Topics in Concurrency

Glynn Winskel

8 February 2019

Concurrency and distribution

- Computation has become increasingly distributed, concurrent and interactive
- boundaries of computation becoming increasingly unclear,
- behaviour of systems increasingly difficult to reproduce
- \rightsquigarrow problems such as how to structure and understand distributed computation, how to ensure correctness (e.g. security) of processes in an uncontrolled environment
- Concurrency theory is a broad and active field for research, but
- Present ideas of process and logics for distributed computation are unsettled...

Concurrency and distribution

- Computation has become increasingly distributed, concurrent and interactive
- boundaries of computation becoming increasingly unclear,
- behaviour of systems increasingly difficult to reproduce
- \rightsquigarrow problems such as how to structure and understand distributed computation, how to ensure correctness (e.g. security) of processes in an uncontrolled environment
- Concurrency theory is a broad and active field for research, but
- Present ideas of process and logics for distributed computation are unsettled... However there are attempts:

topics in concurrency

- Theories of processes, logics \& model checking, security
- Unification through strategies in concurrent/distributed games (new)

Topics in Concurrency

- Simple parallelism and non-determinism
- Communicating processes
- Milner's CCS (Calculus of Communicating Systems)
- Bisimulation
- Specification logics for processes
- modal μ-calculus
- CTL
- model checking
- Petri nets
- events, causal dependence, independence
- Security protocols
- SPL (Security Protocol Language)
- Petri net semantics
- Proofs of secrecy and authentication
- Event structures
- Concurrent games - processes as strategies

Chapter 1 in the lecture notes revises relevant topics from Discrete Mathematics (well-founded induction and Tarski's fixed point theorem)

While programs

Similar to L1 from Semantics of Programming Languages:

$$
c::=\operatorname{skip}|X:=a| \text { if } b \text { then } c_{1} \text { else } c_{2}\left|c_{0} ; c_{1}\right| \text { while } b \text { do } c
$$

- States $\sigma \in \Sigma$ are functions from locations to values
- Configurations: $\langle c, \sigma\rangle$ and σ
- Rules describe a single step of execution:

$$
\begin{gathered}
\frac{\left\langle c_{0}, \sigma\right\rangle \rightarrow\left\langle c_{0}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle c_{0} ; c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{0}^{\prime} ; c_{1}, \sigma^{\prime}\right\rangle} \quad \frac{\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{0} ; c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{1}, \sigma^{\prime}\right\rangle} \\
\frac{\langle b, \sigma\rangle \rightarrow \text { true } \quad\langle c, \sigma\rangle \rightarrow\left\langle c^{\prime}, \sigma^{\prime}\right\rangle}{\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow\left\langle c^{\prime} ; \text { while } b \text { do } c, \sigma^{\prime}\right\rangle}
\end{gathered}
$$

Parallel commands

Syntax extended with parallel composition:

$$
c::=\ldots \mid c_{0} \| c_{1}
$$

Rules:

$$
\begin{aligned}
& \frac{\left\langle c_{0}, \sigma\right\rangle}{} \rightarrow\left\langle c_{0}^{\prime}, \sigma^{\prime}\right\rangle \\
& \hline\left\langle c_{0} \| c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{0}^{\prime} \| c_{1}, \sigma^{\prime}\right\rangle \\
&\left\langle c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle \\
&\left\langle c_{0} \| c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{0} \| c_{1}^{\prime}, \sigma^{\prime}\right\rangle
\end{aligned}
$$

(+rules for termination of c_{0}, c_{1})

Parallel commands

Syntax extended with parallel composition:

$$
c::=\ldots \mid c_{0} \| c_{1}
$$

Rules:

$$
\begin{gathered}
\frac{\left\langle c_{0}, \sigma\right\rangle}{} \rightarrow\left\langle c_{0}^{\prime}, \sigma^{\prime}\right\rangle \\
\left\langle c_{0} \| c_{1}, \sigma\right\rangle
\end{gathered} \rightarrow\left\langle c_{0}^{\prime} \| c_{1}, \sigma^{\prime}\right\rangle .
$$

(+rules for termination of c_{0}, c_{1})

- Parallelism \rightsquigarrow Non-determinism
- Behaviour of ||-commands not a partial function from states to states; when are two $\|$-commands equivalent?
[Congruence?]
- Parallelism by non-deterministic interleaving
- "communication by shared variables"

Study of parallelism (or concurrency) includes
study of non-determinism

Study of parallelism (or concurrency) includes
 study of non-determinism

What about the converse?
Can we explain parallelism (or concurrency)
in terms of non-determinism?

The language of Guarded Commands (Dijkstra)

- Boolean expressions: b
- Arithmetic expressions: a
- Commands:

$$
c::=\operatorname{skip} \mid \text { abort }|X:=a| c_{0} ; c_{1} \mid \text { if } g c \text { fi } \mid \text { do } g c \text { od }
$$

- Guarded commands:

$$
\begin{array}{rlll}
g c::= & b \rightarrow c & \text { guard } \\
& g c_{0} \rrbracket g c_{1} & \text { alternative }
\end{array}
$$

Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- Guarded commands:

$$
\frac{\langle b, \sigma\rangle \rightarrow \text { true }}{\langle b \rightarrow c, \sigma\rangle \rightarrow\langle c, \sigma\rangle}
$$

Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- Guarded commands:

$$
\begin{gathered}
\frac{\langle b, \sigma\rangle \rightarrow \text { true }}{\langle b \rightarrow c, \sigma\rangle \rightarrow\langle c, \sigma\rangle} \\
\frac{\left\langle g c_{0}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \quad \frac{\left\langle g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \\
\text { introduces non-determinism }
\end{gathered}
$$

Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- Guarded commands:

$$
\begin{gathered}
\frac{\langle b, \sigma\rangle \rightarrow \text { true }}{\langle b \rightarrow c, \sigma\rangle \rightarrow\langle c, \sigma\rangle} \\
\frac{\left\langle g c_{0}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \quad \frac{\left\langle g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \\
\frac{\langle b, \sigma\rangle \rightarrow \text { false }}{\langle b \rightarrow c, \sigma\rangle \rightarrow \text { fail }} \\
\frac{\left\langle g c_{0}, \sigma\right\rangle \rightarrow \text { fail is a new configuration }}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow \text { fail }} \quad\left\langle g c_{1}, \sigma\right\rangle \text { fail }
\end{gathered}
$$

Operational semantics

- Assume given rules for evaluating Booleans and assignments.
- Guarded commands:

$$
\begin{gathered}
\frac{\langle b, \sigma\rangle \rightarrow \text { true }}{\langle b \rightarrow c, \sigma\rangle \rightarrow\langle c, \sigma\rangle} \\
\frac{\left\langle g c_{0}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \quad \frac{\left\langle g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle} \\
\frac{\langle b, \sigma\rangle \rightarrow \text { false }}{\langle b \rightarrow c, \sigma\rangle \rightarrow \text { fail }} \\
\frac{\left\langle g c_{0}, \sigma\right\rangle \rightarrow \text { fail } \quad\left\langle g c_{1}, \sigma\right\rangle \rightarrow \text { fail }}{\left\langle g c_{0} \rrbracket g c_{1}, \sigma\right\rangle \rightarrow \text { fail }}
\end{gathered}
$$

- Commands:
abort has no rules
- Conditional:

$$
\frac{\langle g c, \sigma\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}{\langle\text { if } g c \mathrm{fi}, \sigma\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle}
$$

no rule in case $\langle g c, \sigma\rangle \rightarrow$ fail; then conditional behaves like abort

- Loop:

$$
\begin{gathered}
\frac{\langle g c, \sigma\rangle \rightarrow \text { fail }}{\langle\text { do } g c \text { od, } \sigma\rangle \rightarrow \sigma} \\
\langle g c, \sigma\rangle \rightarrow\left\langle c, \sigma^{\prime}\right\rangle \\
\langle\text { do } g c \text { od, } \sigma\rangle \rightarrow\left\langle c ; \text { do } g c \text { od, } \sigma^{\prime}\right\rangle
\end{gathered}
$$

in case $\langle g c, \sigma\rangle \rightarrow$ fail, the loop behaves like skip:

$$
\langle\text { skip }, \sigma\rangle \rightarrow \sigma
$$

The process

$$
\text { do } b_{1} \rightarrow c_{1} \rrbracket \ldots \rrbracket b_{n} \rightarrow c_{n} \text { od }
$$

is a form of (non-deterministically interleaved) parallel composition

$$
b_{1} \rightarrow c_{1}\|\ldots\| b_{n} \rightarrow c_{n}
$$

in which each c_{i} occurs atomically (i.e. uninterruptedly) provided b_{i} holds each time it starts

UNITY
(Misra and Chandy)
Hardware languages (Staunstrup)

Examples

- Computing maximum:

```
if
    \(X \geq Y \rightarrow M A X=X\)
    \(Y \geq X \rightarrow M A X=Y\)
```

fi

- Euclid's algorithm:

```
do
    \(X>Y \rightarrow X:=X-Y\)
    ]
    \(Y>X \rightarrow Y:=Y-X\)
od
```


Examples

- Computing maximum:

$$
\begin{aligned}
& \text { if } \\
& \begin{array}{l}
X \geq Y \rightarrow M A X=X \\
\quad \\
Y \geq X \rightarrow M A X=Y
\end{array}
\end{aligned}
$$

fi

- Euclid's algorithm:

Have

$$
\begin{aligned}
& \qquad\{X=m \wedge Y=n \wedge m>0 \wedge n>0\} \\
& \qquad\{X=Y=\operatorname{Euclid} \\
& \qquad \text { gcd }(m, n)\} \\
& \text { neat Hoarded commands support a }
\end{aligned}
$$

- Recalling:

$$
\operatorname{gcd}(m, n) \mid m, n
$$

and

$$
\ell|m, n \Longrightarrow \ell| \operatorname{gcd}(m, n)
$$

- Invariant:

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(X, Y)
$$

On exiting loop, $X=Y$.

- Key properties:

$$
\begin{aligned}
\operatorname{gcd}(m, n) & =\operatorname{gcd}(m-n, n) & & \text { if } m>n \\
\operatorname{gcd}(m, n) & =\operatorname{gcd}(m, n-m) & & \text { if } n>m \\
\operatorname{gcd}(m, m) & =m & &
\end{aligned}
$$

Synchronized communication (Hoare, Milner)

> Communication by "handshake", with possible exchange of value, localised to process-process (CSP) or to a channel (CCS, OCCAM)
[Abstracts away from the protocol underlying coordination/ "handshake" in the implementation]

Extending GCL with synchronization

- Allow processes to send and receive values on channels
$\alpha!a \quad$ evaluate expression a and send value on channel α
α ?X receive value on channel α and store it in X
- All interaction between parallel processes is by sending / receiving values on channels
- Communication is synchronized and only one process listening on the channel may receive the message
- Allow send and receive in commands c and in guards g :

$$
\text { do } \underbrace{Y<100 \wedge \alpha ? X}_{g} \rightarrow \underbrace{\alpha!(X * X) \| Y:=Y+1}_{c} \text { od is allowed }
$$

- Language close to OCCAM and CSP

Extending GCL with synchronization

Transitions may now carry labels when possibility of interaction with another process.

$$
\begin{gathered}
\frac{\langle a ? X, \sigma\rangle \xrightarrow{\alpha ? n} \sigma[n / X]}{\frac{\langle a, \sigma\rangle \rightarrow n}{\langle\alpha!a, \sigma\rangle \xrightarrow{\alpha!n} \sigma}} \begin{array}{c}
\left\langle c_{0}, \sigma\right\rangle \xrightarrow{\lambda}\left\langle c_{0}^{\prime}, \sigma^{\prime}\right\rangle \\
\left\langle c_{0} \| c_{1}, \sigma\right\rangle \xrightarrow{\lambda}\left\langle c_{0}^{\prime} \| c_{1}, \sigma^{\prime}\right\rangle
\end{array}(\lambda \text { might be empty label })+\text { symmetric } \\
\frac{\left\langle c_{0}, \sigma\right\rangle \xrightarrow{\alpha ? n}\left\langle c_{0}^{\prime}, \sigma^{\prime}\right\rangle \quad\left\langle c_{1}, \sigma\right\rangle \xrightarrow{\alpha!n}\left\langle c_{1}^{\prime}, \sigma\right\rangle}{\left\langle c_{0} \| c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{0}^{\prime} \| c_{1}^{\prime}, \sigma^{\prime}\right\rangle}+\text { symmetric } \\
\frac{\langle c, \sigma\rangle \xrightarrow{\lambda}\left\langle c^{\prime}, \sigma^{\prime}\right\rangle}{\langle c \backslash \alpha, \sigma\rangle \xrightarrow{\lambda}\left\langle c^{\prime} \backslash \alpha, \sigma^{\prime}\right\rangle} \lambda \not \equiv \alpha ? n \text { or } \alpha!n
\end{gathered}
$$

Examples

- forwarder:

$$
\text { do } \alpha ? X \rightarrow \beta!X \text { od }
$$

- buffer capacity 2 :

$$
\begin{aligned}
& \text { (do } \alpha \text { ? } X \rightarrow \beta!X \text { od } \\
& \| \text { do } \beta \text { ? } X \rightarrow \gamma!X \text { od }) \backslash \beta
\end{aligned}
$$

Branching: internal vs external choice

- Compare:

$$
\text { if }\left(\text { true } \wedge \alpha ? X \rightarrow c_{0}\right) \llbracket\left(\text { true } \wedge \beta ? X \rightarrow c_{1}\right) \text { fi }
$$

if $\left(\right.$ true $\left.\rightarrow\left(\alpha ? X ; c_{0}\right)\right) \rrbracket\left(\right.$ true $\left.\rightarrow\left(\beta ? X ; c_{1}\right)\right)$ fi

- Not equivalent processes w.r.t. their deadlock capabilities.

