Exercise 1: Find a short MATLAB expression to build the matrix

\[
B = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 7 & 5 & 3 & 1 & -1 & -3 \\
4 & 8 & 16 & 32 & 64 & 128 & 256
\end{pmatrix}
\]

Exercise 2: Give a MATLAB expression that uses only a single matrix multiplication with \(B \) to obtain

(a) the sum of columns 5 and 7 of \(B \)
(b) the last row of \(B \)
(c) a version of \(B \) with rows 2 and 3 swapped

Exercise 3: Give a MATLAB expression that multiplies two vectors to obtain

(a) the matrix

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]

(b) the matrix

\[
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4
\end{pmatrix}
\]

Exercise 4: Modify slide 30 to produce tones of falling frequency instead.

Exercise 5:

(a) Write down the function \(g(t) \) that has the shape of a sine wave that increases linearly in frequency from 0 Hz at \(t = 0 \) s to 5 Hz at \(t = 10 \) s.
(b) Plot the graph of this function using MATLAB’s `plot` command.
(c) Add to the same figure (this can be achieved using the `hold` command) in a different colour a graph of the same function sampled at 5 Hz, using the `stem` command.
(d) [Extra credit] Plot the graph from (c) separately. Can you explain its symmetry? [Hints: sampling theorem, aliasing].

Exercise 6: Use MATLAB to write an audio waveform (8 kHz sampling frequency) that contains a sequence of nine tones with frequencies 659, 622, 659, 622, 659, 494, 587, 523, and 440 Hz. Append to this waveform a copy of itself in which every other sample has been multiplied by \(-1\). Play the waveform, write it to a WAV file, and use the `spectrogram` command to plot its spectrogram with correctly labelled time and frequency axis.