![Diagram](image)
Examples: Internal choice

\[s_0 \xrightarrow{\tau} s_1 \xrightarrow{b} s_2 \xrightarrow{a} s_3 \]

\[t_0 \xrightarrow{\tau} t_1 \xrightarrow{a} t_2 \xrightarrow{\tau} t_3 \]
If R, S, R_i for $i \in I$ are strong bisimulations then so are:

1. Id, the identity relation the set of states of any transition system
2. R^{op}, the converse/opposite relation
3. $R \circ S$, the composition (when the transition systems involved match up so that the composition makes sense)
4. $\bigcup_{i \in I} R_i$, the union (when the relations are over the same transition systems)

(1)–(3) imply that \sim is an equivalence relation, and (4) that \sim is a bisimulation.
Equational properties of bisimulation

$+$ and \parallel are commutative and associative w.r.t. \sim, with unit \mathtt{nil}

If $p \sim q$ then:

- $\alpha.p \sim \alpha.q$
- $p + r \sim q + r$
- $p \parallel r \sim q \parallel r$
- $p \setminus L \sim q \setminus L$
- $p[f] \sim q[f]$

... bisimilarity is a congruence
Expansion laws for CCS

In general,

\[p \sim \sum \{ \alpha.p' \mid p \xrightarrow{\alpha} p' \} \]

We can use this to remove everything but prefixing and sums:

Suppose \(p \sim \sum_{i \in I} \alpha_i.p_i \) and \(q \sim \sum_{j \in J} \beta_j.q_j \).

\[p \setminus L \sim \sum \{ \alpha_i.(p_i \setminus L) \mid \alpha_i \notin L \} \]

\[p[f] \sim \sum \{ f(\alpha_i).(p_i[f]) \mid i \in I \} \]

\[p \parallel q \sim \sum_{i \in I} \alpha_i.(p_i \parallel q) + \sum_{j \in J} \beta_j.(p \parallel q_j) \]

\[+ \sum \{ \tau.(p_i \parallel q_j) \mid \alpha_i = \beta_j \} \]
Strong bisimilarity and specifications

An example:

$$Sem \overset{\text{def}}{=} \text{get} \cdot \text{put} \cdot Sem$$

$$P_1 \overset{\text{def}}{=} \text{get} \cdot a_1 \cdot b_1 \cdot \text{put} \cdot P_1$$

$$P_2 \overset{\text{def}}{=} \text{get} \cdot a_2 \cdot b_2 \cdot \text{put} \cdot P_2$$

$$Sys \overset{\text{def}}{=} (Sem \parallel P_1 \parallel P_2) \setminus \{\text{get, put}\}$$

$$Spec \overset{\text{def}}{=} \tau \cdot a_1 \cdot b_1 \cdot Spec + \tau \cdot a_2 \cdot b_2 \cdot Spec$$

$$Spec' \overset{\text{def}}{=} \tau \cdot a_1 \cdot b_1 \cdot \tau \cdot Spec' + \tau \cdot a_2 \cdot b_2 \cdot \tau \cdot Spec'$$

Do we have

$$? \quad Sys \sim Spec \quad ? \quad \text{or} \quad ? \quad Sys \sim Spec' \quad ?$$
Weak bisimulation

Hiding τ actions

We get a transition system

Weak bisimulation is bisimulation w.r.t. \Rightarrow
A weak bisimulation is a relation R between states for which
If $p R q$ then:

1. $\forall \alpha, p'. \; p \xrightarrow{\alpha} p' \implies \exists q'. \; q \xrightarrow{\alpha} q' \& p' R q'$

2. $\forall \alpha, q'. \; q \xrightarrow{\alpha} q' \implies \exists p'. \; p \xrightarrow{\alpha} p' \& p' R q'$

Weak bisimulation is not a congruence \sim observational congruence.