Topics in Concurrency

Glynn Winskel

8 February 2019
Concurrency and distribution

- Computation has become increasingly distributed, concurrent and interactive
 - boundaries of computation becoming increasingly unclear,
 - behaviour of systems increasingly difficult to reproduce
- Problems such as how to structure and understand distributed computation, how to ensure correctness (e.g. security) of processes in an uncontrolled environment
- Concurrency theory is a broad and active field for research, but
- Present ideas of process and logics for distributed computation are unsettled...
Concurrency and distribution

- Computation has become increasingly distributed, concurrent and interactive
 - boundaries of computation becoming increasingly unclear,
 - behaviour of systems increasingly difficult to reproduce

- Problems such as how to structure and understand distributed computation, how to ensure correctness (e.g. security) of processes in an uncontrolled environment

- Concurrency theory is a broad and active field for research, but Present ideas of process and logics for distributed computation are unsettled … However there are attempts:

 topics in concurrency

- Theories of processes, logics & model checking, security
- Unification through strategies in concurrent/distributed games (new)
Topics in Concurrency

- Simple parallelism and non-determinism
- Communicating processes
 - Milner’s CCS (Calculus of Communicating Systems)
 - Bisimulation
- Specification logics for processes
 - modal μ-calculus
 - CTL
 - model checking
- Petri nets
 - events, causal dependence, independence
- Security protocols
 - SPL (Security Protocol Language)
 - Petri net semantics
 - Proofs of secrecy and authentication
- Event structures
- Concurrent games - processes as strategies

Chapter 1 in the lecture notes revises relevant topics from Discrete Mathematics (well-founded induction and Tarski’s fixed point theorem).
While programs

Similar to \(L1 \) from *Semantics of Programming Languages*:

\[
\begin{align*}
c :: = & \text{skip} | \ X := a | \text{if } b \text{ then } c_1 \text{ else } c_2 \ | \ c_0; c_1 \ | \ \text{while } b \ \text{do } c \\
\end{align*}
\]

- States \(\sigma \in \Sigma \) are functions from locations to values
- Configurations: \(\langle c, \sigma \rangle \) and \(\sigma \)
- Rules describe a single step of execution:

\[
\begin{align*}
\langle c_0, \sigma \rangle & \rightarrow \langle c'_0, \sigma' \rangle \\
\langle c_0; c_1, \sigma \rangle & \rightarrow \langle c'_0; c_1, \sigma' \rangle \\
\langle c_0, \sigma \rangle & \rightarrow \sigma' \\
\langle c_0; c_1, \sigma \rangle & \rightarrow \langle c_1, \sigma' \rangle \\
\langle b, \sigma \rangle & \rightarrow \text{true} \\
\langle c, \sigma \rangle & \rightarrow \langle c', \sigma' \rangle \\
\langle \text{while } b \ \text{do } c, \sigma \rangle & \rightarrow \langle c'; \text{while } b \ \text{do } c, \sigma' \rangle \\
& \vdots
\end{align*}
\]
Parallel commands

Syntax extended with parallel composition:

\[c :: = \ldots | c_0 \parallel c_1 \]

Rules:

\[
\begin{align*}
\langle c_0, \sigma \rangle & \rightarrow \langle c_0', \sigma' \rangle \\
\langle c_0 \parallel c_1, \sigma \rangle & \rightarrow \langle c_0', \parallel c_1, \sigma' \rangle \\
\langle c_1, \sigma \rangle & \rightarrow \langle c_1', \sigma' \rangle \\
\langle c_0 \parallel c_1, \sigma \rangle & \rightarrow \langle c_0 \parallel c_1', \sigma' \rangle
\end{align*}
\]

(\text{+rules for termination of } c_0, c_1)
Parallel commands

Syntax extended with parallel composition:

\[c :: = \ldots \mid c_0 \parallel c_1 \]

Rules:

\[
\langle c_0, \sigma \rangle \rightarrow \langle c_0', \sigma' \rangle \\
\langle c_0 \parallel c_1, \sigma \rangle \rightarrow \langle c_0' \parallel c_1, \sigma' \rangle
\]

\[
\langle c_1, \sigma \rangle \rightarrow \langle c_1', \sigma' \rangle \\
\langle c_0 \parallel c_1, \sigma \rangle \rightarrow \langle c_0 \parallel c_1', \sigma' \rangle
\]

(\(+\)rules for termination of \(c_0, c_1\))

- Parallelism \(\leadsto\) Non-determinism
- Behaviour of \(\parallel\)-commands not a partial function from states to states; when are two \(\parallel\)-commands equivalent? [Congruence?]
- Parallelism by non-deterministic interleaving
- “communication by shared variables”
Study of parallelism (or concurrency) includes study of non-determinism.
Study of parallelism (or concurrency) includes study of non-determinism.

What about the converse?

Can we explain parallelism (or concurrency) in terms of non-determinism?
The language of Guarded Commands (Dijkstra)

- Boolean expressions: b
- Arithmetic expressions: a
- Commands:

\[c :: = \text{skip} \mid \text{abort} \mid X := a \mid c_0; c_1 \mid \text{if } gc \text{ fi} \mid \text{do } gc \text{ od} \]

- Guarded commands:

\[gc :: = b \rightarrow c \]
\[\mid gc_0 \parallel gc_1 \]

\[\text{guard} \]
\[\text{alternative} \]
Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- **Guarded commands:**

\[
\begin{align*}
\langle b, \sigma \rangle & \to true \\
\langle b \to c, \sigma \rangle & \to \langle c, \sigma \rangle
\end{align*}
\]
Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- **Guarded commands:**

\[
\begin{align*}
\langle b, \sigma \rangle &\rightarrow true \\
\langle b \rightarrow c, \sigma \rangle &\rightarrow \langle c, \sigma \rangle \\
\langle gc_0, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle \\
\langle gc_0 \parallel gc_1, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle \\
\langle gc_1, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle \\
\langle gc_0 \parallel gc_1, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle
\end{align*}
\]

Introduces non-determinism.
Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- **Guarded commands:**

\[
\begin{align*}
\langle b, \sigma \rangle &\rightarrow true \\
\langle b \rightarrow c, \sigma \rangle &\rightarrow \langle c, \sigma \rangle \\
\langle gc_0, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle \\
\langle gc_0 \parallel gc_1, \sigma \rangle &\rightarrow \langle c, \sigma' \rangle \\
\langle b, \sigma \rangle &\rightarrow false \\
\langle b \rightarrow c, \sigma \rangle &\rightarrow fail \\
\langle gc_0, \sigma \rangle &\rightarrow fail \\
\langle gc_1, \sigma \rangle &\rightarrow fail \\
\langle gc_0 \parallel gc_1, \sigma \rangle &\rightarrow fail
\end{align*}
\]

fail is a new configuration
Assume given rules for evaluating Booleans and assignments.

Guarded commands:

\[
\begin{align*}
\langle b, \sigma \rangle & \rightarrow true \\
\langle b \rightarrow c, \sigma \rangle & \rightarrow \langle c, \sigma \rangle \\
\langle gc_0, \sigma \rangle & \rightarrow \langle c, \sigma' \rangle \\
\langle gc_0 \parallel gc_1, \sigma \rangle & \rightarrow \langle c, \sigma' \rangle \\
\langle gc_1, \sigma \rangle & \rightarrow \langle c, \sigma' \rangle \\
\langle gc_0 \parallel gc_1, \sigma \rangle & \rightarrow \langle c, \sigma' \rangle \\
\langle b, \sigma \rangle & \rightarrow false \\
\langle b \rightarrow c, \sigma \rangle & \rightarrow fail \\
\langle gc_0, \sigma \rangle & \rightarrow fail \\
\langle gc_1, \sigma \rangle & \rightarrow fail \\
\langle gc_0 \parallel gc_1, \sigma \rangle & \rightarrow fail
\end{align*}
\]
• **Commands:**

 abort has no rules

• **Conditional:**

\[
\langle gc, \sigma \rangle \rightarrow \langle c, \sigma' \rangle \\
\frac{\langle \text{if} \ gc \ \text{fi}, \sigma \rangle \rightarrow \langle c, \sigma' \rangle}{\langle \text{if} \ gc \ \text{fi}, \sigma \rangle \rightarrow \langle c, \sigma' \rangle}
\]

no rule in case \(\langle gc, \sigma \rangle \rightarrow \text{fail}\); then conditional behaves like abort

• **Loop:**

\[
\langle gc, \sigma \rangle \rightarrow \text{fail} \\
\frac{\langle \text{do} \ gc \ \text{od}, \sigma \rangle \rightarrow \sigma}{\langle gc, \sigma \rangle \rightarrow \langle c, \sigma' \rangle} \\
\frac{\langle gc, \sigma \rangle \rightarrow \langle c, \sigma' \rangle}{\langle \text{do} \ gc \ \text{od}, \sigma \rangle \rightarrow \langle c; \text{do} \ gc \ \text{od}, \sigma' \rangle}
\]

in case \(\langle gc, \sigma \rangle \rightarrow \text{fail}\), the loop behaves like skip:

\[
\langle \text{skip}, \sigma \rangle \rightarrow \sigma
\]
The process

\[\text{do } b_1 \rightarrow c_1 \parallel \ldots \parallel b_n \rightarrow c_n \text{ od} \]

is a form of (non-deterministically interleaved) parallel composition

\[b_1 \rightarrow c_1 \parallel \ldots \parallel b_n \rightarrow c_n \]

in which each \(c_i \) occurs atomically (i.e. uninterruptedly) provided \(b_i \) holds each time it starts.

UNITY \quad (\text{Misra and Chandy})

\[\sim \sim \]

Hardware languages \quad (\text{Staunstrup})
Examples

- Computing maximum:

 \[
 \text{if } \begin{align*}
 X \geq Y & \rightarrow \text{MAX} = X \\
 Y \geq X & \rightarrow \text{MAX} = Y
 \end{align*}
 \]

 \text{fi}

- Euclid’s algorithm:

 \[
 \text{do } \begin{align*}
 X > Y & \rightarrow X := X - Y \\
 Y > X & \rightarrow Y := Y - X
 \end{align*}
 \text{od}
 \]

\begin{itemize}
 \item Have \{X = m \land Y = n \land m > 0 \land n > 0\}
 \item Euclid \{X = Y = \gcd(m, n)\}
\end{itemize}
Examples

- Computing maximum:

 \[
 \text{if } \begin{align*}
 X &\geq Y \rightarrow \text{MAX} = X \\
 Y &\geq X \rightarrow \text{MAX} = Y
 \end{align*}
 \]

- Euclid’s algorithm:

 Have

 \[
 \begin{align*}
 &\text{do} \\
 &X > Y \rightarrow X := X - Y \\
 &Y > X \rightarrow Y := Y - X
 \end{align*}
 \]

 \[
 \{X = m \land Y = n \land m > 0 \land n > 0\}
 \text{ Euclid }
 \{X = Y = \gcd(m, n)\}
 \]

 \ldots\text{guarded commands support a neat Hoare-style logic} \]
Recalling:

\[\gcd(m, n) \mid m, n \]

and

\[\ell \mid m, n \implies \ell \mid \gcd(m, n) \]

Invariant:

\[\gcd(m, n) = \gcd(X, Y) \]

On exiting loop, \(X = Y \).

Key properties:

\[
\begin{align*}
gcd(m, n) &= gcd(m - n, n) \quad \text{if } m > n \\
gcd(m, n) &= gcd(m, n - m) \quad \text{if } n > m \\
gcd(m, m) &= m
\end{align*}
\]
Synchronized communication (Hoare, Milner)

Communication by “handshake”, with possible exchange of value, localised to process-process (CSP) or to a channel (CCS, OCCAM)

[Abstracts away from the protocol underlying coordination/“handshake” in the implementation]
Extending GCL with synchronization

- Allow processes to send and receive values on channels:
 \[\alpha!a \] evaluate expression \(a \) and send value on channel \(\alpha \)
 \[\alpha?X \] receive value on channel \(\alpha \) and store it in \(X \)
- All interaction between parallel processes is by sending / receiving values on channels.
- Communication is synchronized and only one process listening on the channel may receive the message.
- Allow send and receive in commands \(c \) and in guards \(g \):

\[
\text{do}\ Y < 100 \land \alpha?X \rightarrow \alpha!(X \times X) \parallel Y := Y + 1 \ \text{od is allowed}
\]

- Language close to OCCAM and CSP
Transitions may now carry labels when possibility of interaction with another process.

\[
\begin{align*}
\langle \alpha?X, \sigma \rangle & \xrightarrow{\alpha?n} \sigma[n/X] \\
\langle c_0, \sigma \rangle & \xrightarrow{\lambda} \langle c_0', \sigma' \rangle \\
\langle c_0 \parallel c_1, \sigma \rangle & \xrightarrow{\lambda} \langle c_0' \parallel c_1, \sigma' \rangle \\
\langle c_0, \sigma \rangle & \xrightarrow{\alpha?n} \langle c_0', \sigma' \rangle \\
\langle c_1, \sigma \rangle & \xrightarrow{\alpha!n} \langle c_1', \sigma \rangle \\
\langle c, \sigma \rangle & \xrightarrow{\lambda} \langle c', \sigma' \rangle \\
\langle c \setminus \alpha, \sigma \rangle & \xrightarrow{\lambda} \langle c' \setminus \alpha, \sigma' \rangle
\end{align*}
\]

\(\lambda\) might be empty label \(\pm\) symmetric

\(\lambda \neq \alpha?n\) or \(\alpha!n\)
Examples

- forwarder:

\[
\begin{array}{c}
\alpha \rightarrow \beta \\
\text{do } \alpha?X \rightarrow \beta!X \text{ od}
\end{array}
\]

- buffer capacity 2:

\[
\begin{array}{c}
\alpha \rightarrow \beta \\
\gamma
\end{array}
\]

\[
(\text{do } \alpha?X \rightarrow \beta!X \text{ od} \parallel \text{do } \beta?X \rightarrow \gamma!X \text{ od }) \setminus \beta
\]
Branching: internal vs external choice

- Compare:

\[
\text{if } (true \land \alpha?X \rightarrow c_0) \parallel (true \land \beta?X \rightarrow c_1) \text{ fi}
\]

\[
\alpha?n \quad \beta?m
\]

\[
\text{if } (true \rightarrow (\alpha?X; c_0)) \parallel (true \rightarrow (\beta?X; c_1)) \text{ fi}
\]

\[
\alpha?n \quad \beta?m
\]

- Not equivalent processes w.r.t. their deadlock capabilities.