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0. About this course

Goal of this course: There are some skills that you never really get until you try to apply them. Handling experimental
data is such a skill. The aim of this course is to make sure you comfortable with getting hold of data (either from
simulations or by importing it), manipulating it, and plotting it. With a minimum of fuss, and with decent speed, using the
programming language Python.

0.0 What is scientific computing?
Scientific computing means using computers as a tool to gain understanding from data, either simulated or observed. The
'output' is improved understanding of a system, as opposed to software engineering where the output is a working system.
This gives it a distinct flavour:

Often we write small snippets of code, learn something, then discard the code and try something new, over and over
again. We need tools that are concise and expressive, to make the gap between "what if..." and an answer as small as
possible.
It is mostly a personal effort to gain understanding, not a team effort. We're not bothered about "Will this codebase be
robust when 20 people work on it and the requirements change each month?", we are bothered about "Is this result
reproducible, and will people be able to re-run this same code and understand it a year from now?"
Scientific computing is oriented around data. We need to always interact, and query, and visualize, and inspect.
Compilers are out, interpreters are in.
We always have to communicate whatever we've understood: there is an emphasis on visualisations, and on write-ups in
the style of scientific reports. This course will use Jupyter Notebooks, "live documents" that mix code and text and plots.
Programming languages for scientific computing tend to be glue-like, good at linking together assorted libraries and
tools. This is what lets them be concise and expressive, and also fast at working with large amounts of data. It means
you need to know your way around some big libraries, so you don't spend all your time endlessly rewriting boilerplate
code. This course will use Python; the other two main languages for scientific computing are R and MATLAB.

Scientific computing will be useful in all the data-themed courses you study: machine learning, data science, signal
processing, computer vision, etc. It will be useful for experimental subjects, such as aspects of HCI. It will be useful for
subjects that involve simulations, such as computer systems modelling. In the short term, it is loosely linked to some other
IA/IB courses:

IA Maths for Natural Sciences. Science students have their own version of the Scientific Computing course, which uses
MATLAB. The course you are reading is for 50%-CS and 75%-CS students, and it uses Python instead, and it has a
greater emphasis on working with data.
IA/IB Machine Learning and Real World Data. The MLRD course involves lots of scientific computing and plotting. It
expects you to program your work in Java, but some of you might like to sketch out your ideas in Python first.
IA Foundations of Computer Science and Object Oriented Programming. This course will introduce you to Python (if you
don't know it already). Python is a general-purpose programming language, Appendix A1
(A1.%20Python%20language%20choices.ipynb) discusses some of the similarities and differences with ML and Java.
IA Algorithms. The algorithms you will study will be presented in pseudocode that closely resembles Python. If you want
to become more fluent in Python, tinker with the code presented in that course.
IA/IB Databases. Section 3 of this course is about handling tables of data, which closely resembles querying a database.
Also, Appendix A3 (http://localhost:8888/notebooks/src/scicomp/A3.%20Data%20import%20and%20cleanup.ipynb)
gives examples of importing data by querying an SQL database, so you can use Python as a sandbox to familiarise
yourself with SQL and to visualize query results.

0.1 Course structure
1. Programming in Python (1.%20Programming%20in%20Python.ipynb) …… Appendix: Python language choices
(A1.%20Python%20language%20choices.ipynb)
2. Numerical computation (2.%20Numerical%20computation.ipynb) … Assignment 2 (Assignment%202.ipynb) ……
Appendix: vectorized thinking (A2.%20Vectorized%20thinking.ipynb)
3. Working with data (3.%20Working%20with%20data.ipynb) … Assignment 3 (Assignment%203.ipynb) ……
Appendix: data import and cleanup (A3.%20Data%20import%20and%20cleanup.ipynb)

This course is for you to work through at your own pace. You may like to approach it as a problem-solving course, jumping
straight into the assignments and skimming through the notes only as you need to. Or you may like to work through the notes
systematically before going on to the assignments. It's up to you. There are three appendices which aren't part of the course,
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but which you may find thought-provoking or useful as a reference in your later studies; and there are also further exercises
scattered through each section of the notes.

Assessment. The course is marked out of 4. There are two assignments, each split into two parts, each part marked 0 or 1.
(There's no assignment for Section 1, because your Python skills will be thoroughly tested by Sections 2 and 3.) The
assignments are assessed in two ways:

As you work through an assignment, you will submit answers to an automatic grader, which checks if the answers are
correct. This is for you to use as a debugging aide: run the automatic grader as many times as you need until your code
gives the right answers. You should aim to answer all the questions. The automatic grader will show you your progress.

There is a final ticking session, when you present your work for the entire course to a (human) demonstrator. The
demonstrator will choose some parts of the assignments, and ask you to explain your answers. The demonstrator will
only ask you about the parts where you have submitted complete and correct answers to the autograder. The ticking
session is for the examiners to guard against plagiarism. At the ticking session, you should have your notebooks ready
and open in a browser, and your code should execute without errors. For scheduling of ticks, see Moodle
(https://www.vle.cam.ac.uk/course/view.php?id=141182&section=12).

Getting help. You must understand what your programs are doing, and in the ticking session you will be asked justify your
answers to the assignments. However, it's fine to get help, and if you are having difficulty this is encouraged. The main help
forum is on Moodle (https://www.vle.cam.ac.uk/mod/hsuforum/view.php?id=8256591). In addition, there will be help sessions
at the beginning of Lent term; see Moodle (https://www.vle.cam.ac.uk/course/view.php?id=141182&section=12) for
timetabling information.

0.2 Running notebooks
This is a Jupyter notebook (http://jupyter.org/). Jupyter notebooks are "live documents" that intersperse text and running
code. We will be using Jupyter hosted on the Microsoft Azure cloud computing environment. You can access it from any
device — all you need is a web browser.

Click on  Clone at the top of the page to get your own runnable version of the Library (consisting of all notebooks for this
course). If you are not logged in, you will be prompted to log in: type in your Cambridge University CRSid e.g. 
spqr1@cam.ac.uk , click in the password field, and you will automatically be redirected to a Raven login page. Experiment

freely with your clone of the library — you can always go back and read the master version
(https://notebooks.azure.com/djw1005/libraries/cl-scicomp).

For academic staff at Cambridge: if your Raven password doesn't work, then you need to activate your
Microsoft account (https://www.uis.cam.ac.uk/initiatives/ees/ees-sign-up/ees-enable-account) first. For other
users: you can sign up for a free Microsoft account on the login page.

Once you are logged in you can also create your own libraries and notebooks, using the Libraries  link at the top left at
https://notebooks.azure.com/ (https://notebooks.azure.com/). When you create a notebook you will be asked which language
to use. This course uses Python 3.6, which is substantially different to Python 2.7, so be alert when you look for help online.

These notebooks are hosted on the cloud, and the first lesson of cloud computing is that the cloud will fail when you need
it most. Take regular backups, by going to the Libraries  page, clicking on the library, clicking on the line with the relevant
notebook, then clicking on Download. You can also run the notebooks on your own machine: follow the Jupyter installation
instructions (http://jupyter.org/install.html), and clone the notebooks from their GitHub repository
(https://github.com/damonjw/scicomp). More detailed instructions will be available on Moodle
(https://www.vle.cam.ac.uk/mod/wiki/view.php?id=8257621).

0.3 Using the automatic grader

Once you've answered some exercises and you're ready to check your answers, paste the following code at the top of your
notebook and run it. Each section of the notes tells you what value to use for section . To illustrate how it works, we'll use 
section=notes0 .

In [ ]: !pip install ucamcl --upgrade
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp', section='notes0')
# paste in whatever section is appropriate for the section of notes / assignment you're working on
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The first line installs a Python package ucamcl , with the functions used by the automatic grader. (On Azure,
you sometimes get a new virtual machine, sometimes an old one. It's safest to install the ucamcl  package
every time, and to make sure you have the latest version.) The next line makes it available in your current
notebook. The third line will produce a login button, which you should click on. It will open a web page,
showing you your progress so far.

Submitting answers to assessed exercises
A typical question will look something like this.

Question 1. Given an integer  and a value , create a list containing  copies of .

# Submit your answer: 
q = GRADER.fetch_question('q1') 
# Let x be a list consisting of q.n copies of q.v 
GRADER.submit_answer(q, x) 

n v n v

When you call GRADER.fetch_question , the function returns an object q  with the question parameters. Your fellow
students might be given different parameters. You can call print(q)  to see them, and to see what format the answer
should take.

When you call submit_answer , the server checks if the answer is correct for the question parameters you were given. If
not, it may tell you what answer it was expecting. If you get the question wrong, don't be tempted to just paste in the correct
answer and resubmit — it won't do you any good in the ticking session, and anyway the system marks the question as "stale"
and requires you to call fetch_question  again to fetch new question parameters before you are allowed to resubmit.

Checking answers to non-assessed exercises
Some non-assessed exercises come with answers. Such exercises have labels: for example if you see Exercise (ex5) then
the label is ex5 . Check your answers by calling

q = GRADER.fetch_question('ex5') 
print(q) 

It might print out the full answer. Or it might print out instructions for how you can submit your own answer for checking. In the
latter case, print(q)  will tell you what format it expects the answer to be in. Follow the instructions, and check your answer
by running

GRADER.submit_answer(q, ans) 



1 Programming Python in a Jupyter notebook
1.0 Editing notebooks
1.1 Using Python for simple calculation
1.2 Basic Python expressions …… maths and logic, strings and formatting
1.3 Collection types and control flow …… tuples, lists, dictionaries, control flow, comprehensions
1.4 Functions
More exercises

Goal of this notebook: Familiarize yourself with how to use a notebook, how to use Python for simple calculation, and
the basics of Python programming.

If you know Python already, skim through the section on comprehensions first and then jump ahead to Section 2
(2.%20Numerical%20computation.ipynb).
To see how Python compares to other programming languages, particularly ML and Java, see Section A1
(A1.%20Python%20language%20choices.ipynb).

1.0 Editing notebooks
This is a Jupyter notebook (http://jupyter.org/). Jupyter notebooks provide an interactive environment where you can mix text,
equations, programming and visual outputs. The famous computer scientist Donald Knuth introduced this style of
programming, mixing source code with explanations written in natural language, which he calls literate programming
(https://en.wikipedia.org/wiki/Literate_programming). It has become popular in data science and machine learning, wherever
scientific explanation and coding go hand in hand. Scientific notebooks of course have a long and venerable history.

(http://www.bl.uk/onlinegallery/onlineex/remarkmanu/leonardo/large17758.html)

These notebooks are a mixture of text, input code, and output.

Edit a text cell by double-clicking on it
When you've finished editing a text cell, press shift-enter  to make it display nicely, or choose Cell | Run Cells
from the menu
Insert new cells using the Insert  menu
Change a cell from text to input code and vice versa using the Cell | Cell Type  menu

The text format is called Markdown (https://daringfireball.net/projects/markdown/basics).

Exercise. Try editing the cell above. How do you type in bullet lists, italics, and links? (If you can't edit cells, you need to
clone the notebook, as described in §0.2 Running notebooks (0.%20About%20this%20course.ipynb#notebooks).)

1.1 Using Python for simple calculations

We will be programming in the language Python (https://www.python.org/). At the top right of your notebook you should see
Python 3 ◯  or Python 3.6 ◯  telling you which version you're running. If you're not running one or other of these, then use
the menu Kernel | Change kernel  to switch. Python 3 has slightly different syntax to Python 2, and when you look for
help online please be aware that many older resources are for Python 2.
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We can use Python like a calculator. Here are some simple expressions and their values. Try editing the expressions, then to
evaluate the cell press shift-enter  or choose Cell | Run Cells  from the menu. (Remember, if you can't edit cells,
you need to clone the notebook (0.%20About%20this%20course.ipynb#notebooks) first.)

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

Exercise. What happens when you type in an erroneous expression? Run the expression below to find out.

In [ ]:

In a notebook, we can pick which cells to execute when. We can define a variable lower down in the notebook, run that cell,
then use it higher up in the notebook. Jupyter prints e.g. In[42]  at the left to tell you about the order it executed cells.
However, for the sanity of anyone reading your notebook (which includes you a week after you wrote it), once you've got your
code working you should rearrange it all into clean top-to-bottom order. The menu item Kernel | Restart & Run All
should then produce all the right output.

1.2 Basic Python expressions

Maths and logic

All the usual mathematical operators work, though watch out for division which uses different syntax to Java. (The following
code block uses print  statements, to print multiple outputs from one cell.)

Exercise. Before running the code, guess what these statements produce. Then check your answers.

In [ ]:

The usual logical operators work too, though the syntax is wordier than other languages.

In [ ]:

Some useful maths functions are found in the math  module. To use them, you need to run import math . (It's common to

3 + 8

1.618 * 1e5

x = 3
y = 2.2
z = 1
x * y + z

(x,y,z) = (3, 2.2, 4)  # You can assign multiple values at once.
x * (y + z)            # And you can comment your code with the # symbol!

'hello ' + 'world ' * 2

# This expression should produce an error message
'hello' + 5

print('a:', 7 / 3)                       # floating point division
print('b:', 7 // 3)                      # integer division (rounds down)
print('c:', min(3,4), max(3,4))
print('d:', abs(-10), abs(3+4j))         # 3+4j is a complex number
print('e:', round(7.4), round(-7.4), round(3.4567, 2))
print('f:', 3**2)                        # power
print('g:', 5 << 1, 5 >> 2)              # bitwise shifting
print('h:', 7 & 1, 6 | 1)                # bitwise operations
print('i:', (3+4j).real, (3+4j).imag)

(x,y) = (5,12)
print('a:', x < y or y < 10)
print('b:', x < y and not y < 15)
print('c:', 'lower' if x < y else 'higher')  # same as Java's (x < y) ? 'lower' : 'higher'
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put your import statements at the top of the notebook, as they only need to be run once per session, but they can actually
appear anywhere.)

In [ ]:

Strings and formatting

Python strings can be enclosed by either single quotes or double quotes. Strings (like everything else in Python) are objects,
and they have methods for various string-processing tasks. See "String Methods" documentation
(https://docs.python.org/3/library/stdtypes.html#string-methods) for a full list.

In [ ]:

In [ ]:

To control how values are printed, we can use the str.format  method. Here are some examples.

In [ ]:

If you do any serious data processing in Python, you will likely find yourself needing regular expressions
(A.%20Data%20import%20and%20cleanup.ipynb#regexp).

1.3 Collection types and control flow

Tuples, lists, and dictionaries

Python has three common types for storing collections of values: tuples, lists, and dictionaries. (Also two types of set
(https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset) which we won't cover in this course.)

In ML and Java we learned about lists versus arrays, and in Algorithms we will study the efficiency of various implementation
choices. The Pythonic style is to just go ahead and code, and only worry about efficiency after we have working code. We'll
simply use the built-in type for storing sequences, not even bothering whether it should be a list or an array, and we expect it
to work reasonably well most of the time. If we have special needs we switch to a dedicated collection type, such as a deque
(https://docs.python.org/3/library/collections.html#collections.deque) or a heap (https://docs.python.org/3/library/heapq.html)
or the specialized numerical types we'll learn about in §2. Numerical computation (notes2--numerics.ipynb). As the famous
computer scientist Donald Knuth said,

Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical
parts of their programs, and these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical
3%.

import math
print('a:', math.floor(-3.4), math.ceil(-3.4))
print('b:', math.pow(9, 0.5), math.sqrt(9))
print('c:', math.exp(2), math.log(math.e), math.log(101, 10))
print('d:', math.sin(math.pi*1.3), math.atan2(3,4))
 
import cmath   # for functions on complex numbers
print('e:', cmath.sqrt(-9))
print('f:', cmath.exp(math.pi * 1j) + 1)
 
import random  # for generating random numbers
print('g:', random.random(), random.random())

print('a:', "shout".upper())
print('b:', "hitchhiker".replace('hi', 'ma'))
print('c:', 'i' in 'team')

x = '''
Also, a multi-line string can be
entered with triple-quotes.
'''

print("My name is {} and I am {} years old".format('Zaphod', 27))                                 # va
print("The value of π to 3 significant figures is {p:.3}, and to 5 is {p:.5}".format(p=math.pi))  # va
print(f"The value of e to 3 significant figures is {math.e:.3}, and to 5 is {math.e:.5}")         # st
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Lists and tuples are both ways to store sequences of elements.

In [ ]:

As you see, both lists and tuples can hold mixed types, including other lists or tuples. You can convert a list to a tuple and
vice versa, and extract elements. The difference between them is that tuples are immutable whereas lists are mutable:

In [ ]:

Exercise (ex1). What is the difference between the two commented lines? Do they give the same result?

a = [1, 2, 'buckle my shoe'] 
b = (a, 3, 4, 'knock at the door') 
# b[0].append('then') 
# b[0] = a + ['then'] 
print(a, b) 

Note: For labelled exercises, like this one, you can look up the answer or check your solution. The procedure is
described in §0.3 Using the automatic grader (0.%20About%20this%20course.ipynb#grader), and for this notebook you
should use section='notes1' .

Exercise (ex2). How do you type in a tuple of length 1? How about a tuple of length 0?

We can pick out subsequences using the slice notation, x[start:end:sep] .

In [ ]:

We can sort a list.

In [ ]:

Another common operation is to concatenate a list of strings. Python's syntax for this is unusual:

a = [1, 2, 'buckle my shoe']      # a list
b = (3, 4, 'knock at the door')   # a tuple
print('a:', a + list(b))
print('b:', tuple(a) + b)
print('c:', len(a), len(b))
print('d:', a[0], a[1], b[2])     # indexes start at 0
print('e:', a[-1], a[-2])         # negative indexes count from the end
print('f:', [a, 'then', b])
print('g:', 3 in a, 3 in b)

a[0] = 5
a.append('then')
a.extend(b)
print(a)
 
b[0] = 5  # error
print(b)

x = list(range(10))     # creates a list with 10 elements, starting at 0
print('a:', x)
print('b:', x[1:3])     # start is inclusive and end is exclusive, so x[1:3] == [x[1],x[2]]
print('c:', x[:2])      # first two elements
print('d:', x[2:])      # everything after the first two
print('e:', x[-3:])     # last three elements 
print('f:', x[:-3])     # everything prior to the last three
print('g:', x[::4])     # every fourth element

names = ['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']
 
# The function sorted(list) returns a new list, and doesn't alter the original.
print(sorted(names))   
print(names)
 
# The method list.sort() sorts the list in-place
names.sort()
print(names)
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In [ ]:

The other very useful data type is the dictionary.

In [ ]:

Control flow

Python supports the usual control flow statements: for , while , continue , break , next , if , else . Here's an
example: suppose we're given a list of room allocations, and we want to find the occupants of each room.

In [ ]:

The above code iterates over the keys and values in a dictionary. We can also iterate over just the keys ( for name in 
room_alloc ), or just the values ( for room in room_alloc.values() ).

If we have a list, we sometimes want to iterate over items and their positions in the list. We use enumerate  for this:

In [ ]:

Comprehensions

Python has a distinctive piece of syntax called a comprehension (https://en.wikipedia.org/wiki/List_comprehension) for
creating lists. It's a very common pattern to write code that transforms lists, e.g.

mylist = ...    # start with some list 
newlist = [] 
for i in range(len(mylist)): 
   x = mylist[i] 
   if testfunc(x): 
       newlist.append(mapfunc(x)) 

This is so common that Python has a special syntax for it:

newlist = [mapfunc(x) for x in mylist if testfunc(x)] 

We can also use comprehension to create dictionaries and sets. Here are examples of list comprehension and dictionary
comprehension:

In [ ]:

Exercise (ex3). If you go overboard with list comprehensions, your code becomes unreadable. What does the following
code do?

', '.join(['alpher', 'bethe', 'gamov']) + 'wrote a famous paper on nuclear physics'

room_alloc = {'Adrian': None, 'Laura': 32, 'John': 31}
room_alloc['Guarav'] = 19
print(room_alloc['Laura'])          # get an item
del room_alloc['John']              # remove an item
print(room_alloc)
print('Alexis' in room_alloc)       # does this dictionary contain the key 'Alexis'?
print(room_alloc.get('Alexis', 1))  # get room_alloc['Alexis'] if it exists, else default to 1

room_alloc = {'adrian': 10, 'chloe': 5, 'guarav': 10, 'shay': 11, 
              'alexis': 11, 'rebecca': 10, 'zubin': 5}
occupants = {}
for name, room in room_alloc.items():  # iterate over keys and values
    if room not in occupants:
        occupants[room] = []
    occupants[room].append(name)
for room, occupants_here in occupants.items():
    ns = ', '.join(occupants_here)
    print('Room {r} has {ns}'.format(r=room, ns=ns))

for i, name in enumerate(['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']):
    print('Person {} is in position {}'.format(name, i))

xs = range(10)
print([x**2 for x in xs if x % 2 == 0])  # create a list, filtered to process only even values
print({x: x**2 for x in xs})             # create a dictionary 

https://en.wikipedia.org/wiki/List_comprehension


print('\n'.join(['Room {} has {}'.format(r, ', '.join(occs)) 
                for r,occs in rooms.items() if r is not None])) 

Exercise (ex4). Write a single line of code to sort the names in this list

names = ['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin'] 

by length, breaking ties alphabetically, using list comprehension. Hint: make a list of (len(name), name)  then sort it,
where len(str)  gives the length of a string. When Python sorts a list of tuples, it uses lexicographic ordering
(https://en.wikipedia.org/wiki/Lexicographical_order).

1.4 Functions

The code snippet below shows how we define a function in Python. There are several things to note:

The function is defined with a default argument, c=0 . You can invoke it by either roots(2,3,1)  or roots(2,3) .
Functions can be called with named arguments, roots(b=3, a=2) , in which case they can be provided in any order.

In scientific computing, we'll come across many functions that accept 10 or more arguments, all of them with sensible
defaults, and typically we'll only specify a few of the arguments.

In [ ]:

Some more notes:

This function either returns a value, or it throws an exception i.e. generates an error message and finishes. If your
function finishes without an explicit return  statement, it will return None . Unlike Java, it's possible for different
branches of your function to return values of different types — at risk to your sanity.
This function returns a single variable, namely a list. If you want to return several variables, return them in a tuple, and
unpack the tuple using multiple assignment as shown above.
It's conventional to document your function by providing a documentation string as the first line.

Exercise. Execute ?roots . What does it tell you? Look at some other functions, e.g. ?sorted .

We can pass functions as arguments to other functions, and we can use the keyword lambda  to define so-called
anonymous functions. Look back at Exercise 5 in ML, then try this code:

In [ ]:

We often use anonymous functions as a way to fill in arguments:

import math
 
def roots(a, b, c=0):
    """Return a list with the real roots of a + b*x + c*(x**2) == 0"""
    if b == 0 and c == 0:
        raise Exception("This polynomial is constant")
    if c == 0:
        return [-a/b]
    elif a == 0:
        return [0] + roots(b=c, a=b)
    else:
        discr = b**2 - 4*a*c
        if discr < 0:
            return []
        else:
            return [(-b+s*math.sqrt(discr))/2/a for s in [-1,1]]

def twice(f, x):
    return f(f(x))
twice(lambda i: i+5, 3)

https://en.wikipedia.org/wiki/Lexicographical_order


In [ ]:

More exercises
The exercises in this notebook are to give you practice. They are optional, and do not contribute to your final grade. You can
check your answers to labelled exercises by following the instructions in § 0.3 Using the automatic grader
("0.%20About%20this%20course.ipynb#0.3-Using-the-automatic-grader) with section='notes1' .

Exercise (ex5). A simple queue can be simulated by the following equations. Let  be the queue size just before timestep ,
let the service rate be , and let  be the amount of work arriving in timestep . Then

This is called Lindley's Recursion. Write a function sim(q0,C,a)  to compute the queue sizes at every timestep ,
where q0  is the initial queue size, and a  is the list . For example,

sim(1, 3, [4, 1, 2, 8, 2, 3, 1])

should produce the answer

[2, 0, 0, 5, 4, 4, 2]

at t

C at t

= max( + − C, 0).qt+1 qt at
t ≥ 1

[ , ,…]a0 a1

Exercise (ex6).

Calculate the base 10 logarithm of 1200 (answer is 3.079)
Calculate the tangent of 60 degrees (answer is 1.7321)
Calculate the square root of -20 (answer is 0+4.4721i)

Exercise (ex7). Create the list of lists [[1],[2],[3],...,[n]]  for n=10 .

def illustrate_func(f, xs):
    for x in xs:
        print(f'f({x}) = {f(x)}')
 
illustrate_func(lambda b: roots(1,b,2), range(5))

http://localhost:8888/notebooks/%220.%20About%20this%20course.ipynb#0.3-Using-the-automatic-grader


2 Numerical computation
2.0 Preamble
2.1 Vector calculations
2.2 Vectorized thinking: for  considered harmful
2.3 Arrays
2.4 Numerical optimization and fitting
2.5 Simulation
More exercises

Working with numbers is central to almost all scientific and engineering computing, from deep learning to image processing to
climate simulation. We could use Python directly for numerical computation—but it's much faster to use Python just as 'glue',
using it to write concise code and to quickly develop our thinking, and to rely on carefully optimized low-level libraries for the
heavy lifting.

Goal of this notebook: Learn your way around the two main Python libraries for numerical work, NumPy
(http://www.numpy.org/) and SciPy (https://www.scipy.org/), and learn how to produce basic plots with matplotlib
(https://matplotlib.org/).

There are some exercises in this section of notes. They are for you to get practice on: they are optional, and do not contribute
to your final grade. You can check your answers to labelled exercises as described in §0.3
(0.%20About%20this%20course.ipynb#grader) using section='notes2' .

2.0 Preamble
At the top of almost every piece of scientific computing work, we'll import these standard modules.

In [ ]:

2.1 Vector calculations
In §1 (1.%20Programming%20in%20Python.ipynb) we learnt about Python lists, which can store mixed data types e.g.
integers mixed with strings and sublists and even functions. The flexibility comes at the price of performance. In scientific
computing, it's better to use specialised classes for vectors, and to use functions that operate on entire vectors at once. This
is called vectorized thinking, and it's a core skill for scientific computing. Once you get the hang of it, you will write code that
is more concise and faster. Here are some simple examples.

In [ ]:

All the elements of a vector have to be the same type (https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html). Use 
x.dtype  to find this type, and x.astype

(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy-ndarray-astype) to convert a
vector from one type to another.

In [ ]:

To be good at writing vectorized code, we need to know what sort of calculations we can do on vectors. Here are some useful

# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import math, random
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.optimize
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline    

x = np.array([1,2,5,3,2])  # create a numpy vector out of a Python list
y = np.ones(5)             # create a numpy vector [1,1,1,1,1]
x + y                      # iterates over all elements of x and y for you

x = np.arange(10)
y = (x > 5)
z = np.ones_like(x)
(x.dtype, y.dtype, z.dtype)

http://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/
http://localhost:8888/notebooks/0.%20About%20this%20course.ipynb#grader
http://localhost:8888/notebooks/1.%20Programming%20in%20Python.ipynb
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy-ndarray-astype
https://docs.scipy.org/doc/numpy/reference/routines.html#routines


routines (https://docs.scipy.org/doc/numpy/reference/routines.html#routines):

Maths:

Normal mathematical expressions work on vectors, and you can mix vectors and scalars, e.g. x + y ** 2 + 5 >= z
np.sin , np.exp , np.floor , ...
x @ y  gives the dot product, np.linalg.norm(x)  is the norm
np.sum  and np.prod ; np.cumsum(x)  gives 
np.min  and np.max  for the overall min and max; np.minimum(x,y)  for 

and other maths (https://docs.scipy.org/doc/numpy/reference/routines.math.html#mathematical-functions) and statistics
(https://docs.scipy.org/doc/numpy/reference/routines.statistics.html) functions

Create vectors:

np.array([1,2,3])  creates a numpy vector from a Python list
np.zeros(n) , np.ones(n) , numpy.full(n,fill_value)
numpy.ones_like(a)  creates a vector of the same shape as a
np.arange  is like Python's range
np.linspace(start,stop,n)  creates  evenly-spaced points between start  and stop  inclusive, very useful for

plotting
np.random.random(n) , np.random.choice(a,n) , and other random number generators

(https://docs.scipy.org/doc/numpy/reference/routines.random.html)
and other array creation (https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#array-creation-
routines) routines

[ , + , + + ,…]x0 x0 x1 x0 x1 x2
[min( , ), min( , ),…]x0 y0 x1 y1

n

More elaborate example
Here's a more elaborate example: computing the correlation coefficient
(https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) between two vectors  and ,

where  and  have the same length , and

Here are two pieces of code, one written in Python-style, one written in scientific computing style, to compute . The latter is
roughly 15 times faster. (The magic command (http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time) 
%%time  at the top of a cell makes the notebook print out the execution time.)

x y

ρ =
( − )( − )∑i xi x̄ yi ȳ

( − )∑
i xi x̄)2

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√ ( −∑
i yi ȳ)2

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√

x y N

= , = .x̄
1

N ∑
i

xi ȳ
1

N ∑
i

yi
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In [ ]:

In [ ]:

# Set up some parameters.
# We'll use a random number seed so our code is reproducible. Python's hash function gives an integer,
# suitable for use as a seed.
N = 10000000
rand_seed = 1618033988

%%time
# Python-style code
 
random.seed(rand_seed)
# Create two lists of random numbers, xs and ys, where each y depends on the corresponding x
xs = [random.random() for i in range(N)]
ys = [xs[i] + random.random() for i in range(N)]
# Compute the various terms involved in the formula
xbar = sum(xs) / N  # sum(list) is built into Python
ybar = sum(ys) / N
sxy = sum([(x-xbar)*(y-ybar) for x,y in zip(xs,ys)])  # this is how to iterate over a pair of lists
sxx = sum([(x-xbar)**2 for x in xs])
syy = sum([(y-ybar)**2 for y in ys])
rho = sxy / math.sqrt(sxx) / math.sqrt(syy)
print(rho)

https://docs.scipy.org/doc/numpy/reference/routines.html#routines
https://docs.scipy.org/doc/numpy/reference/routines.math.html#mathematical-functions
https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#array-creation-routines
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time


In [ ]:

(Though if we really did know our way round numpy, we'd have used np.corrcoef
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef) rather than write our own code
for !)ρ

Exercise (ex1). Using Python-style code: let  and  be random numbers in the range , and let .
Repeat this a million times, and find the mean and standard deviation of your values for .

x y [−1, 1] d = +x2 y2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√

d

Exercise (ex2). Repeat Exercise ex1, but this time using vectorized code. Compare the speed of the two styles of code.

2.2 Vectorized thinking: for  considered harmful
Vectorized thinking isn't just for mathematical calculations — there are all sorts of programming constructs that can be
vectorized also. In general, whenever you find yourself writing a for  loop or a Python list comprehension
(1.%20Programming%20in%20Python.ipynb#comprehension), stop and see if you can vectorize your code. You'll usually
end up with something more flexible for scientific computing.

Programming:

len(x)  gives the length of a vector
np.any , np.all  and other logic functions (https://docs.scipy.org/doc/numpy/reference/routines.logic.html#logic-

functions)
~x  is logical negation, the equivalent of Python's not x ; x & y  and x | y  both work
np.count_nonzero(x)  counts the number of entries where x  is True  or non-zero
np.sort  sorts a vector; np.argsort(x)  gives the vector i  such that x[i]  is sorted; also see other sort functions

(https://docs.scipy.org/doc/numpy/reference/routines.sort.html#sorting)
np.argmax  and other search functions (https://docs.scipy.org/doc/numpy/reference/routines.sort.html#searching)
np.where(cond,x,y)  is the vectorized version of x if cond else y
np.vectorize(f)  is a vectorized version of an arbitrary Python function f

Indexing:

The usual slice notation (1.%20Programming%20in%20Python.ipynb#collections) works, e.g. x[:10]  or x[10:]  or 
x[:-3]

We can index by a vector of booleans, e.g. x[y>5] = 3
We can index by a vector of integers, e.g. i=np.where(y>5); x[i]=3
np.where(b)  gives a vector of indexes at which the boolean vector b  is True
np.concatenate([v1,v2])  concatenates two or more vectors

More elaborate example
Here's an example, a vectorized version of Exercise ex4 from Section 1. Suppose we want to sort the following vector by
length, breaking ties alphabetically.

In [ ]:

First, get a vector with the length of each name. Numpy does have some routines for working with strings, but as the

%%time
# Vectorized code
 
np.random.seed(rand_seed)
# Create two random vectors x and y
x = np.random.random(N)
y = x + np.random.random(N)
# Compute the terms in the formula. Note: @ means "dot product"
xbar = np.sum(x) / N
ybar = np.sum(y) / N
rho = ((x-xbar) @ (y-ybar)) / math.sqrt(np.sum((x-xbar)**2)) / math.sqrt(np.sum((y-ybar)**2))
print(rho)

names = np.array(['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin'])

https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
http://localhost:8888/notebooks/1.%20Programming%20in%20Python.ipynb#comprehension
https://docs.scipy.org/doc/numpy/reference/routines.logic.html#logic-functions
https://docs.scipy.org/doc/numpy/reference/routines.sort.html#sorting
https://docs.scipy.org/doc/numpy/reference/routines.sort.html#searching
http://localhost:8888/notebooks/1.%20Programming%20in%20Python.ipynb#collections


name suggests it is really oriented around numbers, and I prefer to use Python functions. I'll still wrap them up with 
np.vectorize , so that I can apply them to a whole vector without having to write a list comprehension.

Second, work out how to put lengths  in order, breaking ties alphabetically by names . This is called lexicographic
sorting, and there is a function np.lexsort  that like np.argsort  returns a vector of integer indexes that will achieve
this ordering.
Last, pick out the names  in the order specified by these indexes.

In [ ]:

At the end of this notebook you'll find some more challenging exercises in vectorized thinking.

2.3 Arrays
NumPy supports matrices and higher-dimensional arrays. (In fact, when we look up the help for any of the vectorized
routines, we see that vectors are nothing more than one-dimensional arrays.) To enter a 2d array like

we type in

a = ( )
2.2

−4
3.7

3.1

9.1

1.3

In [ ]:

Use a.shape  to find the dimensions of an array:

In [ ]:

To refer to a subarray, we can use an extended version of Python's slice notation.

In [ ]:

To refer to arbitrary sets of elements in the array, we can use boolean indexing e.g. a[a>=2] , or integer indexing as in the
code snippet below. These are both called advanced indexing
(https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing).

In [ ]:

For 1d vectors the only reshaping operations are slicing and concatenating, but for higher dimensional arrays there is a whole
variety of reshaping functions (https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-
manipulation-routines) such as stacking, tiling, transposing, etc. The most useful operations is adding a new dimension, for
example to turn a one-dimensional vector into a column vector. The second most useful is stacking vectors to form an array.

In [ ]:

In [ ]:

Exercise (ex2). What is the relationship between a.shape  and len(a) ?

Exercise (ex3). Look up the NumPy help for np.arange  and np.reshape , and use these functions to produce the 

lengths = np.vectorize(len)(names)
indexes = np.lexsort([names, lengths])
names[indexes]

a = np.array([[2.2, 3.7, 9.1], [-4, 3.1, 1.3]])

a.shape

a[:, :2]                   # all rows, first two columns
a[1, :]                    # second row (indexes start at 0), all columns
a[1]                       # another way to fetch the second row
a[:2, :2] = [[1,2],[3,4]]  # assign to a submatrix
a

a = np.zeros((3,3), dtype=np.int)
a[[0,1,2], [1,0,2]] = [1,1,1]
a

x = np.array([1,2,3])  # one-dimensional, shape=(3,)
x[:, np.newaxis]       # two-dimensional, shape=(3,1)

np.column_stack([[1,2], [3,4], [5,6]])

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-manipulation-routines


 matrix

Look up the help for np.sum , and compute the length-5 vector of column sums and the length-3 vector of row sums.
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Exercise (ex4). Find two different ways to use NumPy to create the column vector array([[1],[2],...,[n]]) .

Exercise (ex5). A permutation matrix (https://en.wikipedia.org/wiki/Permutation_matrix) is a square matrix of 0s and 1s,
where each row contains exactly one 1, and each column likewise. (The code snippet above for advanced indexing
creates a  permutation matrix.) Write code to generate a random  permutation matrix.3 × 3 n × n

NumPy also has a powerful tool called broadcasting (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) which
generalizes "add a scalar to a vector", and which is used a lot in more advanced array-manipulating code. It's more advanced
than we need for this course, but it's used a lot in machine learning and it's worth reading about.

In Easter term, you will study linear algebra in the Maths for Natural Sciences course. If you want to try out the maths, you'll
find relevant functions in np.linalg  (https://docs.scipy.org/doc/numpy/reference/routines.linalg.html) and np.dual
(https://docs.scipy.org/doc/numpy/reference/routines.dual.html).

2.4 Numerical optimization and fitting

A common task in science and in machine learning is to find the minimum value of a function, which may have one or more
variables. For example, we might have a collection of points that more or less follow a straight line, and we might want to use
the equation . In this case, we'd like to tune the values of  and  so that the equation lies close to the data. We
can achieve this by defining a function  that measures how far the points are from the straight line, and then choosing 

 and  to minimize .

WARNING! The methods we discuss here sometimes work brilliantly, but sometimes are unstable. This is not the fault of
Python or the libraries we are using. It's just the case that sometimes the equations in the algorithm and numerical issues in
the data are not well balanced. This is something we need to bear in mind every time we use these methods, and we should
check the output, for example by plotting graphs.

Let's start by minimizing a simple function of one variable. We could use calculus to find the minimum for a simple example
like this, but let's do it with computer power instead.

y = mx + c m c

L(m, c)

m c L(m, c)

In [ ]:

We'll plot this function first, to get a rough idea of where the minimum should be. Visualisation is a crucial part of scientific
computing, and we'll cover it in much more detail in §3 Working with Data (3.%20Working%20with%20data.ipynb), but for
present purposes we'll just use some very simple plotting commands. The pyplot tutorial
(https://matplotlib.org/users/pyplot_tutorial.html) explains more options.

In [ ]:

The scipy.optimize.fmin  function finds where the function achieves its minimum value, starting from an initial guess 
x0 . The first argument is the function to optimize. In the snippet below we're giving it an anonymous function that is a

version of f  with the parameters a , b  and c  filled in.

In [ ]:

It found a local minimum, not the global minimum. This is often a problem with numerical optimization routines, and it's why

def f(x, a, b, c):
    return a*x + b*(x**2) + c*(x**4)

x = np.linspace(-2,2,40)          # 40 equally spaced points in the range [-2,2]
y = f(x, a=1, b=-3, c=1)          # f is already vectorized, because it only uses vectorized calculati
plt.plot(x, y, linestyle='-', linewidth=1, color='red')
plt.show()

scipy.optimize.fmin(lambda x: f(x,a=1,b=-3,c=1), x0=0.5)

https://en.wikipedia.org/wiki/Permutation_matrix
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.dual.html
http://localhost:8888/notebooks/3.%20Working%20with%20data.ipynb
https://matplotlib.org/users/pyplot_tutorial.html


it's helpful to look at the data first.

Exercise (ex6). What starting point do we need to give, so that it can find the global optimum? Run 
scipy.optimize.fmin  for a range of values of x0  in the range . Tabulate x0  versus the minimizing  it finds.

You can turn off the diagnostic output with the option disp=False .
[−2, 2] x

Here is an example of a function of two variables. We'll try to fit the straight line  through a set of points. We'll
define the loss function

and look for  and  to minimize it.

y = mx + c

L(m, c) = (m + c −∑
i

xi yi )
2

m c

In [ ]:

Before we do any numerical work, we should visualize what we're doing. Here are a plot of the points , and a surface
plot of the loss function  as a function of  and . The 3d plotting functions are somewhat mysterious, and you should
look at relevant examples (https://matplotlib.org/examples/mplot3d/index.html) and copy them.

( , )xi yi
L(m, c) m c

In [ ]:

In [ ]:

It doesn't look like  has any nasty surprises, so let's find the minimizing  and .L(m, c) m c

In [ ]:

Now let's plot the data again, with the fitted straight line.

In [ ]:

2.5 Simulation

x = np.linspace(-3,3,40)
y = np.sin(x) + 2 * np.random.random(x.shape)
 
def loss(m,c):
    return np.sum((m*x+c - y)**2)

# Scatter plot of the data
plt.plot(x, y, marker='o', markerfacecolor='white', markeredgecolor='black', linestyle='None')
plt.show()

# Surface plot of loss(m,c)
# adapted from https://matplotlib.org/examples/mplot3d/surface3d_demo.html
 
# Create 2d arrays, one with each m value, one with each c value, one with loss
m,c = np.meshgrid(np.linspace(-3,3,20), np.linspace(-3,5,20))
l = np.zeros_like(m)
for i in range(l.shape[0]):
    for j in range(l.shape[1]):
        l[i,j] = loss(m[i,j], c[i,j])
 
from mpl_toolkits.mplot3d import axes3d   # import a library to allow 3d plots
axes = plt.figure().gca(projection='3d')  # say that we want axes for a 3d plot
axes.plot_surface(m, c, l)                # draw a surface plot
axes.set_xlabel('m')
axes.set_ylabel('c')
plt.show()

# To optimize a function of several several variables, provide them as an array
# of the appropriate length.
optpars = scipy.optimize.fmin(lambda params: loss(params[0], params[1]), x0=[0,0])
optpars

# Plot the points
plt.plot(x, y, marker='o', markerfacecolor='white', markeredgecolor='black', linestyle='None')
# Plot the fitted line
def fit(x):
    return optpars[0] * x + optpars[1]
plt.plot([-3,3], [fit(-3),fit(3)], linestyle='--', color='lightblue', linewidth=2)
# Show the graphic
plt.show()

https://matplotlib.org/examples/mplot3d/index.html


Simulation is a mainstay of scientific computing. A common style with numpy is to predefine an array to store the results, one
row per timestep, and then iterate over timesteps gradually filling in the array. (This is the one case where for  loops are
appropriate.) Here's an example, a differential equation simulation. A model that has been proposed for TCP
(https://en.wikipedia.org/wiki/Transmission_Control_Protocol) is

where  is the transmission rate of a sender at time  measured in packets per second,  is the round trip time,  is the
packet drop probability, and  is the link capacity. We might simulate this as follows.

= − , =
dxt

dt

1

RTT2
pt−RTT xt−RTT

xt

2
pt

max( − C, 0)xt

xt

xt t RTT pt
C

In [ ]:

From a mathematical point of view this isn't ideal, because there are much more sophisticated numerical methods for
solving differential equations (https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html).
From a computer science point of view this isn't ideal, because the code tangles together the iteration logic with the
logging logic. You may like to rewrite it using lazy lists (A1.%20Python%20language%20choices.ipynb#lazy).
But from a scientific computing point of view, simulations like this are so easy to put together and learn from, that they
are invaluable.

What we have written is called a discrete-time simulation, because time advances in fixed increments. In IA Algorithms you
will study the heap data structure and event-driven simulation, in which time is pegged to changes in state.

More exercises
Exercise (ex7). In §1 (1.%20Programming%20in%20Python.ipynb#lindley) you wrote a Pythonic simulator for a queue,
based on Lindley's recursion

It can be proved that this yields the same answer as

where

Compute  using np.cumsum  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html).
Compute  using np.ufunc.accumulate
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html). Hence compute .
Check your answer against your Pythonic code.

= max( + − C, 0).qt+1 qt at

= + − min(0, ),qt q0 xt yt

= ( − C) and = ( + ).xt ∑
u=1

t

au yt min
1≤u≤t

q0 xu

x = [ , ,…]x1 x2
y = [ , ,…]y1 y2

q = [ , ,…]q1 q2

x0 = 1       # initial transmission rate, in pkt/sec
C = 10       # link capacity, in pkt/sec
T = 20       # simulated duration in seconds
RTT = 0.2    # round trip time in seconds
dt = 0.01    # timestep size
def P(x): return max(x-C,0) / x
 
# Initialization
num_iterations = np.ceil(T/dt).astype(int)
res = np.zeros((num_iterations, 3))  # a matrix to store t,x,p
res[0,1:] = [x0, P(x0)]
steps_back = int(RTT/dt)
 
# Loop
for i in range(1, num_iterations):
    (t,x,p),(xold,pold) = res[i-1], res[max(i-1-steps_back,0),1:]
    dx = 1/(RTT**2) - pold*xold*x / 2
    x = x + dx * dt
    p = P(x)
    res[i] = (t + dt, x, p)
 
# Plot the output (see Section 3 for more about plotting)
fig,(ax1,ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(res[:,0], res[:,1])
ax2.plot(res[:,0], res[:,2], color='orange')
ax1.set_ylabel('x')
ax2.set_ylabel('p')
ax2.set_xlabel('t')
plt.show()

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html
http://localhost:8888/notebooks/A1.%20Python%20language%20choices.ipynb#lazy
http://localhost:8888/notebooks/1.%20Programming%20in%20Python.ipynb#lindley
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html


Exercise. Continuing from Assignment 2... In the kinetic exchange model, the poorest and the richest might swap places
after just one transaction, which isn't very likely. Consider a different model for exchange. As before, suppose that two
individuals with wealth  and  respectively are paired, but now let their wealth be updated by

where  is now a random number in , chosen independently for every pair at every timestep. The idea is that each
party to the exchange puts up a certain amount of money, but no more than they can afford. Call this the value transfer
model.

We can extend this model to include government intervention. Suppose the government charges a tax of say 20% on every
exchange, collects all the tax revenue every timestep, and distributes it evenly to the entire population. This redistribution
ought to have the effect of reducing inequality. Call this the taxed value transfer model. Here is a concrete example, for a
population of size 6.

1. Initial wealth values are 
2. We pair adjacent individuals: 
3. Random exchange amounts pre-tax are 
4. Exchange amounts post-tax are 
5. Government revenue is 
6. Government redistributes  to each person
7. Change in wealth is . 
8. New wealth vector is .

Also, let's introduce another way to measure inequality. The Gini coefficient is unfamiliar to many people, and it's easier to
communicate "The richest 1% of the population own % of the wealth."

Implement the taxed value transfer model. Implement the "top x%" measure. Simulate the taxed value transfer model, and
measure the Gini coefficient and the "richest 1%" statistic at each timestep. Plot these two measures, as a function of time,
for tax rates 0%, 20% and 40%. See §3 (3.%20Working%20with%20data.ipynb) for tips on plotting.

v w

= v + Rmin(v,w), = w − Rmin(v,w)vnew wnew

R [−1, 1]

[0, 2, 5, 3, 1, 2]

[0, 2; 5, 3; 1, 2]

[0, 0; 2.6,−2.6;−0.4, 0.4]
[0, 0; 2.08,−2.6;−0.4, 0.32]

(2.6 − 2.08) + (0.4 − 0.32) = 0.6

0.6/6 = 0.1

[0.1, 0.1, 2.18,−2.5,−0.3, 0.42]
[0.1, 2.1, 7.18, 0.5, 0.7, 2.42]

x

Exercise. Continuing from the assignment... Inflation means that wealth grows at an exponential rate, which is likely to
exacerbate inequality. Compare a taxed value transfer model with tax rate 20% and no inflation, to a model with inflation of
3% per timestep. How much would tax have to increase, to compensate for this inflation?

Exercise. Continuing from the assignment... The economist Thomas Piketty argues
(https://en.wikipedia.org/wiki/Capital_in_the_Twenty-First_Century) that we have entered an age where the return on capital
is greater than the growth due to income, and that this leads to higher inequality. We could incorporate income into the model
by assigning each individual  a per-timestep income , where the  are randomly chosen a priori. If there were no
exchange, then wealth would grow linearly, and so the Gini coefficient would remain equal to gini(g) . Investigate what
happens when we combine income, inflation, and random exchange. How well correlated are income and wealth? Do you
agree with Piketty?

i gi gi

http://localhost:8888/notebooks/3.%20Working%20with%20data.ipynb
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3. Working with data
3.0 Preamble
3.1 What data looks like
3.2 Dataframes
3.3 Selecting from a dataframe
3.4 Tabulation and indexed arrays
3.5 Joining dataframes
3.6 Extended example …… categorical, numerical, date/time variables, clever joins, fancy plots

Goal of this notebook:
Get used to the standard ways of thinking about data, data frames and indexed arrays
Learn how to use the Pandas (http://pandas.pydata.org/) library to handle data
See some more advanced plotting with matplotlib (https://matplotlib.org/)

There are some exercises in this section of notes. They are for you to get practice on: they are optional, and do not contribute
to your final grade. You can check your answers to labelled exercises as described in §0.3
(0.%20About%20this%20course.ipynb#grader) using section='notes3' .

3.0 Preamble
At the top of almost every piece of data-oriented scientific computing work, we'll import these standard modules.

In [1]:

The running example for this section is a dataset of stop-and-search records, made available (https://data.police.uk/data/) by
the UK home office. As it's a moderate-sized file (172MB) I like to download it to disk, so it's fast to reread it each time I
restart the notebook. Here's how we can fetch a file from a url, using the Unix command-line tool wget . (The exclamation
mark is called a Jupyter magic (http://ipython.readthedocs.io/en/stable/interactive/magics.html), and it means "Treat this line
as though it were executed at the command prompt". In IB Unix Tools you'll learn more about the Unix command line.)

In [2]:

3.1 What data looks like
We almost always work with data in the form of a spreadsheet-like table, referred to as a dataframe. Here's how to load a
dataframe from a file and inspect it. (This dataframe will be used as a running example in the rest of §3.)

file already downloaded 

# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import numpy as np
import pandas
import matplotlib
import matplotlib.pyplot as plt
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline 

# Execute a unix command to download a file (if it's not already downloaded), and show download progre
import os.path
if os.path.exists('stop-and-search.csv'):
    print("file already downloaded")
else:
    !wget "https://teachingfiles.blob.core.windows.net/founds/stop-and-search.csv"

http://pandas.pydata.org/
https://matplotlib.org/
http://localhost:8888/notebooks/0.%20About%20this%20course.ipynb#grader
https://data.police.uk/data/
http://ipython.readthedocs.io/en/stable/interactive/magics.html


In [7]:

A dataframe is a collection of named columns. Each column has the same length, and all entries in a column have the same
type, though different columns may have different types. If you have taken IA/IB Databases, you'll see that dataframes are
similar to tables in a relational database. There are some differences:

Scientific data is best thought of as logs of observations. Observed facts cannot be unobserved, so UPDATE and
DELETE database operations are irrelevant, as are questions about database consistency.
A dataframe has ordered rows, like an array, whereas a database table is unordered.
We are often given messy badly structured data to work with; and we often create dataframes on the fly, work with them
for a little while, then discard them. There is rarely a phase of entity-relationship modeling: instead we learn how to think
about a dataset by working with it.

In Python, there are several choices about how to represent dataframes. A simple choice is as a dictionary of lists:

mydata = {'police_force': ['hampshire', 'hampshire', 'hampshire', ...], 
         'Age range': ['25-34', 'over 34', '10-17', ...], 
         'year': [2014, 2014, 2014, ...], 
         ...} 

We won't use this representation. Instead we'll use the Pandas (http://pandas.pydata.org/) library, designed specifically for
working with data. It has several benefits:

Data import and export has lots of fiddly corner cases. Even printing a dataframe takes a surprisingly large amount of
code to do well.
For fast numerical computation and concise code, numpy  is best as we saw in §2
(2.%20Numerical%20computation.ipynb). Pandas stores dataframe columns as numpy  vectors.
Some simple operations, like selecting a subset of rows, takes a lot of boilerplate code if implemented in pure Python.
Much better to use a Pandas dataframe, which lets us write e.g. stopsearch.iloc[:3]  to select some entries from
each column, without our even having to think about iterating over columns.

It has the disadvantage of being yet another library to learn. It also has some idiosyncratic notation for indexing, which in my
experience can lead to rather cryptic error messages when plotting, and which will be discussed in §3.2. It has poor support
for missing values in data, which it inherits from numpy . Despite these problems, it's the best choice at this stage in Python's
evolution.

3.2 Importing, exporting, and creating dataframes
It's very easy to import data from a simple comma-separated value (CSV) file. A CSV file looks like this:

This dataset has 808101 rows 

Out[7]:

Type Date
Part of a
policing

operation
Policing

operation Latitude Longitude Gender Age
range

Self-
defined

ethnicity

Officer-
defined

ethnicity
Legislation O

0
Person
search

2014-07-
31T23:20:00+00:00 NaN NaN 50.938234 -1.388559 Male 25-34

Asian or
Asian

British -
Pakistani

(A2)

Asian

Misuse of
Drugs Act

1971
(section 23)

Co

1
Person
search

2014-07-
31T23:30:00+00:00 NaN NaN 50.912978 -1.431990 Male over

34

White -
White
British

(W1)

White

Misuse of
Drugs Act

1971
(section 23)

Co

2
Person
search

2014-07-
31T23:45:00+00:00 NaN NaN 51.005612 -1.497576 Male 10-17

White -
White
British

(W1)

White

Misuse of
Drugs Act

1971
(section 23)

Co

# Import a dataframe using the pandas library
stopsearch = pandas.read_csv('stop-and-search.csv')
 
# How many rows are there?
print("This dataset has", len(stopsearch), "rows")
# Display the first 3 rows. iloc[:3] means "select the first three rows"
stopsearch.iloc[:3]

http://pandas.pydata.org/
http://localhost:8888/notebooks/2.%20Numerical%20computation.ipynb


"Sepal.Length","Sepal.Width","Petal.Length","Petal.Width","Species" 
5.1,3.5,1.4,0.2,"setosa" 
4.9,3,1.4,0.2,"setosa" 
4.7,3.2,1.3,0.2,"setosa" 
4.6,3.1,1.5,0.2,"setosa" 
5,3.6,1.4,0.2,"setosa" 

i.e. a header line, then one line per row of the data frame, with values separated by commas. We've already seen how to
import a CSV, using pandas.read_csv  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html). If
your file is nearly a CSV but has some quirks such as comments or a missing header row, experiment with the 55 options in 
pandas.read_csv  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html). We can use the same

function to read CSV files from remote urls (though if you're using Azure Notebooks, be aware that Azure only permits you to
connect to Azure web servers.)

In [2]:

In my experience, around 70% of the time you spend working with data will be fighting to import it and clean it up. See §A3
(A3.%20Data%20import%20and%20cleanup.ipynb) for a collection of recipes for web scraping, reading from a database,
and parsing log files.

To write a CSV file,

iris.to_csv('iris.csv', index=False) 

If you're running this notebook with Azure Notebooks, you would then use the Data | Download  menu to download the file
from Azure Notebooks to your local machine.

To create a dataframe from scratch, pass in a dictionary of columns. Python dictionaries are unordered, so you can optionally
specify the column order you want with the columns  argument.

In [5]:

Or you can create a dataframe from a list of tuples. Now the columns  argument is needed to say what the column names
are.

In [3]:

A dataframe behaves like a dictionary of vectors, and you can add and remove columns using the same syntax you'd use for
dictionaries. When you add new columns, Pandas converts them to numpy  vectors for you, so you can use the usual 
numpy  operations. (The columns aren't actually plain numpy  vectors, as §3.3 explains, and the difference will bite you

whenever you try to subset a column.)

iris = pandas.read_csv('https://teachingfiles.blob.core.windows.net/scicomp/iris.csv')

iris = pandas.DataFrame({'species': ['setosa', 'virginica', 'virginica', 'setosa', 'versicolor'],
                         'Petal.length': [1.0, 5.0, 5.8, 1.7, 4.2],
                         'Petal.width': [0.2, 1.9, 1.6, 0.5, 1.2]},
                        columns = ['species', 'Petal.length', 'Petal.width'])

iris = pandas.DataFrame([('setosa', 1.0, 0.2), ('virginica', 5.0, 1.9), ('virginica', 5.8, 1.6),
                         ('setosa', 1.7, 0.5), ('versicolor', 4.2, 1.2)],
                        columns = ['species', 'Petal.length', 'Petal.width'])

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
http://localhost:8888/notebooks/A3.%20Data%20import%20and%20cleanup.ipynb


In [4]:

To modify an entry in a dataframe, I prefer to "think vectorized" and replace the entire column, e.g.

iris['Petal.length'] = np.where(np.arange(5)==0, 100, iris['Petal.length']) 

If we modify only some of the rows of a dataframe, then (depending how exactly we do it) Pandas will tell us off, warning us
that the operation may be inefficient.

In [5]:

3.3 Selecting from a dataframe
Dataframes have a triple identity: part array, part database table, part dictionary. Because of this, there are several ways to
select subsets of rows and columns.

Selecting columns is easy. We've already seen how to select one column. To select several columns,

In [8]:

To select subsets of rows by row number use .iloc[row_indexes] . This can take any slice or list of integers.

In [ ]:

To select subsets of rows by a boolean vector use .loc[rows_indicator]  where rows_indicator  is a boolean vector
as long as the dataframe. You can optionally also specify a list of columns to select.

Out[4]:
species Petal.length Sepal.length P/S

0 setosa 1.0 4.6 0.217391

1 virginica 5.0 6.3 0.793651

2 virginica 5.8 7.2 0.805556

3 setosa 1.7 5.1 0.333333

4 versicolor 4.2 5.7 0.736842

/home/djw/.local/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:  
A value is trying to be set on a copy of a slice from a DataFrame 

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#inde
xing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versu
s-copy) 
 """Entry point for launching an IPython kernel. 

Out[8]:
Date Object of search Legislation

0 2014-07-31T23:20:00+00:00 Controlled drugs Misuse of Drugs Act 1971 (section 23)

1 2014-07-31T23:30:00+00:00 Controlled drugs Misuse of Drugs Act 1971 (section 23)

2 2014-07-31T23:45:00+00:00 Controlled drugs Misuse of Drugs Act 1971 (section 23)

3 2014-08-01T00:40:00+00:00 Stolen goods Police and Criminal Evidence Act 1984 (section 1)

4 2014-08-01T02:05:00+00:00 Article for use in theft Police and Criminal Evidence Act 1984 (section 1)

iris.keys()                                                # what column names are present?
iris['Sepal.length'] = [4.6, 6.3, 7.2, 5.1, 5.7]           # add a column
if 'Petal.width' in iris: del iris['Petal.width']          # delete a column (if present)
iris['P/S'] = iris['Petal.length'] / iris['Sepal.length']  # vectorized whole-column operation
iris

iris['Petal.length'][0] = 200

# Select three columns, and print out the first 5 rows of the resulting dataframe
stopsearch[['Date', 'Object of search', 'Legislation']].iloc[:5]

stopsearch.iloc[:3]       # the first 3 rows; stopsearch[:3] is an abbreviation for this
stopsearch.iloc[[0,3,5]]  # select several rows, by providing a list of row numbers
stopsearch.iloc[[5]]      # select a dataframe object consisting of just one row
stopsearch.iloc[:3][['Date', 'Object of search']]  #first a row selector, then a column selector

http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy


In [ ]:

There is a third way to select rows from a dataframe, which in my experience is the source of endless confusion: selecting by
row index.

When you see a Pandas dataframe printed out, there is a column at the left printed in bold. These aren't row numbers, they
are row indexes, which behave like the keys in a dictionary. In all the examples we've seen so far the indexes happen to be
numbers, but they could be any other Python object. Pandas remembers row indexes, even when you pull out a single
column, and it always tries to match indexes. This is usually not what we want. I recommend that you always use .values
when you are working with subsets of rows. This gives you the actual numpy  vector behind the column, not the
confusing Pandas vector-plus-index object.

We won't be using row indexes in this course, but it's worth knowing they exist so you can understand the cryptic errors and
error messages you will undoubtedly come across.

In [ ]:

3.4 Tabulations and indexed arrays
The pattern behind much data processing is split-apply-combine-join: split your data into pieces, apply a transformation to
each piece, combine the pieces, and join results from different datasets together. We could code this explicitly with a for
loop, but it would involve lots of boilerplate code — and I hope you have been persuaded by §2
(2.%20Numerical%20computation.ipynb) that for  loops are considered harmful. Instead, let's see how to do it with Pandas.

The following line of code performs a cross-tabulation: it splits the data into a separate dataframe for each combination of
officer-defined ethnicity and gender, applies the len  function to each sub-dataframe to get the number of rows it contains,
and combines the results into a single indexed object.

In [9]:

You can also apply more elaborate functions. Here are two equivalent ways to apply np.mean  to the year column in each
sub-datadrame.

Out[9]: Officer-defined ethnicity  Gender 
Asian                      Female      2230 
                          Male       72458 
                          Other         85 

Black                      Female      7497 
                          Male      151988 
                          Other        189 

Mixed                      Female        22 
                          Male         327 

Other                      Female       974 
                          Male       16221 
                          Other        147 

White                      Female     47947 
                          Male      414428 
                          Other        986 

dtype: int64

wantcols = ['Date', 'Object of search', 'Outcome']
wantrows = stopsearch['police_force'] == 'cambridgeshire'  # a boolean vector
stopsearch.loc[wantrows, wantcols][:3]

df = pandas.DataFrame({'x': [3,3,4,8,2,7,6]})
 
# This looks like it's adding [3,3,4,8] and [8,2,7,6] -- but it's not!
df['x'][:4] + df['x'][-4:]
 
# This is the way to do it
df['x'][:4].values + df['x'][-4:].values

x = stopsearch.groupby(['Officer-defined ethnicity', 'Gender']).apply(len)
x

http://localhost:8888/notebooks/2.%20Numerical%20computation.ipynb


In [12]:

For this course, we will only apply  functions that return simple Python values. It's possible but more complicated
(http://pandas.pydata.org/pandas-docs/stable/groupby.html) to apply functions that return dataframes or Pandas columns or
indexed arrays.

The groupby/apply commands have produced an indexed array. An indexed array is a cross between a normal numpy array
and a dataframe. We access elements and sub-arrays by dimension, like a numpy array — but we use .loc[]  and the
indexes aren't integer positions, they're values from the underlying column. Also, the array might be 'incomplete', as in the
example above which has no entry for ['Mixed','Other'] .

In [ ]:

To pretty-print an indexed array, use unstack()  (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.Series.unstack.html). It will by default fill in any missing values with NaN  (not a number), and
you can override this with fill_value .

In [74]:

There are two ways to convert an indexed array to a dataframe, depending on the shape of the dataframe you want to end up
with.

In [18]:

Out[12]: Officer-defined ethnicity  Gender 
Asian                      Female    2015.804933 
                          Male      2015.827900 
                          Other     2015.823529 

Black                      Female    2015.889422 
                          Male      2015.890189 
                          Other     2015.767196 

Mixed                      Female    2016.090909 
                          Male      2016.061162 

Other                      Female    2015.710472 
                          Male      2015.830035 
                          Other     2015.448980 

White                      Female    2015.727470 
                          Male      2015.708169 
                          Other     2015.567951 

dtype: float64

Out[74]:
Gender Female Male Other

Officer-defined ethnicity

Mixed 22 327 0

White 47947 414428 986

Out[18]:
Officer-defined ethnicity Gender count

0 Mixed Female 22

1 Mixed Male 327

2 White Female 47947

3 White Male 414428

4 White Other 986

stopsearch.groupby(['Officer-defined ethnicity', 'Gender']).apply(lambda df: np.mean(df['year']))
stopsearch.groupby(['Officer-defined ethnicity', 'Gender'])['year'].apply(np.mean)

x.loc['Asian']               # select a sub-array indexed just by Gender
x.loc[:, 'Other']            # select a sub-array indexed by Ethnicity (all levels)
x.loc[['Mixed','White']]     # select a sub-array indexed by Ethnicity (two levels) and Gender (all le
# The index labels can be accessed with  x.index.levels[0].values and x.index.levels[1].values

x[['Mixed','White']].unstack(fill_value=0)

# Convert an indexed array into a long-form dataframe
x[['Mixed','White']].reset_index(name='count')

http://pandas.pydata.org/pandas-docs/stable/groupby.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unstack.html


In [19]:

When you first start working with data, I recommend you do all your calculations on dataframes rather than indexed arrays. If
you want to do calculations on an indexed array, first turn it into a dataframe. As you get deeper into working with data, you'll
discover that the skill in working with data is knowing which representation works best for your task, dataframe or indexed
array. Also,

Pandas blurs the boundary between dataframes and indexed arrays
Both rows and columns can have hierarchical indexes, called multi-indexes (https://pandas.pydata.org/pandas-
docs/stable/advanced.html)
For clever tricks with higher-dimensional indexed arrays, read the documentation for unstack
(https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html) and rename_axis
(https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename_axis.html)
When you read the documentation or look for help, please note that what I'm calling an indexed array, Pandas calls a 
Series  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html).

Exercise (ex1). Here is a function for finding the most frequent value in a vector:

def mode(x): 
   # Remove any NaN values using because np.unique doesn't like NaN (see Section 3.6 for 
more on missing values) 
   vals,counts = np.unique(x[~pandas.isnull(x)], return_counts=True) 
   return vals[np.argmax(counts)] 

Generate a table showing the most frequent age range for each combination of ethnicity and gender, in the stop-and-
search dataset.

Exercise (ex2). Given the dataframe

df = pandas.DataFrame({'A': [0,0,0,1,1,1], 'B': [0,1,2,0,1,2], 'X': range(6)}) 

pretty-print an indexed array that has rows for A, columns for B, and shows values of X. [Hint. Make sure your apply
function returns a simple Python value, not a Pandas column or dataframe.]

3.5 Joining dataframes
Suppose we've got a table that lists, for each ethnic group and possible outcome, the number of such cases:

Out[19]:
Officer-defined ethnicity Female Male Other

0 Mixed 22 327 0

1 White 47947 414428 986

# Convert an indexed array into a wide-form dataframe. See note below about rename_axis
x[['Mixed','White']].unstack(fill_value=0).reset_index().rename_axis(None, axis=1)

https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename_axis.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html


In [31]:

We might want to know outcome==find  is equally likely for each ethnic group (to test for ethnic bias in police behaviour).
We could achieve this with a for  loop, looking at each ethnic group in turn — but for  loops are considered harmful, and a
more idiomatic way to do it is by combining tables, as follows. First, create a summary table that lists, for each ethnic group,
the total number of cases:

In [33]:

Second, divide the values in the first table by the corresponding values in the second table. The key word here is
corresponding. This is the equivalent of JOIN  in SQL, which you learn about in IA/IB Databases.

In [36]:

Pandas also lets us join indexed arrays on their common indices, and that would be a more natural way to write this
calculation; but that counts as more advanced Pandas usage than we will cover here.

Exercise (ex3). Use merge  to produce a dataframe with one row per ethnic group, one column for the number of
cases of outcome==find , and one column for the number of cases with outcome==nothing . Use this table to

Out[31]:
Officer-defined ethnicity outcome n

0 Asian find 23864

1 Asian nothing 55628

2 Black find 52161

3 Black nothing 111695

4 Mixed find 212

5 Mixed nothing 138

6 Other find 6117

7 Other nothing 12363

8 White find 157927

9 White nothing 325545

Out[33]:
Officer-defined ethnicity ntot

0 Asian 79492

1 Black 163856

2 Mixed 350

3 Other 18480

4 White 483472

Out[36]:
Officer-defined ethnicity percent_find

0 Asian 30.020631

2 Black 31.833439

4 Mixed 60.571429

6 Other 33.100649

8 White 32.665180

# The 'Outcome' column has lots of possible values -- let's simplify it to just two
stopsearch['outcome'] = np.where(stopsearch['Outcome'] == 'Nothing found - no further action', 'nothin
x = stopsearch.groupby(['Officer-defined ethnicity', 'outcome']).apply(len).reset_index(name='n')
x

y = x.groupby('Officer-defined ethnicity')['n'].apply(sum).reset_index(name='ntot')
y

z = x.merge(y, on='Officer-defined ethnicity')  # you can join on a column name, or a list of column n
 
# Compute the ratio n/ntot, and display percent_find for each ethnicity
z['percent_find'] = z['n'] / z['ntot'] * 100
z.loc[z['outcome']=='find', ['Officer-defined ethnicity','percent_find']]
# (If we select rows first and then add a column, Pandas will tell us off for trying to modify part of



compute the percent_find  column.

3.6 Extended example
Here is an extended example, a deeper look at the stop and search dataset. The goal of this section is to see how everything
we've learnt comes together. Every piece of data work is different, so don't worry about the details of this example. Instead
you should skim through and just look at the charts, and come back to use this section as a reference if you find yourself
wondering how to produce a similar chart. The general themes illustrated in this example are:

What are common steps we might take when approaching a new dataset?
How do all the various pieces of Python and numpy come together when tidying a dataset?
See a more involved use of merge
Get a flavour of advanced plotting with matplotlib

Matplotlib is a huge and not very coherent library. You'll see some of the most important parts here, but you'll need to make
frequent use of Google, Stack Overflow (https://stackoverflow.com/questions/tagged/matplotlib), the matplotlib gallery
(https://matplotlib.org/2.1.0/gallery/index.html), maybe even the documentation
(https://matplotlib.org/2.1.0/api/pyplot_summary.html).

The first step is analysing a dataframe is always to look at a few of the rows, as we did right at the top of this notebook. I like
to look at a random sample of rows, to get a picture of variety in the data.

In [19]:

(a) Investigate categorical columns

Let's look at one column in detail, Age range . Entries in this column take one of a small number of possible values; it is
what is known as a categorical variable. In other languages we'd store it as an enumeration type, but Python and numpy
have poor support for enumerations, and it's typical to either store it as a string or (if the dataset is huge) to code it as an
integer.

We could use any numpy routines we like to summarize the column, but Pandas column objects have a helpful method 
describe() , which is polymorphic and displays appropriate information for most types of column. (If we want to call 
describe  on a numpy vector, we have to convert it to a Pandas column object first: pandas.Series(x).describe() .)

In [20]:

It tells us, somewhat unhelpfully, that this column is of type object . Numpy insists that each item in a vector or array have

Out[19]:

Type Date
Part of a
policing

operation
Policing

operation Latitude Longitude Gender Age
range

Self-
defined

ethnicity

Officer-
defined

ethnicity
Legisla

364933
Person
search

2016-01-
22T00:10:00+00:00 False NaN 51.252699 -0.015391 Male 18-24

White -
White

British (W1)
White

741425
Person
search

2017-04-
29T14:50:00+00:00 False NaN 51.473878 -0.088951 Male 18-24

White - Any
other White
background

NaN

Misus
Drugs

1
(section

222012
Person
search

2015-09-
01T12:00:00+00:00 NaN NaN NaN NaN Male 25-34

White -
White

British (W1)
White

Misus
Drugs

1
(section

Out[20]: count     759820 
unique         5 
top        18-24 
freq      292998 
Name: Age range, dtype: object

stopsearch.iloc[np.random.choice(len(stopsearch), size=3)]

stopsearch['Age range'].describe()

https://stackoverflow.com/questions/tagged/matplotlib
https://matplotlib.org/2.1.0/gallery/index.html
https://matplotlib.org/2.1.0/api/pyplot_summary.html


exactly the same length, whereas strings are variable length, so Pandas has stored it as a vector of pointers to string objects,
so it displays as dtype=object . Numpy can also store vectors of fixed-length strings, but this is rarely a good idea. In my
experience, numpy has poor support for strings (as one might guess from its name), and I prefer to use general-purpose
Python functions for string handling.

The describe()  method has gotcha behaviour when there are missing values. When Pandas reads a CSV, if there are
missing values then Pandas stores them as NaN (Not a Number — a floating point value, despite its name!). The count
printed out by describe()  doesn't include NaNs.

The standard way to depict a categorical variable is with a histogram. In matplotlib, we have to do the counting ourself and
then draw bars with matplotlib.pyplot.bar  (https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar). Missing
values are a gotcha: we can either convert NaN into the string 'nan'  and show it in the plot, or we can discard NaN values
using pandas.isnull .

In [37]:

Here's another display, a table showing the most frequent items and their counts. We're using np.argsort(-ns)  to
rearrange the rows in the order of decreasing ns , and keeping the first three rows.

In [22]:

(b) Investigate numerical columns
Numerical columns also have a describe()  method, which prints out some standard numerical summaries. The only
numerical columns in this dataset are latitude and longitude, which it's daft to summarize numerically, but here goes.

Out[22]:
Age range n

1 18-24 292998

2 25-34 180725

0 10-17 150286

x = stopsearch['Age range']
 
# Count the number of occurrences of each value in the column
vs,ns = np.unique(x[~pandas.isnull(x)], return_counts=True)  # discard NaN values,
vs,ns = np.unique(x.astype(str), return_counts=True)         # or convert NaN to 'nan'
 
xs = np.arange(len(vs))                                      # pick x coordinates
plt.bar(xs, ns, align='center')                              # you can also set width=...
plt.xticks(xs, vs, rotation=-30, ha='left')                  # specify and label the x ticks
plt.ylabel('count')
plt.show()

pandas.DataFrame({'Age range':vs, 'n':ns}, columns=['Age range','n']).iloc[np.argsort(-ns)[:3]]

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar


In [23]:

The obvious way to plot a numerical column is with a histogram. The matplotlib hist  command doesn't work if there are
missing values, so they must be removed first.

In [24]:

It's sometimes helpful to split a numerical column into categories. Here is a cheap-and-cheerful hack at geocoding. We could
achieve the same effect ourselves by fiddling with np.digitize  (https://docs.scipy.org/doc/numpy-
1.13.0/reference/generated/numpy.digitize.html), but pandas.cut  (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.cut.html) does everything for us. If we want to cut into categories of roughly equal size, use 
pandas.qcut  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html), or fiddle around with 
np.nanpercentile  (https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.nanpercentile.html),

In [25]:

Here's a more intelligent plot of latitude and longitude, a scatter plot, coloured by police force. We iterate through the police
forces and draw a scatter plot for each. The scatterplot automatically picks a new colour each time. (You can also use a
mapping library like gmplot (https://pypi.python.org/pypi/gmplot/1.0.5), which puts nice interactive maps in your Jupyter
notebook, using Google map tiles.)

Out[23]: count    495557.000000 
mean         52.253553 
std           1.099470 
min          49.766800 
25%          51.469594 
50%          51.653199 
75%          53.161358 
max          55.945400 
Name: Latitude, dtype: float64

Out[25]:
n region

0 mid/north 231792

1 nan 312544

2 scotland 304

3 south 263461

stopsearch['Latitude'].describe()

x = stopsearch['Latitude']
plt.hist(x[~pandas.isnull(x)], bins=30)
plt.ylabel('count')
plt.show()

region = pandas.cut(stopsearch['Latitude'], bins=[-np.inf, 51.98, 55.27, np.inf], labels=['south','mid
ns,vs = np.unique(region.astype(str), return_counts=True)
pandas.DataFrame({'region':vs, 'n':ns})

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.digitize.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.nanpercentile.html
https://pypi.python.org/pypi/gmplot/1.0.5


In [55]:

(c) Investigate date/time columns
Dates and times are always a nuisance because of timezones, as xkcd (https://www.xkcd.com/1883/) observes — and also
because of unequal months and leap years and so on, which make it hard work to get axes right in plots. But they're also
very common, so here are a few recipes.

(https://www.xkcd.com/1883/)

Let's look at some typical values in the Date  column.

In [26]:

To find the time of day of each entry (measured in seconds since midnight), we can just trim the string, split it at colons, and
add up the pieces. By using np.vectorize  we can apply this to the entire vector.

In [27]:

Out[26]: array(['2016-08-26T21:13:00+00:00', '2015-11-15T17:45:00+00:00', 
       '2014-12-02T13:10:00+00:00', '2015-11-20T20:00:00+00:00', 
       '2015-04-10T13:45:00+00:00'], dtype=object)

# Plot a sample of points, because there's no point plotting loads of overlaps
df = stopsearch.iloc[np.random.choice(len(stopsearch), size=100000)]
 
for pf in np.unique(df['police_force']):
    i = df['police_force'] == pf
    plt.scatter(df['Longitude'][i], df['Latitude'][i], s=1, alpha=.1) # control size and alpha
 
# Set the aspect ratio, based on the UK's average latitude
plt.gca().set_aspect(1/np.cos(54/360*2*np.pi))
plt.show()

np.random.choice(stopsearch['Date'], 5)

def as_timeofday(s):
    return sum(int(x)*y for x,y in zip(s[11:19].split(':'), [3600,60,1]))
timeofday = np.vectorize(as_timeofday)(stopsearch['Date'])

https://www.xkcd.com/1883/
https://www.xkcd.com/1883/


Here's a plot, a histogram of the time of day of stop-and-search events. There are two fancy things going on here:

The plot size is set using plt.rc_context  (https://matplotlib.org/users/customizing.html), which lets you control size
and many other options.
Colours can be specified (https://matplotlib.org/2.0.2/api/colors_api.html) by name, by string for a grey-level, or by an
(r,g,b) tuple.
Since stop-and-search events happen throughout the night, it's good to show context around midnight. Here we're
showing three versions of the histogram in the same plot, and controlling the colour to draw the viewer's attention to a
24-hour window.

In [28]:

For the fancy plots that follow, we'll want to work with dates. In my experience, there is only one way to maintain your sanity
when working with dates and times:

Store dates and datetimes as Unix timestamps, i.e. as seconds since 1970-01-01 00:00:00.
If timezones are irrelevant in your dataset, then just pretend everything is all UTC.
If timezones are relevant in your dataset, then store UTC timestamps, and store an additional column for timezone offset.
Do not be tempted to store local time.

Every language and every library and every database has its own quirks at dealing with datetimes, and it's not worth wasting
your time on them, except for learning how to convert to a timestamp.

In [43]:

(d) Clever joins
Let's analyse in detail the number of stop-and-search events per day. The naive method, 
stopsearch.groupby('Date').apply(len) , doesn't make sense: it only aggregates the data there is, so it won't produce

a row saying "On date , there were zero events". We need to somehow augment this table to include all possible dates.

Further challenge: this dataset happens to be uneven, with different dates of coverage for different police forces, as this very
terse snippet shows. (You'll find yourself writing very powerful one-liners for quick looks at the data. Don't leave them in your
finished code, because no one else will be able to understand them. This one is left in as an exercise!)

d

ONEHOUR = 3600
with plt.rc_context({'figure.figsize': (8,3)}):
    plt.hist(timeofday/ONEHOUR, bins=np.linspace(0,24,48+1))
    plt.hist(timeofday[timeofday>18*ONEHOUR]/ONEHOUR-24, bins=np.linspace(-6,0,12+1), color=(.5,.6,.7)
    plt.hist(timeofday[timeofday<6*ONEHOUR]/ONEHOUR+24, bins=np.linspace(24,30,12+1), color=(.5,.6,.7)
plt.ylabel('count')
plt.show()

import datetime, pytz
 
def as_timestamp(s):
    t = datetime.datetime.strptime(s[:10], '%Y-%m-%d')  # create a naive datetime (with no timezone sp
    u = t.replace(tzinfo=pytz.UTC)  # set timezone=UTC, otherwise timestamp() is unpredictable
    return int(u.timestamp())
 
# Create a column with the date, stored as a Unix timestamp
stopsearch['t'] = np.vectorize(as_timestamp)(stopsearch['Date'])

https://matplotlib.org/users/customizing.html
https://matplotlib.org/2.0.2/api/colors_api.html


In [44]:

To simplify the problem, let's restrict attention to a single police force. We'll assume that the data covers all incidents from the
earliest date to the latest date present. This assumption should be verified by checking the dataset's original documentation
— and remember, "absence of evidence is not evidence of absence".

In [45]:

(c) Fancy plots
If you want to save any of these plots, you can right-click on them in the browser and choose "save as", to save a bitmap. To
save as PDF, use plt.savefig(filename, transparent=True, bbox_inches='tight', pad_inches=0)  and then (on
Azure Notebooks) choose the Data | Download  menu option.

How many stops are there each day by the Cambridgeshire police force, and how any of them result in something being
found? The plot below is a grouped plot, showing multiple pieces of data. For each piece, we call the usual plot command,
and we also provide label . This picks a different colour for each piece, and it remembers the association between colours
and labels, so that plt.legend()  can draw the right thing.

Out[44]:
police_force days

0 avon-and-somerset 912

1 bedfordshire 851

2 btp 852

3 cambridgeshire 731

4 cheshire 853

stopsearch.groupby('police_force')['t'].apply(lambda t: (max(t)-min(t))/(3600*24)).astype(int).reset_i

# Count the number of stop-and-search per day, grouped by outcome, for Cambridgeshire police force
df = stopsearch.loc[stopsearch['police_force'] == 'cambridgeshire', ['t', 'Outcome']]
df['outcome'] = np.where(df['Outcome'] == 'Nothing found - no further action', 'nothing', 'find')
df = df.groupby(['t', 'outcome']).apply(len).reset_index(name='n')
 
# Build a new dataframe consisting of all possible combinations of 't' and 'find'
# In database language, this is called an 'outer join', and Pandas forces us to do it on a dummy key.
alldays = pandas.DataFrame({'t': range(np.min(df['t']), np.max(df['t']), 3600*24)})
allfind = pandas.DataFrame({'outcome': ['nothing', 'find']})
alldays['k'] = 0
allfind['k'] = 0
allrows = alldays.merge(allfind, on='k', how='outer')[['t','outcome']]
 
# Merge the dataframe of counts, and the dataframe of all possible rows.
# The 'n' column will be filled with NaN for dates/outcomes not present in df, so turn them to 0.
df = df.merge(allrows, on=['t','outcome'], how='outer')
df['n'] = np.where(pandas.isnull(df['n']), 0, df['n'])
 
# Reshape the dataframe, using merge, so it has one row per date, and columns for each outcome.
# (This could also be done by converting a suitable indexed array to a wide-form dataframe.) 
x = df.loc[df['outcome'] == 'nothing', ['t','n']]
y = df.loc[df['outcome'] == 'find', ['t','n']]
df = x.merge(y, on='t', suffixes=('_nothing','_find'))



In [46]:

Let's next look at police activity by day of the week, as measured by average number of stop-and-search events, and let's
also show the variability as measured by the standard deviation. This involves computing two summaries of the data,
combining them, and plotting the result.

In this code I'm doing my own arithmetic on timestamps to get day of week. I find it's easier to do a little bit of arithmetic than
to wade through library documentation about datetime utility functions.

In [47]:

Our final plot is called a facet plot or a panel plot or a small multiples plot. According to the plotting guru Edward Tufte
(https://en.wikipedia.org/wiki/Small_multiple),

# Sort the data by date, because otherwise the plotted lines could go back and forth across the plot
df = df.iloc[np.argsort(df['t'])]
 
# Make real date objects, so that matplotlib knows how to format the axis nicely
dates = np.vectorize(datetime.datetime.utcfromtimestamp)(df['t'])
 
# A grouped plot
with plt.rc_context({'figure.figsize': (16,2.5)}):
    plt.plot(dates, df['n_find']+df['n_nothing'], label='stop')
    plt.plot(dates, df['n_find'], label='find')
plt.legend()
plt.show()

# Compute the weekday for each row.
# Timestamp is measured in seconds since Thu 1970-01-01 00:00, so this computation gives me 0=Mon, 1=T
df['weekday'] = (df['t']//(24*3600) - 4) % 7
weekday_names = ['Mon','Tue','Wed','Thu','Fri','Sat','Sun']
 
# The previous plot suggests there's a change in policing after 2016-09,
# so let's restrict attention to that range 
df['stops'] = df['n_find'] + df['n_nothing']
t0 = datetime.datetime.strptime('2016-10-01', '%Y-%m-%d').replace(tzinfo=pytz.utc).timestamp()
df2 = df.loc[df['t'] >= t0]
 
# Compute the two statistics we want to plot: mean and standard deviation of number of stops
x = df2.groupby('weekday')['stops'].apply(np.mean).reset_index(name='mean_stops')
y = df2.groupby('weekday')['stops'].apply(np.std).reset_index(name='sd_stops')
stats = x.merge(y, on='weekday')
 
# A bar plot with error bars
plt.bar(stats['weekday'], stats['mean_stops'], align='center', facecolor='wheat')
plt.errorbar(stats['weekday'], stats['mean_stops'], yerr=stats['sd_stops'], linestyle='None', ecolor='
plt.xticks(range(0,7), weekday_names)
plt.ylabel('num stopped')
plt.show()

https://en.wikipedia.org/wiki/Small_multiple


At the heart of quantitative reasoning is a single question: Compared to what? Small multiple designs,
multivariate and data bountiful, answer directly by visually enforcing comparisons of changes, of the
differences among objects, of the scope of alternatives. For a wide range of problems in data presentation,
small multiples are the best design solution.

Let's plot a histogram for each day of the week, showing the distribution of the number of stops made.

In [34]:

There are two ways to generate a facet plot.

When we want facets for one variable, as is the case here for the variable weekday , use ax = 
fig.add_subplot(nrows, ncols, i)  (https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure.add_subplot)
to add facets one by one. This creates a new facet in position i , from a nrows * ncols  grid arrangement.
When we want facets for two variables, use fig,ax_array = plt.subplots(nrows,ncols)
(https://matplotlib.org/examples/pylab_examples/subplots_demo.html), as in these demos
(https://matplotlib.org/examples/pylab_examples/subplots_demo.html), to create a full grid of facets in one go.

Previously we have used commands like plt.hist()  to draw histograms, but this code uses ax.hist()  where ax  is an
Axes  object. All the matplotlib plt.*  plotting routines are actually Axes  methods

(https://matplotlib.org/api/axes_api.html), and the plt.*  names are just aliases. For a plot with a single facet, you can use
either style.

with plt.rc_context({'figure.figsize': (8,5), 'figure.subplot.hspace': 0.35}):
 
    # Get a colour map with 7 pretty colours: see https://matplotlib.org/users/colormaps.html
    cols = plt.get_cmap('Set2', 7)
 
    fig = plt.figure()
    for i, weekday in enumerate(range(7)):
        # Create a new facet
        ax = fig.add_subplot(3, 3, i+1)
 
        # Plot the histogram. Force the x-axis bins and y-axis range to be identical in each facet
        ax.hist(df2.loc[df2['weekday']==weekday, 'stops'], alpha=.6, facecolor=cols(i), bins=range(15)
        ax.set_ylim(0,15)
 
        # Some annotations.
        # Suppress the tick labels, except on the outside facets.
        ax.axvline(x=np.median(df2['stops']), linestyle='dotted', color='.3')
        ax.set_title(weekday_names[weekday])
        if i < 4: ax.set_xticklabels([])
        if (i % 3) != 0: ax.set_yticklabels([])
 
fig.suptitle('Number of stops')
plt.show()

https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure.add_subplot
https://matplotlib.org/examples/pylab_examples/subplots_demo.html
https://matplotlib.org/examples/pylab_examples/subplots_demo.html
https://matplotlib.org/api/axes_api.html


A1. Python language choices

Goal of this notebook: See how Python fits in with the ideas you learnt in IA Concepts in programming languages and
Object oriented programming.

Python development documents are called Python Enhancement Proposals (PEPs) (https://www.python.org/dev/peps/).
Significant changes in the language, or in the standard libraries, are discussed in mailing lists and written up for review as a
PEP. PEPs typically suggest several ways a feature might be implemented, and give the reason for choosing one of them. If
consensus is not reached to accept the PEP, then the reasons for its rejection are also documented. They are fascinating
reading if you are interested in programming language design.

The PEPs are a lot of reading, and so this document is a quick summary of certain features of Python and how they relate to
ML and Java.

A1.1 Dynamic typing
Consider the functions

def double_items(xs):  
   return [x*2 for x in xs] 

def goodfunc(): 
   return double_items([1,2,[3,4]]) + double_items("hello world") 

def badfunc(): 
   return double_items(10) 

Python uses dynamic typing, which means that values are tagged with their types during execution and checked only then.
So we won't be told of any errors until badfunc()  is invoked, even though it's clear before executing it that badfunc  will
fail.

Python programmers are encouraged to use duck typing, which means that you should test values for what they can do
rather than what they're tagged as. "If it walks like a duck, and it quacks like a duck, then it's a duck". In this example, 
double_items(l)  iterates through xs  and applies *2  to every element, so it should apply to any xs  that supports

iteration and whose elements all support *2 . These mean different things: iterating over a list returns its elements while
iterating over a string returns its characters; doubling a number is an arithmetical operation, doubling a string or list repeats it.
Python does allow you to test the type of a value with e.g. if isinstance(x, list): ... , but programmers are
encouraged not to do this.

Python's philosophy is that library designers are providing a service, and programmers are adults. If a library function uses
comparison and addition, and if the end-user programmer invents a new class that supports comparison and addition, then
why on earth shouldn't the programmer be allowed to use the library function? (I've found this useful for simulators: I replaced
"real-valued timestamp" with "rich timestamp class that supports auditing, listing which events depended on which other
events", and I didn't have to change a single line of the simulator body.) Some statically typed languages like Haskell and
Scala support this via dynamic type classes, but their syntax is rather heavy.

To make duck typing useful, Python has a long list of special method names
(https://docs.python.org/3/reference/datamodel.html#special-method-names) so that you can create custom classes
supporting the same operations as numbers, or as lists, or as dictionaries. For example, if you define a new class with the
method __iter__  (https://docs.python.org/3/reference/datamodel.html#object.__iter__) then your new class can be iterated
over just like a list.

Example: trees
Suppose we want to define a tree whose leaves are integers and whose branches can have an arbitrary number of children.
Actually, in Python, there's nothing to define: we can just start using it, using a list to denote a branch node.

x = [1,[[2,4,3],9],[5,[6,7],8]] 

To flatten a list like this we can use duck typing: given a node n , try to iterate over its children, and if this fails then the node
must be a leaf so just return [n] .

https://www.python.org/dev/peps/
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#object.__iter__


def flatten(n): 
   try: 
       return [y for child in n for y in flatten(child)] 
   except TypeError as e: 
       return [n] 

flatten(x)  # returns [1, 2, 4, 3, 9, 5, 6, 7, 8] 

This would work perfectly well for trees containing arbitrary types — unless the end-user programmer puts in leaves which
are themselves iterable, in which case the duck typing test doesn't work — unless that is the user's intent all along, to be able
to attach new custom sub-branches...

A solution is to define a custom class for branch nodes, and use isinstance  to test each element to see if it's a branch
node. This is not very different to the ML solution, which is to declare nodes to be of type "either leaf or branch" — except that
Python would still allow leaves of arbitrary mixed type.

A1.2 None, Maybe, Enumeration types
It's often handy for functions to be able to return either a value, or a marker that there is no value. For example, 
head(list)  should return a value unless the list is empty in which case there's nothing to return. A common pattern in

statically typed languages is to have a datatype that explicitly supports this, for example we'd define head  to return an
enumeration datatype with a constructor function, None | Some['a] . This forces everyone who uses head  to check
whether or not the answer is None .

In Python, the return type of a function isn't constrained. It's a common convention to return None  if you have nothing to
return, and a value otherwise, and to trust that the person who called you will do the appropriate checks.

Enumeration types are also used for general type restriction, e.g. to limit what can be placed in a list. When we actually do
want to achieve this, Python isn't much help. It does have an add-on library for enumeration types
(https://docs.python.org/3/library/enum.html), but it's a lot of work for little benefit.

One situation where enumeration types are very useful is when working with categorical values in data Section 3
(3.%20Working%20with%20data.ipynb). When working with data, the levels of the enumeration are decided at runtime (by
the contents of the data we load in), so a compile-time type annotation is no use; but Python's dynamic typing is also no help
in preventing errors.

A1.3 Functions as values
In Python, as in ML, functions are values. A common pattern is to define functions that return parameterized functions, e.g.

def percentile(p): 
   def f(xs): 
       return xs[int(p*len(xs))] 
   return f 

I can define median = percentile(.5)  and lower_quartile = percentile(.25) , and then apply median  and 
lower_quartile  to lists. The thing returned by percentile  is a function f  which also remembers the value p ; this

'function plus variables it needs' is called a closure. In Python, the outer function is called a decorator .

In Python web servers, it's common to define decorators for purposes like user authentication, cross-site scripting checks,
etc.

A1.4 Lists, lazy lists and generators
Python has lazy lists, which it calls generators. The simplest way to define a generator is like a list comprehension, but using 
(...)  rather than [...] . Consider the following code:

def f(x): 
   if x == 5: 
       raise Exception("Bad value!") 
   else: 
       return x + 1 

xs = range(10) 
ys = (f(x) for x in xs)   # doesn't raise exception 
zs = [f(x) for x in xs]   # raises exception 

https://docs.python.org/3/library/enum.html
http://localhost:8888/notebooks/3.%20Working%20with%20data.ipynb


This code raises an exception on the last line. The preceding line doesn't, because ys  is a lazy list, not evaluated until you
need it. We could for example pull out the first three values of ys  by

[next(ys) for _ in range(3)] 

and no exception would be raised because we haven't hit the bad value. (Here, _  is a variable name, like any other. It's a
convention to use _  for loop variables that you don't use for anything.)

Python also has a simple syntax for defining infinite lazy lists, using the yield . For example,

def fib(): 
   a,b = 1,1 
   while True: 
      yield a 
      a,b = b, a+b 

f = fib() 
[next(f) for _ in range(20)]  # produces the first 20 Fibonnaci numbers 

This is like a closure, but richer: the f  object remembers not only the variables a  and b  in its scope, but also the point
where it should resume when next next(f)  is called.

A1.5 Object-oriented programming
Python is an object-oriented programming language. Every value is an object. You can see the class of an object by calling 
type(x) . For example,

x = 10 
type(x)    # reports int 
dir(x)     # gives a list of x's methods and attributes 

It supports inheritance and multiple inheritance, and static methods, and class variables, and so on. It doesn't support
interfaces, because they don't make sense in a duck typing language.

Here's a quick look at a Python object, and at how it might be used for the flatten  function earlier.

class Branch(object): 
   def __init__(self, children): 
       self.children = children 

def flatten(n): 
   if isinstance(n, Branch): 
       return [y for child in n.children for y in flatten(child)] 
   else: 
       return [n] 

x = Branch([10,Branch([3,2]),"hello"]) 
flatten(x) 

y = Branch([]) 
y.my_label = "added an attribute" 

Every method takes as its first argument a variable referring to the current object, this  in Java.

The last two lines are surprising. You can "monkey patch" an object, after it has been created, to change its attributes or give
it new attributes. Like so many language features in Python, this is sometimes tremendously handy, and sometimes the
source of infuriating bugs.

Python doesn't support private and protected access modifiers, except by convention. The convention is that attributes and
functions whose name beings with an underscore are considered private, and may be changed in future versions of the
library.



A2. Vectorized thinking

Goal of this notebook: Understand some more of the systems context behind vectorized thinking.

Vectorized thinking is great for conciseness. Surely no one would prefer

assert len(xs) == len(ys) 
[xs[i] + ys[i] for i in range(len(xs))] 

when they can just write

xs + ys 

But vectorized coding is perhaps more important from the point of view of performance. Suppose xs  and ys  are both very
large vectors. With list comprehension, it's almost impossible for the compiler to figure out that the operation can be
parallelized, and that each core of a multicore machine could be working on a chunk of the data.

Here's another example. Suppose we have a vector xs  where each entry is the contents of a web page, and the entire
vector is 100 TB and it's sharded across machines, and we want to compute

m = -inf 
for x in xs: 
   m = max(m, f(x)) 

where f  is some scoring function that is slow to evaluate. Again, it's hard for a compiler to see how to achieve parallelism
when the function is written out as an explicit iteration. (Maybe not hard in this case, but hard in the general case!) But it's
easy to see how the computation could be distributed: tell each machine in the cluster to work on the fragment of data it can
reach and compute the maximum over its fragment, then assemble the maximums from each machine. If we write the
computation abstractly, e.g.

reduce(pairwise_max, -inf, map(f, xs)) 

then the compiler can figure out how to distribute it.

Vectorized thinking means avoiding for  loops and instead writing our computations in a way that shows our intention more
clearly, to give the compiler a chance to figure out what can be distributed and parallelized.



A3. Data import and cleanup
In my experience, around 75% of the time you spend working with data will be fighting to import it and clean it up. For the
most part this is just general-purpose programming, but there are a few library routines that will save you from reinventing the
wheel.

A3.0 Preamble
A3.1 Reading from a csv file
A3.2 Reading from a url
A3.3 Parsing a log file with regular expressions
A3.4 Reading JSON from a web service
A3.5 Scraping a website with xpath
A3.6 Querying an SQL database

Treat this section as a collection of recipes and pointers to useful library routines. If you find yourself needing them, you
should read the recipe, try it out, then look online for more information about the library functions it suggests.

A3.0 Preamble

In [1]:

A3.1 Reading from a csv file 
When your data is a very simple comma-separated value (CSV) file then it's very easy to import. A CSV file looks like this: a
header line, then one line per row of the data frame, values separated by commas.

"Sepal.Length","Sepal.Width","Petal.Length","Petal.Width","Species" 
5.1,3.5,1.4,0.2,"setosa" 
4.9,3,1.4,0.2,"setosa" 
4.7,3.2,1.3,0.2,"setosa" 
4.6,3.1,1.5,0.2,"setosa" 
5,3.6,1.4,0.2,"setosa" 

Here is code to import a simple CSV file. You can specify either a filename or a URL.

In [2]:

The with  syntax is useful for files and similar objects which need to be closed/released after we've finished with them, to
avoid memory leaks. It's equivalent to calling f=open('data/iris.csv') , then running the other commands, then calling 
f.close() .

If your file is nearly a CSV but has some quirks such as comments or a missing header row, experiment with the options in 
pandas.read_csv  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html) or 
pandas.read_table  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_table.html). For extreme

quirks you may need to use the raw Python csv.reader  (https://docs.python.org/3/library/csv.html#csv.reader).

A3.2 Reading from a URL or other file-like object
If all you want to do is fetch a URL, you can use pandas.read_csv(url) . If you want more control over the http request,
for example sending a POST request or modifying the request header or reading the response header, use the request
library.

# Import modules, and give them short aliases so we can write e.g. np.foo rather than numpy.foo
import math, random
import numpy as np
import matplotlib.pyplot as plt
import pandas
# The next line is a piece of magic, to let plots appear in our Jupyter notebooks
%matplotlib inline 

with open('res/iris.csv') as f:
    df = pandas.read_csv(f)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_table.html
https://docs.python.org/3/library/csv.html#csv.reader


In [4]:

You can also read from a string as if it were a file using io.StringIO  (https://docs.python.org/3/library/io.html#io.StringIO).
This is sometimes handy for debugging.

In [8]:

A3.3 Parsing a text log file
A typical line from a web server log might look like this

207.46.13.169 - - [27/Aug/2017:06:52:11 +0000] "GET /marcus/essay/st&h2.html HTTP/1.1" 200 38
81 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X) AppleWebKit/537.51.1 (KHTML, li
ke Gecko) Version/7.0 Mobile/11A465 Safari/9537.53 (compatible; bingbot/2.0; +http://www.bin
g.com/bingbot.htm)" 

where (according to the Apache web server documentation (https://httpd.apache.org/docs/2.4/logs.html#combined)) the
pieces are

207.46.13.169  The IP address that made the request
-  The identity of the client; -  means not available
-  The userid of the logged-in user who made the request; -  means not available
[27/Aug/2017:06:52:11 +0000]  The time the request was received
"GET /marcus/essay/st&h2.html HTTP/1.1"  The type of request, what was requested, and the connection type
200  The http status code (https://en.wikipedia.org/wiki/List_of_HTTP_status_codes) (200 means OK)
3881  The size of the object returned to the client, in bytes
-  The referrer URL; -  means not available
"Mozilla/5.0 (...)"  The browser type. The substring bingbot  here tells us that the request comes from Microsoft

Bing's web crawler.

To extract these pieces from a single line of the log file, the best tool is regular expressions
(https://docs.python.org/3.4/library/re.html), a mini-language for string matching that is common across many programming
languages. The syntax is terse and takes a lot of practice. I like to start with a small string pattern and incrementally build it
up, testing as I go.

In [9]:

Out[9]: <_sre.SRE_Match object; span=(0, 16), match='\n207.46.13.169 -'>

import urllib.request  # standard library for web requests
my_url = "https://teachingfiles.blob.core.windows.net/scicomp/iris.csv"
with urllib.request.urlopen(my_url) as f:
    df = pandas.read_csv(f)

import io
f = io.StringIO('''
x,y
10,3
2,5
''')
df = pandas.read_csv(f)

import re    # standard Python module for regular expressions
s = """
207.46.13.169 - - [27/Aug/2017:06:52:11 +0000] "GET /marcus/essay/st&h2.html HTTP/1.1" 
200 3881 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X)
AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/9537.53
(compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"
"""
 
# First attempt: match the first two items in the log line.
# If my pattern is right, re.match returns an object.
# If my pattern is wrong, re.match returns None.
pattern_test = r'\s*(\S+)\s*(\S+)'
re.match(pattern_test, s)

https://docs.python.org/3/library/io.html#io.StringIO
https://httpd.apache.org/docs/2.4/logs.html#combined
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://docs.python.org/3.4/library/re.html


In [10]:

Exercise. Why not use s.split(' ') ?

How do we extract the fields from a full log file? The standard Python code is

with open(myfile) as f: 
   for line in f: 
       m = re.match(pattern, line) 
       # store the fields from m.groups() or m.groupdict() somewhere appropriate 

Alternatively, numpy  has a handy shortcut for reading in an entire file and splitting it via a regular expression:

Out[10]: {'client': '-', 
'ip': '207.46.13.169', 
'ref': '-', 
'req': 'GET /marcus/essay/st&h2.html HTTP/1.1', 
'size': '3881', 
'status': '200', 
't': '27/Aug/2017:06:52:11 +0000', 
'ua': 'Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X)\nAppleWebKit/537.51.1 (KHTML, like Gec

ko) Version/7.0 Mobile/11A465 Safari/9537.53\n(compatible; bingbot/2.0; +http://www.bing.com/bingbo
t.htm)', 
'user': '-'}

# This is the full pattern I built up to. Python lets us add verbose comments
# to the pattern, which is handy for remembering what your code does when you look
# at it the next morning.
pattern = r'''(?x)  #   flag saying that this pattern has comments
\s*                 #   any whitespace at the start of the string
(?P<ip>\S+)         # one or more non-space characters: the IP address
\s+                 #   one or more spaces
(?P<client>\S+)     # the client identity
\s+
(?P<user>\S+)       # the userid
\s+
\[(?P<t>[^\]]*)\]   # [, then any number of not-] characters, then ]: the timestamp
\s+
"(?P<req>[^"]*)"    # ", then any number of not-" characters, then ": the request string
\s+
(?P<status>\d+)     # one or more numerical digits: the http status code
\s+
(?P<size>\d+)       # one or more numerical digits: the size
\s+
"(?P<ref>[^"]*)"    # the referrer URL
\s+
"(?P<ua>[^"]*)"     # the user agent i.e. browser type
'''
m = re.match(pattern, s)
m.groupdict()       # returns a dictionary of all the named sub-patterns



In [32]:

A3.4 Reading json from a web data service
More and more forward-thinking companies and government services make data available by simple web requests. Here is
an example, importing river levels from the UK's real-time flood monitoring API (http://environment.data.gov.uk/flood-
monitoring/doc/reference).

The first step is to import the Python module for making web requests. When I'm developing data code I like to build it up in
small steps, which means lots of repeated requests, so I also like to use another Python module which caches responses.
This means I don't hammer the service unnecessarily.

In [2]:

The flood monitoring API documentation (http://environment.data.gov.uk/flood-monitoring/doc/reference) tells us the URL for
fetching a list of all stations, {root}/id/stations . Let's try it.

In [3]:

Now let's look at the body of the response. It's likely to be very long, so we'll only print out the first 300 characters.

In [4]:

It looks like JSON (https://en.wikipedia.org/wiki/JSON), "JavaScript Object Notation", a common format for web data services.
It's easy to turn it it into Python dictionaries and lists, and to explore what it contains. (Alternatively, just read the web service
documentation, if you trust it!)

Out[32]:
client ip ref req size status

0

- 207.46.13.169 - GET /marcus/essay/st&h2.html
HTTP/1.1 3881 200 27/A

1

- 31.218.127.114 https://www.google.ae/
GET

/damon/recipe/oventemperatures.html
HTTP/1.1

879 200 27/A

2

- 31.218.127.114 http://www.wischik.com/damon/recipe/oventemper... GET /damon/recipe/recipe.css
HTTP/1.1 1118 200 27/A

3

- 31.218.127.114 http://www.wischik.com/damon/recipe/oventemper... GET /favicon.ico HTTP/1.1 503 404 27/A

Out[3]: <Response [200]>

Out[4]: '{ \n  "@context" : "http://environment.data.gov.uk/flood-monitoring/meta/context.jsonld" ,\n  "met
a" : { \n    "publisher" : "Environment Agency" ,\n    "licence" : "http://www.nationalarchives.gov.
uk/doc/open-government-licence/version/3/" ,\n    "documentation" : "http://environment.data.gov.uk/
flood-m'

# Split the file into an array, one row per line, one column per field in the pattern
df = np.fromregex('res/webaccess_short.log', pattern, dtype=np.unicode_)
# Make a dictionary out of the columns, according to the named fields in the pattern
df = pandas.DataFrame({v: df[:,i-1] for v,i in re.compile(pattern).groupindex.items()})
 
df[:4]

import requests, requests_cache
requests_cache.install_cache('floodsystem', backend='memory')

# Make the request. This should print out <Response [200]>, meaning successfully retrieved
stations_resp = requests.get('http://environment.data.gov.uk/flood-monitoring/id/stations')
stations_resp

stations_resp.text[:300]

http://environment.data.gov.uk/flood-monitoring/doc/reference
http://environment.data.gov.uk/flood-monitoring/doc/reference
https://en.wikipedia.org/wiki/JSON


In [5]:

Data from web services is often patchy and inconsistent, so your code for processing it should be full of error handling. For
example,

rivers = [s['riverName'] for s in stations] 

will fail because riverName  isn't present for all stations. You might use one of these instead:

rivers = [s.get('riverName', None) for s in stations] 
rivers = [s['riverName'] for s in stations if 'riverName' in s] 

Here's how we might turn the data into a data frame:

In [8]:

A3.5 Scraping a website with xpath

<class 'dict'> 
dict_keys(['@context', 'meta', 'items']) 
<class 'list'> 
4346 

Out[5]: {'@id': 'http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH', 
'RLOIid': '7041', 
'catchmentName': 'Cotswolds', 
'dateOpened': '1994-01-01', 
'easting': 417990, 
'label': 'Bourton Dickler', 
'lat': 51.874767, 
'long': -1.740083, 
'measures': [{'@id': 'http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-level-down

stage-i-15_min-mASD', 
  'parameter': 'level', 
  'parameterName': 'Water Level', 
  'period': 900, 
  'qualifier': 'Downstream Stage', 
  'unitName': 'mASD'}, 
 {'@id': 'http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-level-stage-i-15_min-m

ASD', 
  'parameter': 'level', 
  'parameterName': 'Water Level', 
  'period': 900, 
  'qualifier': 'Stage', 
  'unitName': 'mASD'}], 
'northing': 219610, 
'notation': '1029TH', 
'riverName': 'Dikler', 
'stageScale': 'http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH/stageScale', 
'stationReference': '1029TH', 
'status': 'http://environment.data.gov.uk/flood-monitoring/def/core/statusActive', 
'town': 'Little Rissington', 
'wiskiID': '1029TH'}

x = stations_resp.json()
print(x.__class__)                        # The top-level response is a dictionary
print(x.keys())                           # What are its keys? 'items' sounds promising.
print(x['items'].__class__)               # 'items' is a list,
print(len(x['items']))                    # with 4363 elements.
 
stations = stations_resp.json()['items']  # This is what we're really after
stations[0]                               # Look at a single sensor

df = pandas.DataFrame({
    'label': np.array([s['label'] for s in stations]),
    'riverName': np.array([s.get('riverName',None) for s in stations]),
    'town': np.array([s.get('town',None) for s in stations])
})
 
# Each station has zero or more measures. Pick out the first 'water level' measure at each.
# The field measure['@id'] is the url to use to get water level readings.
measures = [[m for m in s.get('measures',{}) if m['parameter']=='level'] for s in stations]
df['url'] = np.array([ms[0]['@id'] if len(ms)>0 else None for ms in measures])



There are fascinating stories to be discovered from public data, and sometimes you have to work to scrape it from web
pages. Here's an acount (https://onlinejournalismblog.com/2016/11/29/how-the-bbc-england-data-unit-scraped-airport-noise-
complaints/) by a BBC data journalist. We'll work with a very simple example: extracting results of the Oxford / Cambridge
boat race from the Wikipedia table (https://en.wikipedia.org/wiki/List_of_The_Boat_Race_results#Main_race).

I recommend using XPath queries (https://www.w3.org/TR/xpath20/) from the lxml  (http://lxml.de/) module. XPath is a
powerful mini-language for extracting data from hierarchical documents, with wide support across many programming
languages — think of it as regular expressions but for html rather than plain text. If you want to scrape websites then it's
worth finding a tutorial and learning XPath. For this course, we'll just see how to use XPath in Python.

The first step is to install lxml , which is not included with Python.

In [ ]:

Now we'll fetch the web page and parse the contents. Most web pages are badly-formatted html (sections not properly
closed, etc.), and lxml.html.fromstring  makes a reasonable attempt to make sense of it.

In [10]:

This gives us doc , the root <html>  element, which we can inspect.

In [11]:

We want to pull out a particular element from the document, namely the table with boat race results, so we need to work out
how to refer to it in XPath. The Chrome webbrowser has a handy tool to help with this. Go to the page you're interested in,
and click on View | Developer | Developer Tools. Click on the element-selector button at the top left:

Go back to the web page, and click on a piece close to what you want to select. I clicked on the top left cell of the table:

Go back to the developer tools window, and navigate to the exact element you want. Here, we want the table. Right-click and
choose Copy | Copy XPath.

It gave me the XPath location "//*[@id="mw-content-text"]/div/table[2]" . Now we can extract the data.

html 
2 
['head', 'body'] 
{'class': 'client-nojs', 'lang': 'en', 'dir': 'ltr'} 
 
 None 

!pip install lxml

import requests
import lxml.html
boatrace_url = 'https://en.wikipedia.org/wiki/List_of_The_Boat_Race_results'
resp = requests.get(boatrace_url)
doc = lxml.html.fromstring(resp.content)

print(doc.tag)               # the type of element
print(len(doc))              # the number of children
print([n.tag for n in doc])  # tags of its children, <head> and <body>
print(doc.attrib)            # get the attributes, e.g. <html class="client-nojs" lang="en" dir="ltr">
print(doc.text, doc.tail)    # any text directly under in this element

https://onlinejournalismblog.com/2016/11/29/how-the-bbc-england-data-unit-scraped-airport-noise-complaints/
https://en.wikipedia.org/wiki/List_of_The_Boat_Race_results#Main_race
https://www.w3.org/TR/xpath20/
http://lxml.de/


In [13]:

You should consider the ethics of your web scraping. Here are some thoughts: from Sophie Chou at the MIT Media Lab
(http://www.storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web/),
and the data journalist Näel Shiab (https://gijn.org/2015/08/12/on-the-ethics-of-web-scraping-and-data-journalism/).

A3.6 Querying an SQL database

Once your data is in an SQL database, access is easy. Here's an example with Postgresql, a dialect of SQL. I don't like to
include secret credentials in an Azure notebook. Instead, I store the credentials in a file, and I make sure the file isn't cloned
in a public repository. The file looks something like

{"user": "***", "password": "***", "host": "***", "dbname": "***"} 

so that Python can load it in as a simple dictionary. The syntax connect(**creds)  passes each item in the dictionary as a
named argument, i.e. connect(user="***", ...) .

In [37]:

You can run arbitrary SQL queries. Pass in parameters with the %(name)s  quoting mechanism, to keep yourself safe from
SQL injection attacks.

<tr> 
<td align="center"><a href="/wiki/The_Boat_Race_1829" title="The Boat Race 1829">1</a></td> 
<td align="center"><span class="sortkey" style="display:none;speak:none">000000001829-06-10-0000</sp
an><span style="white-space:nowrap">10 June 1829</span> <img alt="dagger" src="//upload.wikimedia.or
g/wikipedia/commons/3/37/Dagger-14-plain.png" width="9" height="14" data-file-width="9" data-file-he
ight="14"/><br/> 
<span style="color:red;font-size:85%">1830–1835 no race</span></td> 
<td style="background:#004685; color:#FFFFFF" align="center">Oxford</td> 
<td align="center">14:03</td> 
<td align="center"><span style="display:none">999</span>Easily</td> 
<td align="center">1</td> 
<td align="center">0</td> 
</tr> 
 

Out[13]:
t winner

0 000000001829-06-10-0000 Oxford

1 000000001836-06-17-0000 Cambridge

2 000000001839-04-03-0000 Cambridge

3 000000001840-04-15-0000 Cambridge

4 000000001841-04-14-0000 Cambridge

# Pick out the table element.
# (XPath queries return lists, but I only want one item, hence the [0].)
table = doc.xpath('//*[@id="mw-content-text"]/div/table[2]')[0]
 
# Get a list of all rows i.e. <tr> elements inside the table.
# Print one, to check things look OK.
rows = table.xpath('.//tr')
print(lxml.etree.tostring(rows[1], encoding='unicode'))
 
# Extract the timestamp and winner columns.
# The timestamp is in the second child, in a <span> element with class "sortkey".
# The winner is in the third child.
df = {'t': [row[1].xpath('.//span[contains(@class, "sortkey")]')[0].text for row in rows[1:]],
      'winner': [row[2].text for row in rows[1:]]}
df = pandas.DataFrame(df)
df[:5]

import psycopg2    # module for connecting to a Postgresql database
import json        # standard module for reading json files
 
creds = json.load(open('res/secret_creds.json'))
conn = psycopg2.connect(**creds)

http://www.storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web/
https://gijn.org/2015/08/12/on-the-ethics-of-web-scraping-and-data-journalism/


In [35]:

Out[35]:
index uri label id catchment river town lat lng index m

0

345 http://environment.data.gov.uk/flood-
monitorin...

Great
Chesterford E21778

Cam and
Ely Ouse

(Including
South
Level)

River
Cam

Great
Chesterford 52.061730 0.194279 397

1

800 http://environment.data.gov.uk/flood-
monitorin...

Weston
Bampfylde 52113

Parrett,
Brue and

West
Somerset

Streams

River
Cam

Weston
Bampfylde 51.023159 -2.565568 918

2

1272 http://environment.data.gov.uk/flood-
monitorin...

Cambridge
Baits Bite E60101

Cam and
Ely Ouse

(Including
South
Level)

River
Cam Milton 52.236542 0.176925 1454

cmd = '''
SELECT *
FROM flood_stations AS s JOIN flood_measures AS m ON (m.station_uri = s.uri) 
WHERE river = %(river)s OR town = %(town)s
LIMIT 3
'''
pandas.read_sql(cmd, conn, params={'river': 'River Cam', 'town': 'Cambridge'})



Assignment 2. Econophysics simulator
Economic inequality is one of the defining social issues of our age. Yet we have a poor grasp of the scale of inequality, as
described in Scientific American (https://www.scientificamerican.com/article/economic-inequality-it-s-far-worse-than-you-
think/) and nicely shown in this video (https://www.youtube.com/watch?v=QPKKQnijnsM):

(https://www.youtube.com/watch?v=QPKKQnijnsM)

How does inequality arise? Is it an inevitable outcome of liberal economics, and if so how can it be mitigated by economic
policy? These questions have been studied by economists (https://link.springer.com/article/10.1140/epjst/e2016-60162-3)
and more recently by (https://phys.org/news/2007-04-world-economies-similarities-economic-inequality.html) physicists
(https://arxiv.org/abs/1606.06051). In this assignment you will investigate a simple "econophysics" model of inequality. The
notes for §2 (2.%20Numerical%20computation.ipynb) suggest ways to take the investigation further.

About this assignment: This assignment tests your vectorized thinking. You will be asked to run simulations on a
population of hundreds of thousands of individuals, over many timesteps. YOUR CODE MUST USE NUMPY
VECTORIZED OPERATIONS rather than iterating over the population. You may use Python iteration over timesteps.
You can organize your code however you like. Please create a new notebook for your answers to this assignment.

Part A: kinetic exchange model
This section is worth 1 mark. Check your answers as described in §0.3 (0.%20About%20this%20course.ipynb#grader) using 
section='assignment2a' .

Here is a simple model. There are  individuals in the population, each with an initial wealth of £1. Every timestep, we
randomly group them into  pairs. (Assume  is even.) For every pair, we simulate an economic exchange, as follows. Let
the two paired individuals have wealth  and , and update their wealth according to

where  is a random number in , chosen independently for every pair and at every timestep. This model is loosely
inspired by the physics of gases, in which two gas molecules exchange a random amount of energy whenever they collide.

We can measure inequality with the Gini coefficient (https://en.wikipedia.org/wiki/Gini_coefficient),

where  is the smallest value,  the second smallest etc. If everyone has the same wealth then ; if one person
has all the wealth then .

N

N/2 N

v w

= R(v + w), = (1 − R)(v + w)vnew wnew

R [0, 1]

G = 2 − (1 + )
i∑N

i=1 w(i)

N∑i w(i)

1

N

w(1) w(2) G = 0

G = 1 − 1/N

Question 1. The model needs us to randomly group the population into  pairs. We can do this by randomly permuting the
vector , letting the vector m1  consist of the first  integers and m2  consist of the rest, and interpreting it as
" m1[i]  is paired with m2[i] ".

Write a function pairs(N)  that returns a tuple (m1,m2)  where m1  and m2  are both vectors of length  as described
above. For example, if you run pairs(6) , you might get the output

(array[(3, 0, 1]), array([2, 4, 5]))

N/2

[0, . . . ,N − 1] N/2

N/2

https://www.scientificamerican.com/article/economic-inequality-it-s-far-worse-than-you-think/
https://www.youtube.com/watch?v=QPKKQnijnsM
https://www.youtube.com/watch?v=QPKKQnijnsM
https://link.springer.com/article/10.1140/epjst/e2016-60162-3
https://phys.org/news/2007-04-world-economies-similarities-economic-inequality.html
https://arxiv.org/abs/1606.06051
http://localhost:8888/notebooks/2.%20Numerical%20computation.ipynb
http://localhost:8888/notebooks/0.%20About%20this%20course.ipynb#grader
https://en.wikipedia.org/wiki/Gini_coefficient


# Submitting your answer: 
q = GRADER.fetch_question('q1') 
m1,m2 = pairs(q.n) 
ans = {'n': len(np.unique(np.concatenate([m1,m2]))), 's': np.std(np.abs(m1-m2))} 
GRADER.submit_answer(q, ans) 

Question 2. Write a function kinetic_exchange(v,w)  which takes two wealth vectors v  and w , each of length , and
returns a tuple (vnew, wnew)  with two new vectors, according to the kinetic exchange model.

# Submitting your answer: 
q = GRADER.fetch_question('q2') 
v,w = np.linspace(1,5,q.n), np.linspace(1,2,q.n)**q.p 
vnew,wnew = kinetic_exchange(v,w) 
ans = {'m1': np.mean(vnew), 's2': np.std(wnew)} 
GRADER.submit_answer(q, ans) 

N/2

Question 3. Write a function gini(w)  which takes a vector w  and returns the Gini coefficient.

# Submitting your answer: 
q = GRADER.fetch_question('q3') 
w = np.linspace(0,1,q.n)**q.p 
g = gini(w) 
GRADER.submit_answer(q, {'g': g}) 

Question 4. Write a function sim(N, T)  which runs the kinetic exchange model on a population of  individuals for 
timesteps. It should return a pair (w, gs)  where w  is the wealth vector after  timesteps, and gs  is a length  vector
where gs[i]  is the Gini coefficient at timestep .

# Submitting your answer: 
q = GRADER.fetch_question('q4') 
w,gs = sim(q.n, q.t) 
ans = {'gm': np.mean(gs[int(q.t/2):]), 'gs': np.std(gs[int(q.t/2):]), 'ws': np.std(w)} 
GRADER.submit_answer(q, ans) 

N T

T T

i

Question 5. Simulate a population of 500,000 over 30 iterations. Plot the Gini coefficient as a function of timestep. To be
precise, if  is the wealth vector after  timesteps then you should plot  on the -axis and  on the -axis.. (You don't
have to submit your plot, but it may be assessed in the ticking session.) Your plot should look something like this:

wt t 𝗀𝗂𝗇𝗂( )wt y t x

Part B: economic mobility
This section is worth 1 mark. Check your answers as described in §0.3 (0.%20About%20this%20course.ipynb#grader) using 
section='assignment2b' .

Some degree of inequality might be acceptable if economic mobility were high, i.e. if everyone had similar chances of
reaching either end of the wealth distribution. Economic mobility is often measured by splitting the population into five equal
brackets, and measuring the chance of moving between brackets. From the Wikipedia article on economic mobility

http://localhost:8888/notebooks/0.%20About%20this%20course.ipynb#grader
https://en.wikipedia.org/wiki/Economic_mobility


(https://en.wikipedia.org/wiki/Economic_mobility):

in terms of relative mobility a report (https://www.brookings.edu/research/economic-mobility-of-families-
across-generations/) stated: "contrary to American beliefs about equality of opportunity, a child’s economic
position is heavily influenced by that of his or her parents." 42% of children born to parents in the bottom fifth
of the income distribution ("quintile") remain in the bottom, while 39% born to parents in the top fifth remain at
the top.

Let's measure economic mobility by recording the wealth distribution at one timepoint, and again some number of timesteps
later, splitting the two distributions into quintiles, and counting what fraction of the population moved by more than one
quintile from beginning to end. (In each timestep a median individual might find their wealth increasing or decreasing by
around 50%, so one timestep corresponds roughly to several years of human life.) For example, if we have a population of
5000 and we draw up a matrix  where  is the number of people who start in quintile  and end up in quintile , we might
get

(A quick check: the row sums and column sums are all 1000.) The number who moved by more than one quintile is 1148,
which is 23% of the population.
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Question 6. In a perfectly mobile economy, where everyone has equal chance of reaching any quintile, what fraction of
people are expected to move by more than one quintile?

q = GRADER.fetch_question('q6') 
GRADER.submit_answer(q, your_answer) 

Question 7. Write a function mobility(v,w)  that returns the proportion of people who moved by more than one quintile,
where v[i]  and w[i]  measure respectively the wealth of individual  at the beginning and end of a time period. Hint: look
up np.percentile  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile) and 
np.digitize  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html).

# Submitting your answer: 
q = GRADER.fetch_question('q7') 
v,w = np.arange(q.n)**q.a, np.arange(q.n)**q.a * np.random.random(q.n) 
GRADER.submit_answer(q, mobility(v,w)) 

i

Question 8. Simulate the kinetic exchange model long enough for it to stabilize; call this time , and let the wealth vector be 
. Run the model  timesteps further to time , find the wealth vector , and compute . It's up to

you to decide how to judge stabilization; you don't have to explain your method but you do have to submit a correct answer.

# Submitting your answer: 
q = GRADER.fetch_question('q8') 
# For a population size q.n, measure mobility over from time T to time T+q.t 
GRADER.submit_answer(q, your_answer) 

T

wT t T + t wT+t 𝗆𝗈𝖻𝗂𝗅𝗂𝗍𝗒( , )wT wT+t

Question 9. Plot the social mobility for a population of 500,000 as in Question 8, over a sequence of timesteps. To be
precise, plot  on the -axis and  on the -axis. (You don't have to submit your plot, but it may be
assessed in the ticking session.) Your plot should look something like this:

𝗆𝗈𝖻𝗂𝗅𝗂𝗍𝗒( , )wT wT+t y t x

https://en.wikipedia.org/wiki/Economic_mobility
https://www.brookings.edu/research/economic-mobility-of-families-across-generations/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile
https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html




Assignment 3. Analysis of flood data

This assignment asks you to analyse data provided by the UK Environment Agency concerning flooding. The agency offers
an API for near real-time data (http://environment.data.gov.uk/flood-monitoring/doc/reference) covering:

flood warnings and flood alerts
flood areas which to which warnings or alerts apply
measurements of water levels and flows
information on the monitoring stations providing those measurements

In this assignment we will be working with historical data of water level measurements, at several monitoring stations in
Cambridge and on the Cam. The dataset is available as a CSV file at
https://teachingfiles.blob.core.windows.net/scicomp/flood.csv (https://teachingfiles.blob.core.windows.net/scicomp/flood.csv).
If you go home over Christmas and are worried about flooding, and want to extend these analyses to your home area, see
A3. Data import and cleanup (A3.%20Data%20import%20and%20cleanup.ipynb) for details of how to fetch data from a web
API.

Image by N. Chadwick (http://www.geograph.org.uk/photo/4800494).

Goal of the assignment. This assignment tests your skill at manipulating dataframes and indexed arrays, and your flair
at plotting data. You should use Pandas and numpy operations for data manipulation, rather than for  loops, wherever
possible. You can organize your code however you like. Please create a new notebook for your answers to this
assignment.

Part A
This section is worth 1 mark. Check your answers as described in §0.3 (0.%20About%20this%20course.ipynb#grader) using 
section='assignment3a' .

Question 1. Import the CSV file and print out a few lines, choosing the lines at random using np.random.choice . The file
mistakenly includes the village Cam, near Bristol. Remove these rows, and store what's left as the variable flood . How
many rows are left?

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q1'), num_rows) 

Question 2. Complete this table of the number of entries in this dataset for each town and river.

Cambridge Great Shelford Milton Weston Bampfylde

Bin Brook 2665 0

River Cam

http://environment.data.gov.uk/flood-monitoring/doc/reference
https://teachingfiles.blob.core.windows.net/scicomp/flood.csv
http://localhost:8888/notebooks/A3.%20Data%20import%20and%20cleanup.ipynb
http://www.geograph.org.uk/photo/4800494
http://localhost:8888/notebooks/0.%20About%20this%20course.ipynb#grader


# Submit your answer, as an unstacked indexed array: 
GRADER.submit_answer(GRADER.fetch_question('q2'), your_answer.as_matrix()) 

Question 3. Each measurement station has a unique measure_id  and label . Complete this table of the number of
measurement stations for each town and river. Use only the Pandas operations for split-apply-combine, don't use any numpy
operations or Python for  loops or list comprehensions.

Cambridge Great Shelford Milton Weston Bampylde

Bin Brook 1 0

River Cam

# Submit your answer. Let your_answer be an unstacked indexed array. 
GRADER.submit_answer(GRADER.fetch_question('q3'), your_answer.as_matrix()) 

Question 4. Each measurement station has low and high reference levels, in columns low  and high . In this dataset, the
reference levels are stored for every measurement, but we can verify that every measure_id  has a unique pair 
(low,high)  with

assert all(flood.groupby(['measure_id','low','high']).apply(len).groupby('measure_id').apply
(len) == 1), "Reference levels non-constant" 

Add a column norm_value , by rescaling value  linearly so that value=low  correponds to norm_value=0  and 
value=high  corresponds to norm_value=1 . Use np.nanpercentile  to find the tercile points

(https://en.wiktionary.org/wiki/tercile), the two values that split the entire norm_value  column into three roughly equal parts.

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q4'), [tercile1, tercile2]) 

Question 5. Complete the following dataframe, listing the number of observations in each tercile and the total number of
observations per station.

label norm_value_tercile n ntot

Bin Brook low 19 2665

Bin Brook med 1653 2665

Bin Brook high 993 2665

Cambridge Jesus Lock high 1906 2651

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q5'), your_dataframe) 

Question 6. Complete this dataframe listing the fraction of observations in each tercile per station:

label low med high

Bin Brook 0.007 0.620 0.373

Cambridge 0.807 0.194 0.000

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q6'), your_dataframe) 

Question 7. Fill in the rest of this indexed array, giving the low  and high  values for each measurement station:

label ref

Bin Brook high 0.368

low 0.057

Cambridge high 1.250

low 0.141

https://en.wiktionary.org/wiki/tercile


# Submit your answer. Let your_answer be an indexed array. 
GRADER.submit_answer(GRADER.fetch_question('q7'), your_answer.reset_index(name='val')) 

Part B
This section is worth 1 mark. There is no automated testing of your answers here, but your code may be assessed in the
ticking session.

You should pay attention to axis ranges, axis labelling, colour schemes, etc. in reproducing the plot, though you shouldn't aim
to be pixel-perfect. You will need to spend time searching (https://stackoverflow.com/questions/tagged/matplotlib) how to
control matplotlib plots.

Question 8. Reproduce this plot:

Question 9. Reproduce this plot:

The light shaded area shows the range from low  to high  for each station. The dark shaded area shows the inter-tercile
range, low+tercile1*(high-low)  to low+tercile2*(high-low)  where tercile1  and tercile2  are your answers
to Question 4. They can be plotted with ax.axhspan
(https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhspan.html#matplotlib.axes.Axes.axhspan). Here are some code
snippets for working with datetimes that may be helpful.

https://stackoverflow.com/questions/tagged/matplotlib
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhspan.html#matplotlib.axes.Axes.axhspan


# Create a column with datetime objects 
import datetime, pytz 
def as_datetime(s): return datetime.datetime.strptime(s, '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo
=pytz.UTC) 
flood['datetime'] = np.vectorize(as_datetime)(flood['t']) 

# Date-axis control, taken from http://matplotlib.org/examples/api/date_demo.html 
# Given a matplotlib axis, print out date labels nicely 
ax.xaxis.set_major_locator(matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MO, tz=
pytz.UTC)) 
ax.xaxis.set_minor_locator(matplotlib.dates.DayLocator(tz=pytz.UTC)) 
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%a %d %b')) 
# then, at the end, 
fig.autofmt_xdate(bottom=0.2, rotation=-30, ha='left') 
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