
Briefing for Computer Science undergraduates

IA Scientific Computing
Dr Damon Wischik

1

What is scientific computing?What is scientific computing?

Using a computer to do science — to learn about the world

Write code to learn, not to deploy
 code, learn, throw away, repeat
 don’t spend time designing class hierarchies, or worrying about a robust code base

Iterate fast
 glue together tools from powerful libraries
 so you can express rich ideas in

a handful of lines of code

Document your findings
 intersperse code, text, and output,

especially visualization

So far you’ve learnt
• ML – it gives you a better understanding of what Computer Science is, what types

really are, what functions really are, etc.
• Java – it teaches you the good practices of software engineering, how to build

good resilient code that won’t break when you have new feature requests or new
programmers joining your team

Now you’re learning Scientific Computing, i.e. how to use a computer to do science,
i.e. trying to learn about the world. You’re not coding in order to deploy a product,
you’re coding in order to learn something. Your end product is A Piece of
Understanding.

For scientific computing, you want exploration to be as fast as possible: you have a
thought, you type in one or two lines, you see the answer, you have another thought,
... You can’t spend a week trying to design a good architecture – you want a language
that doesn’t impede you in any way; and you want flexible powerful toolkits. So your
code is typically just a few lines long.

Your end product isn’t a product, it’s a piece of documented understanding about the

2

world. There’s a big emphasis on documenting your reasoning, your findings
(especially tables and figures), and your conclusions. We’ll use Jupyter Notebooks, a
widespread platform for doing / documenting scientific computing. It’s great for
combining code and output and text.

2

Who uses it?Who uses it?

 Everyone in machine learning and data science
(IA/IB Machine learning and real-world data)
(IA/IB Databases)
IB Foundations of data science
II Principles of data science and machine learning
III Advanced topics in machine learning and natural language processing
III Machine learning
III Probabilistic machine learning

 Anyone with experimental
or simulation data
III Introduction to networking and systems

 Engineering disciplines
II Digital Signal Processing

• Everyone doing data science: In companies like Google and Facebook, whenever
you’re working on data and communicating your results to the rest of your team
(e.g. tracking your userbase, monitoring your system’s performance), you’ll
probably be using Jupyter Notebooks. (When you build the finished product, you
won’t use notebooks, you’ll use a proper software engineering toolchain including
version control etc.)

• Several other tripos courses on machine learning and data science use notebooks.
(At the moment, IA/IB MLRD and Databases don’t use Jupyter Notebooks, but
they’ll probably switch over soon.)

• Machine learning: this notebook illustrates using TensorFLow in a Jupyter
Notebook, using the Python programming language. This has become the de facto
standard for developing machine learning tools and trying them out on data.

3

What does the course teach?What does the course teach?

 Scientific computing using Jupyter
Notebooks, hosted by Azure

 Python
(This is to save you from MATLAB,
which NST students learn as part of
IA Maths for NST)

 Python libraries for scientific
computing: arrays, data, plots

Python is handy for scientific computing. It doesn’t have any of the boilerplate of
Java.

In this course,
• We’ll be programming in Python
• We’ll learn the specific Python toolkit for scientific computing tasks, especially for

efficient processing of arrays and datasets, and for plotting
• We’ll be using Jupyter Notebooks to prepare documents of Python code plus text

plus output (though the notebooks can be used for other languages also)
• We’ll be using Jupyter Notebooks hosted on the Microsoft Azure cloud platform

(though you can just as well run it on your own machine)

In previous years, students taking IA Maths for NST also learnt “Scientific Computing
in MATLAB”, and the NST students still do. When I asked students to plot some data,
they used Excel. I asked why, when they’ve all learnt MATLAB. They said “I never got
my head round it, and it didn’t seem like a real language.” I hope you’ll learn to love
Python for data handling and plotting!

4

Getting started with Jupyter / AzureGetting started with Jupyter / Azure

1. Go to the course website
https://www.cl.cam.ac.uk/teaching/1819/SciComp/materials.html

2. Follow the link to notebook library

3. Click on Sign In, and sign in using csrid@cam.ac.uk
You’ll be redirected to a Raven login page

4. Click on Clone, to copy all my teaching notebooks to your own
personal Azure Notebook space. (You need to do this before you
can run any code.) Give it any name and ID you like.

5. Click on any one of the notebooks, and you can start reading it
and running code in it. (Notebook 1 tells you how to run code.)

1 2 3 4 5

5

Some gotchas: (1) Notebooks are interactive documents, (2) check your Python version

Jupyter notebooks
 A notebook You choose when to execute cells, and in what order. You can

execute a cell at the bottom of the notebook, then execute a cell at the top of
the notebook, then edit the cell at the bottom – so that no one reading your
notebook has any clue what is what. You’ll almost certainly end up producing a
spaghetti notebook.

 I recommend you periodically restart the kernel (Kernel | Restart & Clear
Output), and make sure that all your code does the right thing when you run it
top-to-bottom. This is for the sanity of anyone else who reads your notebook
(including you, in the ticking session).

 A notebook is an interactive document. It isn’t a source file for a compiler, nor is
it a log from an interactive session.

Python versions
• Python has two main versions, 2.7 and 3.x. There are a few big syntactic

differences. When you look up help on StackOverflow etc., make sure you’re
looking at 3.x code.

• Make sure your notebook is running Python 3.6 (your notebook will say, in the top
right). If it’s not, choose Kernel | Change Kernel.

6

How is the course structured and examined?How is the course structured and examined?

1. Programming in Python
Appendix: Python language design

2. Numerical computation
Appendix: vectorized thinking

Assignment marked {0,1,2}

3. Working with data
Appendix: data import and cleanup

Assignment marked {0,1,2}

ticking session on
31 Jan 2019

self-paced work, with
online autograder
• It's the answers that matter.

There's no written exam on the
notes.

• Use the autograder as much as
you like, as a debugging aide.

The handouts are just a printout of the notebooks in the notebook library. There are
three notebooks.
• Notebook 1: general introduction to Python. If you’ve programmed in Python

before, you probably don’t even need to look at this. If you know Java, then there
are a few weird bits of Python syntax that you should know, so have a quick skim
through.

• Notebook 2: the Python toolkit for working efficiently with arrays and matrices,
the mainstay of scientific computing. And elementary plotting

• Notebook 3: how to load a dataset, how to clean it up, some data transforms,
some more plots.

Each assignment is marked out of 2, so the total mark for this course is 4. Nearly
everyone gets 4 marks. These are ticks, not tricky challenging exercises.

It’s self-paced work. You can start right away. This course should take 10 to 15 hours
of study time. If my estimate is way out, let me know.

There is an online autograder. It’ll tell you instantly whether your answers are correct
or not. Use it as much as you like.

7

To get the tick, you must (1) pass the autograder, (2) answer some questions about
your work.

7

Using the autograderUsing the autograder
1. Go to your notebook library

2. Click on to create a new notebook, which you’ll use to document your answers.
Make sure it’s type “Python 3.6 notebook” and give it a name ending in .ipynb

3. Run the magic commands listed in Notebook 0:
!pip install ucamcl –upgrade
import ucamcl
GRADER = ucamcl.autograder(‘https://markmy.solutions’, course=’scicomp’, section=’notes0’)

4. Click on and log in using your Raven csrid

5. The login page will change to show you your current marks

6. Go back to the Jupyter page, and you can fetch questions and submit answers, following
the instructions in Notebook 0.

2 3 4 5

6

Some notes
• While a command is executing, it shows as “In [*]”
• Each assignment and section of the notes will tell you what string to use for

“section”
• In the assignment, each question will tell you something like

q = GRADER.fetch_question('q1’)
Let my_ans be a list consisting of q.n copies of q.v
GRADER.submit_answer(q, my_ans)
It’s your job to write the code in the middle. In this case,
my_ans = [q.v for _ in range(q.n)]

• Each question object q comes with question parameters. Each student gets
questions with different parameters, each time you try to submit an answer. You
can see the full list of parameters in a question just by evaluating q, and you can
access the parameters by e.g. q.n

• If you submit the wrong answer, it’ll tell you why your answer is wrong (e.g.
wrong type, wrong length of list, etc.). In that case you should fetch the question
again, and try again. (If you try to re-use the old q object, it will print out a
message “That question is stale”.)

• On the Autograder/Mark page (the page you see after clicking on “log in”), it

8

shows you your marks so far. (The page doesn’t auto-refresh, so you may need to
refresh it yourself.) If you answer correctly then answer incorrectly, it’ll only
remember your correct answer.

• You can browse around the Autograder/Mark page, to show you marks for all the
other sections of this course

• There’s no penalty for using the autograder. Use it as often as you like, to help
with debugging. Think of it a bit like unit testing.

8

Where do I go for help?
1. StackOverflow
2. Moodle help forum
3. Help sessions at the

beginning of Lent term

Please go and look at other resources, e.g. StackOverflow and documentation. On the
Moodle forum, please answer each other’s questions, rather than waiting for me!

The point of scientific computing is that it’s a glue language, for assembling powerful
tools and gluing them together. So you should spend a lot of your time hunting
around for the right tools. The only real skills of scientific computing are (a) knowing
roughly what tools are available, (b) being able to find help on the exact way to use
them. And you need to know the bare bones of Python, to be able to glue pieces
together.

Help sessions at the beginning of Lent term: dates are listed on Moodle.

9

... and it will fail when you need it most.

Backup!
... and it will fail when you need it most.

Backup!

We’re using Jupyter notebooks hosted by Microsoft Azure.
• It’s very handy: all you need is a web browser, and you don’t need to bother about

installing software or software versioning etc.
• It’s in the cloud, i.e. on someone else’s computer, and it will fail. I will not have any

sympathy if it fails the night before the ticking deadline. It’s an important life
lesson: don’t rely on the cloud!

Back up your work! It’s unlikely there’ll be a complete failure of Microsoft Azure
storage, but you should always keep backups. Section 0 of the notes explains how.

Microsoft wants you to get used to using Microsoft’s cloud. “You only get to sell your
soul once. Make sure you get a good price.” If you prefer not to use Jupyter
Notebooks hosted by Microsoft Azure, you can also run Jupyter locally...

10

Running Jupyter on your local machineRunning Jupyter on your local machine

If you have tips, please
contribute to the wiki on the
Moodle course page.

You can also run Jupyter notebooks on your local machine. There are some
instructions in a wiki section on Moodle.
(This is my best attempt, but everyone’s computer is different. If you have any helpful
tips, please add them to the wiki.)

11

